1 AMM problem 11651

Solvers: TCDmath problem group, Mathematics, Trinity College, Dublin 2, Ireland.
Show that

$$
\begin{equation*}
\left\lfloor\frac{n+1}{\phi}\right\rfloor=n-\left\lfloor\frac{n}{\phi}\right\rfloor+\left\lfloor\frac{\lfloor n / \phi\rfloor}{\phi}\right\rfloor-\left\lfloor\frac{\left\lfloor\frac{\lfloor n / \phi\rfloor}{\phi}\right\rfloor}{\phi}\right\rfloor \ldots \tag{1.1}
\end{equation*}
$$

holds for every nonnegative integer n if and only if $\phi=(1+\sqrt{5}) / 2$.
Answer. The right-hand side may be written as $E(n)$, and clearly $E(n)=n-E(\lfloor n / \phi\rfloor)$. This will not converge unless $\phi>1$. We assume from now on that $\phi>1$.

If (1.1) holds for all n, then

$$
\begin{equation*}
\left\lfloor\frac{n+1}{\phi}\right\rfloor+\left\lfloor\frac{\lfloor n / \phi\rfloor+1}{\phi}\right\rfloor=n \tag{1.2}
\end{equation*}
$$

On the other hand, if (1.2) holds for all n then

$$
\begin{aligned}
\left\lfloor\frac{n+1}{\phi}\right\rfloor & =n-\left\lfloor\frac{\lfloor n / \phi\rfloor+1}{\phi}\right\rfloor \\
\left\lfloor\frac{\lfloor n / \phi\rfloor+1}{\phi}\right\rfloor & =\left\lfloor\frac{n}{\phi}\right\rfloor-\left\lfloor\frac{\left\lfloor\frac{\left\lfloor\frac{n}{\phi}\right\rfloor}{\phi}\right\rfloor+1}{\phi}\right\rfloor \ldots
\end{aligned}
$$

whence the identity (1.1) can be 'unrolled.' We discard the original identity in favour of the equivalent (1.2).

The latter identity implies

$$
\frac{n}{\phi}+\frac{n}{\phi^{2}}=n+O(1)
$$

for all n. Dividing by n,

$$
\frac{1}{\phi}+\frac{1}{\phi^{2}}=1+O(1 / n)
$$

for arbitrarily large n, which is only possible, since $\phi>1$, if ϕ is the golden section $(1+\sqrt{5}) / 2$.
To deal with the converse, we assume that ϕ is indeed the golden section. We reserve ψ to denote the other root of $x^{2}-x-1=0$, i.e., $\psi=(1-\sqrt{5}) / 2=-1 / \phi$.
Let $m=\lfloor n / \phi\rfloor$. We need to prove

$$
\left\lfloor\frac{n+1}{\phi}\right\rfloor+\left\lfloor\frac{m+1}{\phi}\right\rfloor=n
$$

for every nonnegative integer n. Write

$$
\frac{n}{\phi}=m+\alpha, \quad \text { so } \quad \frac{n+1}{\phi}=m+\alpha+\frac{1}{\phi}
$$

Since $n / \phi+n / \phi^{2}=n$,

$$
m+\alpha+\frac{n}{\phi^{2}}=n
$$

Case (i): $\alpha+1 / \phi<1$, in which case $m=\lfloor(n+1) / \phi\rfloor$, and it is enough to show that

$$
n-m=\alpha+\frac{n}{\phi^{2}}=\left\lfloor\frac{m+1}{\phi}\right\rfloor .
$$

or

$$
\alpha+\frac{n}{\phi^{2}}<\frac{m+1}{\phi}<\alpha+\frac{n}{\phi^{2}}+1 .
$$

Since $m / \phi<n / \phi^{2}$, the second inequality is obvious. The first is equivalent to

$$
\frac{n}{\phi^{2}}+\alpha<\frac{n / \phi+1-\alpha}{\phi}
$$

or

$$
\alpha<\frac{1-\alpha}{\phi}
$$

But $\alpha<1-1 / \phi=1 / \phi^{2}$ and $1-\alpha>1-1 / \phi^{2}=1 / \phi$, so this is correct.
Case (ii): $\alpha+1 / \phi>1$. Then $\lfloor(n+1) / \phi\rfloor=m+1$, and we need to show

$$
m+1+\left\lfloor\frac{m+1}{\phi}\right\rfloor-\frac{n}{\phi}-\frac{n}{\phi^{2}}=0 .
$$

So we need to show that

$$
\begin{gathered}
\frac{n}{\phi}-\alpha+1+\frac{n / \phi-\alpha+1}{\phi}-\frac{n}{\phi}-\frac{n}{\phi^{2}} \\
=1-\alpha+\frac{1-\alpha}{\phi}=(1-\alpha)(1+1 / \phi)=(1-\alpha) \phi
\end{gathered}
$$

is between 0 and 1 . It is positive, and $\alpha>1-1 / \phi=1 / \phi^{2}$, so $1-\alpha<1-\phi^{2}=1 / \phi$, as required.

