
1 AMM problem 11651

Solvers: TCDmath problem group, Mathematics, Trinity College, Dublin 2, Ireland.

Show that
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holds for every nonnegative integern if and only if φ = (1 +
√
5)/2.

Answer. The right-hand side may be written asE(n), and clearlyE(n) = n − E(⌊n/φ⌋). This
will not converge unlessφ > 1. We assume from now on thatφ > 1.

If (1.1) holds for alln, then
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On the other hand, if (1.2) holds for alln then
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whence the identity (1.1) can be ‘unrolled.’ We discard the original identity in favour of the equivalent
(1.2).

The latter identity implies
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for all n. Dividing byn,
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for arbitrarily largen, which is only possible, sinceφ > 1, if φ is the golden section(1 +
√
5)/2.

To deal with the converse, we assume thatφ is indeed the golden section. We reserveψ to denote
the other root ofx2 − x− 1 = 0, i.e.,ψ = (1−

√
5)/2 = −1/φ.

Letm = ⌊n/φ⌋. We need to prove
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for every nonnegative integern. Write
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Sincen/φ+ n/φ2 = n,

m+ α +
n
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= n

Case (i):α + 1/φ < 1, in which casem = ⌊(n+ 1)/φ⌋, and it is enough to show that
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or
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Sincem/φ < n/φ2, the second inequality is obvious. The first is equivalent to
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φ

or
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But α < 1− 1/φ = 1/φ2 and1− α > 1− 1/φ2 = 1/φ, so this is correct.
Case (ii):α + 1/φ > 1. Then⌊(n+ 1)/φ⌋ = m+ 1, and we need to show
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So we need to show that
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is between0 and1. It is positive, andα > 1−1/φ = 1/φ2, so1−α < 1−φ2 = 1/φ, as required.
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