Maths Monthly Problems

July 2012*

AMM problem 11653 Solution by TCDmath problem group, Mathematics, Trinity College, Dublin 2, Ireland.

Let n be a positive integer. Determine all entire functions f that satisfy, for all complex s and t, the functional equation

$$
\begin{equation*}
f(s+t)=\sum_{k=0}^{n-1} f^{(n-1-k)}(s) f^{(k)}(t) \tag{1}
\end{equation*}
$$

Here, $f^{(m)}$ denotes the m th derivative of f.
Answer: It is clear that $f=0$ is a solution for all n. Let us suppose therefore that $f(s)$ does not vanish identically.
We have

$$
\frac{\partial f(s+t)}{\partial s}=\frac{\partial f(s+t)}{\partial t}=f^{\prime}(s+t)
$$

Thus, on differentiating the functional equation with respect to s and t, and equating,

$$
\sum_{k=0}^{n-1} f^{(n-k)}(s) f^{(k)}(t)=\sum_{k=0}^{n-1} f^{(n-1-k)}(s) f^{(k+1)}(t)
$$

ie, cancelling common terms,

$$
f(s) f^{(n)}(t)=f^{(n)}(s) f(t)
$$

[^0]Hence

$$
\frac{f^{(n)}(s)}{f(s)}=\frac{f^{(n)}(t)}{f(t)}=c,
$$

where c is constant.
If $c=0$ then $f^{(n)}(s)$ vanishes identically, ie $f(s)$ is a polynomial of degree $m<n$. Suppose

$$
f(s)=a_{m} s^{m}+\cdots a_{0} .
$$

If $m<n-1$ then $f^{(n-1)}(t)=0$, and there is no term on the right-hand side of (1) in s^{m}. Hence $m=n-1$.
By Taylor's Theorem,
$f(s+t)=f^{(0)}(s)+f^{(1)}(s) t+f^{(2)}(s) t^{2} / 2!+\cdots+f^{(m)}(s) t^{m} / m!$.
By degree arguments, the polynomials $f^{(0)}(s), f^{(1)}(s), \cdots, f^{(m)}(s)$ are linearly independent. It follows, by comparison with (1), that

$$
f^{(m-i)}(t)=t^{i} / i!
$$

for $i=0,1, \ldots, m$. In particular

$$
f(t)=t^{m} / m!
$$

from which the other equations follow.
It follows that, for each $n \geq 1$,

$$
f(s)=\frac{s^{n-1}}{(n-1)!}
$$

is a solution of (1).
Now suppose $c \neq 0$. Then

$$
f^{(n)}(s)=c f(s)
$$

Hence

$$
f(s)=\sum_{i} b_{i} e^{\lambda_{i} s}
$$

where λ_{i} runs over the roots of

$$
t^{n}=c
$$

If we isolate one of the summands

$$
b_{i} e^{\lambda_{i} s}
$$

then all terms involving $e^{\lambda_{i} s} e^{\lambda_{i} t}$ on both sides of (1) arise from this summand, and hence the summand itself will also be a solution to (1).
So let us consider

$$
f(s)=b e^{\lambda s} .
$$

We have

$$
f^{(k)}(s)=b \lambda^{k} e^{\lambda s}
$$

so (1) gives

$$
b e^{\lambda(s+t)}=n b^{2} \lambda^{n-1} e^{\lambda(s+t)}
$$

Thus the equation will hold provided

$$
b=\frac{1}{n \lambda^{n-1}}=\frac{\lambda}{n c},
$$

where $c=\lambda^{n}$.
Finally, we must consider if a sum of such solutions, with different λ_{i}, can satisfy (1).
Let

$$
f(s)=\sum_{i} b_{i} e^{\lambda_{i} s}
$$

where the λ_{i} are distinct roots of $t^{n}-c$ and each summand satisfies (1).
On the left-hand side of (1) we have

$$
\sum_{i} b_{i} e^{\lambda_{i}(s+t)}
$$

and on the right

$$
\sum_{i, j, k} b_{i} \lambda_{i}^{n-1-k} e^{\lambda_{i} s} b_{j} \lambda_{j}^{k} e^{\lambda_{j} t}
$$

For $i=j$ we get $b_{i}^{2} n \lambda_{i}^{n-1} e^{\lambda_{i}(s+t)}$, as previously, which fits (1), and for $i \neq j$, the terms cancel:

$$
b_{i} b_{j} e^{\lambda_{i} s+\lambda_{j} t} \sum_{k} \lambda_{i}^{n-1-k} \lambda_{j}^{k}=0,
$$

because the sum can be written

$$
\begin{aligned}
& \lambda_{i}^{n-1} \sum_{k}\left(\lambda_{j} / \lambda_{i}\right)^{k}= \\
& \lambda_{i}^{n-1} \frac{1-\left(\lambda_{j} / \lambda_{i}\right)^{n}}{1-\lambda_{j} / \lambda_{i}}= \\
& \lambda_{i}^{n-1} \frac{1-c / c}{1-\lambda_{j} / \lambda_{i}}=0 .
\end{aligned}
$$

We conclude that the only solutions are:

1. any of the 2^{n} combinations

$$
f(s)=\frac{1}{n c}\left(\sum_{i} \lambda_{i} e^{\lambda_{i} s}\right),
$$

where the λ_{i} are some or all of the distinct roots of $\lambda^{n}=c$;
2. $f(s)=s^{n-1} /(n-1)$! for each $n \geq 1$.

[^0]: *Solutions should be submitted by 31 October

