Solutions to AMM problems 11637 and 11641

TCDmath problem group
Mathematics, Trinity College, Dublin 2, Ireland*

November 15, 2012

1 AMM problem 11637

Solvers: TCDmath problem group, Mathematics, Trinity College, Dublin 2, Ireland.
Let $m \geq 1$ be a non-negative integer. Let $\{u\}=u-\lfloor u\rfloor$; the quantity $\{u\}$ is called the fractional part of u. Prove that

$$
\int_{0}^{1}\left\{\frac{1}{x}\right\}^{m} x^{m} d x=1-\frac{1}{m+1} \sum_{k=1}^{m} \zeta(k+1)
$$

Answer: Substituting $\{1 / x\}=1 / x-\lfloor 1 / x\rfloor$,

$$
I=\int_{0}^{1} d x-\int_{0}^{1}(1 / x-\lfloor 1 / x\rfloor)^{m} x^{m} d x
$$

We divide the interval $[0,1]$ according to the value of $\lfloor 1 / x\rfloor$. We have

$$
\lfloor 1 / x\rfloor=n \Longleftrightarrow n \leq \frac{1}{x}<n+1 \Longleftrightarrow \frac{1}{n+1}<x \leq \frac{1}{n}
$$

[^0]Thus

$$
\begin{aligned}
I & =\sum_{n=1}^{\infty} \int_{1 /(n+1)}^{1 / n}(1 / x-n)^{m} x^{m} d x \\
& =\sum_{n=1}^{\infty} \int_{1 /(n+1)}^{1 / n}(1-n x)^{m} d x \\
& =\sum_{n=1}^{\infty}\left[-\frac{(1-n x)^{m+1}}{n(m+1)}\right]_{(1 /(n+1)}^{1 / n} \\
& =\frac{1}{m+1} \sum_{n=1}^{\infty} \frac{(1-n /(n+1))^{m+1}}{n} \\
& =\frac{1}{m+1} \sum_{n=1}^{\infty} \frac{(1 /(n+1))^{m+1}}{n} \\
& =\frac{1}{m+1} \sum_{n=1}^{\infty} \frac{(n+1)^{-(m+1)}}{n} .
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
S & =\sum_{k=1}^{m} \zeta(k+1) \\
& =\sum_{k=1}^{m} \sum_{n=1}^{\infty} n^{-(k+1)} \\
& =\sum_{n=1}^{\infty} \sum_{k=1}^{m} n^{-(k+1)} \\
& =\sum_{n=1}^{\infty} F(n),
\end{aligned}
$$

where $F(1)=m$ while if $n>1$

$$
\begin{aligned}
F(n) & =\frac{1}{n^{2}}+\frac{1}{n^{3}}+\cdots+\frac{1}{n^{m+1}} \\
& =\frac{1}{n^{2}} \frac{1-1 / n^{m}}{1-1 / n} \\
& =\frac{1}{n(n-1)}-\frac{n^{-(m+1)}}{n-1} .
\end{aligned}
$$

Noting that

$$
F(n+1)=\frac{1}{n(n+1)}-\frac{(n+1)^{-(m+1)}}{n}
$$

we see that

$$
I=\frac{1}{m+1} \sum_{n=1}^{\infty}\left(\frac{1}{n(n+1)}-F(n+1)\right)
$$

Now

$$
\begin{aligned}
\sum_{n=1}^{\infty} \frac{1}{n(n+1)} & =\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\cdots \\
& =\left(\frac{1}{1}-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\cdots \\
& =1
\end{aligned}
$$

Thus

$$
\begin{aligned}
I & =\frac{1}{m+1}(1-(S-F(1)) \\
& =\frac{1}{m+1}(1-S+m) \\
& =1-\frac{1}{m+1} S
\end{aligned}
$$

2 AMM problem 11641

Solvers: TCDmath problem group, Mathematics, Trinity College, Dublin 2, Ireland.
Let f be a convex function from \mathbb{R} into \mathbb{R} and suppose $f(x+y)+f(x-y)-2 f(x) \leq y^{2}$ for all real x and y.

1. Show that f is differentiable.
2. Show that for all real x and y,

$$
\left|f^{\prime}(x)-f^{\prime}(y)\right| \leq|x-y| .
$$

Answer:

1. Let $P=(x, f(x)), Q(y)=(x+y, f(x+y)), R(y)=(x-y, f(x-y))$.

The slope $(f(x+y)-f(x)) / y$ of the line $P Q(y)$ is non-increasing as y decreases to 0 . For suppose $z \in(0, y)$, and suppose the slope of $P Q(z)$ is greater than the slope of $P Q(y)$. Then the point $Q(z)$ lies above the line-segment $P Q(y)$, contradicting the definition of convexity.
Similarly the slope $(f(x)-f(x-y)) / y$ of the line $R(y) P$ is non-decreasing as y decreases to 0.

It follows that $((f(x+y)-f(x)) / y, \quad((f(x)-f(x-y)) / y$ converge to limits L, M as y decreases to 0 .
But

$$
\begin{aligned}
0 \leq & \frac{f(x+y)-f(x)}{y}-\frac{f(x)-f(x-y)}{y} \\
& =\frac{f(x+y)+f(x-y)-2 f(x)}{y} \leq y
\end{aligned}
$$

(The inequality on the left follows from the convexity of f; the inequality on the right from the condition laid down in the question.)

On letting y tend to 0 , it follows that $L=M$. Hence

$$
\frac{f(x+y)-f(x)}{y} \rightarrow L=M \text { as } y \rightarrow 0
$$

ie $f(x)$ is differentiable at x with derivative $L=M$.
2. As we saw above,

$$
0 \leq \frac{f(x+y)-f(x)}{y}-\frac{f(x)-f(x-y)}{y} \leq y
$$

Replacing x by $x+y$,

$$
0 \leq \frac{f(x+2 y)-f(x+y)}{y}-\frac{f(x+y)-f(x)}{y} \leq y
$$

Adding

$$
0 \leq \frac{f(x+2 y)-f(x+y)}{y}-\frac{f(x)-f(x-y)}{y} \leq 2 y
$$

Continuing in this way, replacing x successively by $x+2 y, x+3 y, \ldots, x+n y$, and adding,

$$
0 \leq \frac{f(x+(n+1) y)-f(x+n y)}{y}-\frac{f(x)-f(x-y)}{y} \leq n y
$$

Writing z for ny,

$$
0 \leq \frac{f(x+z+y)-f(x+z)}{y}-\frac{f(x)-f(x-y)}{y} \leq z
$$

Letting y tend to 0 ,

$$
0 \leq f^{\prime}(x+z)-f^{\prime}(x) \leq z
$$

which is what we have to prove.
This argument seems to assume that z is a multiple of y. However, if we are given z, we can take $y=z / n$ and then let $n \rightarrow \infty$, and the argument holds.

[^0]: *This group involves students and staff of the Department of Mathematics, Trinity College, Dublin. Please address correspondence either to Timothy Murphy (tim@maths.tcd.ie), or Colm Ó Dúnlaing (odunlain@maths.tcd.ie).

