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116663. Proposed by Eugen J. Ionascu. The unit interval is broken at two randomly chosen points
along its length. Show that the probability that the lengths of the resulting 3 intervals are the heights
of a triangle is equal to
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11664. Proposed by Cosmin Pohoata and Darij Grinberg. Let a, b, and c be the side lengths of a
triangle. Let s denote the semiperimeter, r the inradius, and R the circumradius of that triangle. Let
a′ = s− a, b′ = s− b, and c′ = s− c.
(a) Prove that ar

R
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11665. Proposed by Raitis Ozols, student. Let a = (a1, . . . , an), where n ≥ 2 and each aj is a
positive real number. Let S(a) = a1

a2 + . . .+ an−1
an + an

a1 .
(a) Prove that S(a) > 1.
(b) Prove that for all ǫ > 0 and n ≥ 2 there exists a of length n with S(a) < 1 + ǫ.

11666. Proposed by Dmitry G. Fon-Der-Flaass and Max. A. Alekseyev. Let m be a positive
integer, and let A and B be nonempty subsets of {0, 1}m. Let n be the greatest integer such that
|A| + |B| > 2n. Prove that |A + B| ≥ 2n. (Here, |X| denotes the number of elements in X , and
A+ B denotes {a+ b : a ∈ A, b ∈ B}, where addition of vectors is componenentwise modulo 2.)

11667. Proposed by Cezar Lupu and Dan Schwarz. Let f, g, and h be elements of an inner
product space over R, with 〈f, g〉 = 0.
(a) Show that

〈f, f〉〈g, g〉〈h, h〉2 ≥ 4〈g, h〉2〈h, f〉2.
(b) Show that

(〈f, f〉〈h, h〉)〈h, f〉2 + (〈g, g〉〈h, h〉)〈g, h〉2 ≥ 4〈g, h〉2〈h, f〉2.

1



11668. Proposed by Dimitris Stathopoulos. For positive integer n and i ∈ {0, 1}, let Di(n) be
the number of derangements on n elements whose number of cycles has the same parity as i. Prove
that D1(n)−D0(n) = n− 1.

11669. Proposed by Herman Roelants. Prove that for all n ≥ 4 there exist integers x1, . . . , xn

such that
x2

n−1
+ 1

x2
n

n−2
∏

k=1

x2

k + 1

x2

k

= 1

satisfying the following conditions: x1 = 1, xk−1 < xk < 3xk−1 for 2 ≤ k ≤ n− 2, x
n−2 < xn−1 <

2xn−2, and xn−1 < xn < 2xn−1.
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