AMM problems December 2012, due before 30 April 2013

TCDmath problem group Mathematics, Trinity College, Dublin 2, Ireland*

March 27, 2013

11677. Proposed by Albert Stadler. Evaluate

$$\prod_{n=1}^{\infty} \left(1 + 2e^{-m\sqrt{3}} \cosh(mn/\sqrt{3}) \right).$$

11678. Proposed by Farrukh Ataev Rakhimjanovich. Let F_k he the kth Fibonacci number, where $F_0 = 0$ and $F_1 = 1$. For $n \ge 1$ let A_n be an $(n + 1) \times (n + 1)$ matrix with entries $a_{j,k}$ given by $a_{0,k} = a_{k,0} = F_k$ for $0 \le k \le n$ and by $a_{j,k} = a_{j-1,k} + a_{j,k-1}$ for $j, k \ge 1$. Compute the determinant of A_n .

11679. *Proposed by Tim Keller.* Let n be an integer greater than 2, and let a_2, \ldots, a_n be positive real numbers with product 1. Prove that

$$\prod_{k=2}^{n} (1+a_k)^k > \frac{2}{e} \left(\frac{n}{2}\right)^{2n-1}$$

11680. Proposed by Benjamin Bogosel and Cezar Lupu. Let x_1, \ldots, x_n be nonnegative real numbers. Show that

$$\left(\sum_{i=1}^{n} \frac{x_i}{i}\right)^4 \le 2\pi^2 \sum_{i,j=1}^{n} \frac{x_i x_j}{i+j} \sum_{k,\ell=1}^{n} \frac{x_k x_\ell}{(k+\ell)^3}.$$

11681. Proposed by Des MacHale. For any group G, let Aut G denote the group of automorphisms of G.

(a) Show there is no finite group G with $|\operatorname{Aut} G| = |G| + 1$.

(b) Show that there are infinitely many finite gropus G with $|\operatorname{Aut} G| = |G|$.

(c) Find all finite groups G with $|\operatorname{Aut} G| = |G| - 1$.

^{*}This group involves students and staff of the Department of Mathematics, Trinity College, Dublin. Please address correspondence either to Timothy Murphy (tim@maths.tcd.ie), or Colm Ó Dúnlaing (odunlain@maths.tcd.ie).

11682. Proposed by Ovidiu Furdui. Compute

$$\sum_{n=0}^{\infty} (-1)^n \left(\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{n+k} \right)^2.$$

11683. Proposed by Raimond Struble. Given a triangle ABC, let F_C be the foot of the altitude from the incenter to AB. Define F_B and F_C similarly. Let C_A be the circle with center A that passes through F_B and F_C , and define C_B and C_C similarly. The Gergonne point of a triangle is the point at which segments AF_A , BF_B , and CF_C meet. Determine, up to similarity, all isosceles triangles such that the Gergonne point of the triangle lies on one of the circles C_A , C_B , or C_C .