AMM problems December 2012, due before 30 April 2013

TCDmath problem group
Mathematics, Trinity College, Dublin 2, Ireland*

March 27, 2013
11677. Proposed by Albert Stadler. Evaluate

$$
\prod_{n=1}^{\infty}\left(1+2 e^{-m \sqrt{3}} \cosh (m n / \sqrt{3})\right)
$$

11678. Proposed by Farrukh Ataev Rakhimjanovich. Let F_{k} he the k th Fibonacci number, where $F_{0}=0$ and $F_{1}=1$. For $n \geq 1$ let A_{n} be an $(n+1) \times(n+1)$ matrix with entries $a_{j, k}$ given by $a_{0, k}=a_{k, 0}=F_{k}$ for $0 \leq k \leq n$ and by $a_{j, k}=a_{j-1, k}+a_{j, k-1}$ for $j, k \geq 1$. Compute the determinant of A_{n}.
11679. Proposed by Tim Keller. Let n be an integer greater than 2 , and let a_{2}, \ldots, a_{n} be positive real numbers with product 1 . Prove that

$$
\prod_{k=2}^{n}\left(1+a_{k}\right)^{k}>\frac{2}{e}\left(\frac{n}{2}\right)^{2 n-1}
$$

11680. Proposed by Benjamin Bogoşel and Cezar Lupu. Let x_{1}, \ldots, x_{n} be nonnegative real numbers. Show that

$$
\left(\sum_{i=1}^{n} \frac{x_{i}}{i}\right)^{4} \leq 2 \pi^{2} \sum_{i, j=1}^{n} \frac{x_{i} x_{j}}{i+j} \sum_{k, \ell=1}^{n} \frac{x_{k} x_{\ell}}{(k+\ell)^{3}}
$$

11681. Proposed by Des MacHale. For any group G, let Aut G denote the group of automorphisms of G.
(a) Show there is no finite group G with \mid Aut $G|=|G|+1$.
(b) Show that there are infinitely many finite gropus G with \mid Aut $G|=|G|$.
(c) Find all finite groups G with \mid Aut $G|=|G|-1$.

[^0]11682. Proposed by Ovidiu Furdui. Compute
$$
\sum_{n=0}^{\infty}(-1)^{n}\left(\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{n+k}\right)^{2}
$$
11683. Proposed by Raimond Struble. Given a triangle $A B C$, let F_{C} be the foot of the altitude from the incenter to $A B$. Define F_{B} and F_{C} similarly. Let C_{A} be the circle with center A that passes through F_{B} and F_{C}, and define C_{B} and C_{C} similarly. The Gergonne point of a triangle is the point at which segments $A F_{A}, B F_{B}$, and $C F_{C}$ meet. Determine, up to similarity, all isosceles triangles such that the Gergonne point of the triangle lies on one of the circles C_{A}, C_{B}, or C_{C}.

[^0]: *This group involves students and staff of the Department of Mathematics, Trinity College, Dublin. Please address correspondence either to Timothy Murphy (tim@maths.tcd.ie), or Colm Ó Dúnlaing (odunlain@maths.tcd.ie).

