AMM problems January 2013, due before 31 May 2013

TCDmath problem group
Mathematics, Trinity College, Dublin 2, Ireland*

May 2, 2013
11684. Proposed by Raymond Mordini, and Rudolf Rupp. For complex a and z, let $\phi_{a}(z)=$ $(a-z) /(1-\bar{a} z))$ and $\rho(a, z)=|a-z| / \mid 1-\bar{a} z) \mid$.
(a) Show that whenever $-1<a, b<1$,

$$
\begin{gathered}
\max _{|z| \leq 1 \mid}\left|\phi_{a}(z)-\phi_{b}(z)\right|=2 \rho(a, b), \quad \text { and } \\
\max _{|z| \leq 1 \mid}\left|\phi_{a}(z)+\phi_{b}(z)\right|=2
\end{gathered}
$$

(b) For complex α, β with $|\alpha|=|\beta|=1$, let

$$
m(z)=m_{a, b, \alpha, \beta}(z)=\left|\alpha \phi_{a}(z)-\beta \phi_{b}(z)\right| .
$$

Determine the maximum and minimum, taken over z with $|z|=1$, of $m(z)$.
11685. Proposed by Donald Knuth. Prove that

$$
\prod_{k=0}^{\infty}\left(1+\frac{1}{2^{2^{k}}-1}\right)=\frac{1}{2}+\sum_{k=0}^{\infty} \frac{1}{\prod_{j=0}^{k-1}\left(2^{2^{j}}-1\right)}
$$

In other words, prove that

$$
(1+1)\left(1+\frac{1}{3}\right)\left(1+\frac{1}{15}\right)\left(1+\frac{1}{255}\right) \ldots=\frac{1}{2}+1+1+\frac{1}{3}+\frac{1}{3 \cdot 15}+\frac{1}{3 \cdot 15 \cdot 255}+\ldots
$$

11686. Proposed by Michel Bataille. Let x, y, z be positive real numbers such that $x+y+z=\pi / 2$. Prove that

$$
\frac{\cot x+\cot y+\cot z}{\tan x+\tan y+\tan z} \geq 4\left(\sin ^{2} x+\sin ^{2} y+\sin ^{2} z\right)
$$

[^0]11687. Proposed by Steven Finch. Let T be a solid torus in \mathbb{R}^{3} with center at the origin, tube radius 1 and spine radius r with $r \geq 1$ (so that T has volume $\pi \cdot 2 \pi r$). Let P be a 'random' nearby plane. Find the conditional probability that, given that P meets T, that the intersection is simply connected. For what value of r is this probability maximal? (The plane is chosen by first picking a distance form teh origin uniformly between 0 and $1+r$, and then picking a normal vector independently and uniformly on the unit sphere.)
11688. Proposed by Samuel Alexander. Consider $f: \mathbb{N}^{3} \rightarrow \mathbb{N}$ such that $\lim _{a \rightarrow \infty} \inf _{b, c, d \in \mathbb{N}, b<a}(f(a, c, d)-f(b, c, d))=\infty$. Show that for $B \in \mathbb{N}$, there exists $k \in \mathbb{N}$ such that
$$
f(a, c, d)=k \Rightarrow \max (c, d)>B
$$
11689. Proposed by Yagub N. Aliyev. Two circles w_{1} and w_{2} intersect at distinct points B and C and are internally tangent to a third circle w at M and N, respectively. Line $B C$ intersects w at A and D, with A nearer B than C. Let r_{1} and r_{2} be the radii of w_{1} and w_{2}, respectively, with $r_{1} \leq r_{2}$. Let $u=\sqrt{|A C| \cdot|B D|}$ and $v=\sqrt{|A B| \cdot|C D|}$. Prove that
$$
\frac{u-v}{u+v}<\sqrt{\frac{r_{1}}{r_{2}}}
$$
11690. Proposed by Pál Péter Dályay. Let M be a point in the interior of a convex polygon with vertices A_{1}, \ldots, A_{n} in order. For $1 \leq i \leq n$, let r_{i} be the distance from M to A_{i}, and let R_{i} be the radius of the circumcircle of triangle $M A_{i} A_{i+1}$, where $A_{n+1}=A_{1}$. Show that
$$
\sum_{i=1}^{n} \frac{R_{i}}{r_{i}+r_{i+1}} \geq \frac{n}{4 \cos (\pi / n)}
$$

[^0]: *This group involves students and staff of the Department of Mathematics, Trinity College, Dublin. Please address correspondence either to Timothy Murphy (tim@maths.tcd.ie), or Colm Ó Dúnlaing (odunlain@maths.tcd.ie).

