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11684. Proposed by Raymond Mordini, and Rudolf Rupp. For complexa andz, let¢,(z) =
(a —2)/(1 —az)) andp(a, z) = |a — z|/[1 — @z)|.
(a) Show that whenever1 < a,b < 1,

max |@q(2) — ¢p(2)| = 2p(a,b), and

|2[<1]
max |¢q(2) + ¢p(2)] = 2.

|2[<1]
(b) For complexx, 5 with |a| = |5| = 1, let
m(z) = Map.ap(2) = [0da(2) = B5(2)].
Determine the maximum and minimum, taken ovevith |z| = 1, of m(z).
11685. Proposed by Donald Knuth. Prove that

d 1 J— 1
(v 5=) 2 Xy

k=0

In other words, prove that

(1+1)(1+1)(1+1)(1+ 1) —1+1+1+1+ ! + ! +
3 15 255" 2 3 3-15 3-15-255 77

11686. Proposed by Michel Bataille. Let z, y, = be positive real numbers such that- y + = = 7/2.

Prove that
cotx + coty + cot z

> 4(sin® x + sin®y + sin? 2).
tanx + tany + tanz — ( 4 )

*This group involves students and staff of the Departmentati@matics, Trinity College, Dublin. Please address cor-
respondence either to Timothy Murphyi (m@rat hs. t cd. i e), or ColmO Dunlaing pdunl ai n@rat hs. t cd. i e).
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11687. Proposed by Steven Finch. Let 7" be a solid torus ifiR? with center at the origin, tube radius 1
and spine radius with » > 1 (so that7" has volumer - 27r). Let P be a ‘random’ nearby plane. Find
the conditional probability that, given th& meetsT’, that the intersection is simply connected. For
what value ofr- is this probability maximal? (The plane is chosen by firskpig a distance form teh
origin uniformly betweer) and1 + r, and then picking a normal vector independently and unifprm
on the unit sphere.)

11688. Proposed by Samuel Alexander. Considerf : N> — N such that
lim, oo infy ¢ genpa( f(a, ¢, d) — f(b, ¢, d)) = co. Show that forB € N, there exist& € N such that

f(a,c,d) = k = max(c,d) > B.

11689. Proposed by Yagub N. Aliyev. Two circlesw; andw, intersect at distinct point8 andC' and
are internally tangent to a third circle at M/ and N, respectively. LineBC' intersectsw at A and
D, with A nearerB thanC'. Letr; andr, be the radii ofw; andw,, respectively, with-; < r,. Let

u=+/|AC|-|BD]andv = /|AB| - |CD|. Prove that

U—v 1

U+ v T9

11690. Proposed by & Peter Calyay. LetM be a point in the interior of a convex polygon with
verticesA;, ..., A, inorder. Forl < i < n, letr; be the distance fromd/ to A;, and letR; be the
radius of the circumcircle of triangl&/ A; A; .1, whereA,,,.; = A;. Show that

>

— ri+ 71 Acos(m/n)




