AMM problems February 2013, due before 30 June 2013

TCDmath problem group
Mathematics, Trinity College, Dublin 2, Ireland*

May 17, 2013
11691. Proposed by M.L. Glasser. Show that the $2 n$th moment $\int_{0}^{\infty} x^{2 n} f(x) d x$ of the function f given by

$$
f(x)=\frac{d}{d x} \arctan \left(\frac{\sinh x}{\cos x}\right)
$$

is zero when n is an odd positive integer.
11692. Proposed by Cezar Lupu and Ştefan Spătaru. Let $a_{1}, a_{2}, a_{3}, a_{4}$ be real numbers in $(0,1)$ with $a_{4}=a_{1}$. Show that

$$
\frac{3}{1-a_{1} a_{2} a_{3}}+\sum_{k=1}^{3} \frac{1}{1-a_{k}^{3}} \geq \sum_{k=1}^{3} \frac{1}{1-a_{k}^{2} a_{k+1}}+\frac{1}{1-a_{k} a_{k+1}^{2}}
$$

11693. Proposed by Eugen Ionascu and Richard Strong. Let T be an equilateral triangle inscribed in the d-dimensional unit cube $[0,1]^{d}$, with $d \geq 2$. As a function of d, what is the maximum possible side-length of T ?
11694. Proposed by Kent Holing. Let $g(x)=x^{4}+a x^{3}+b x^{2}+a x+1$, where a and b are rational. Suppose g is irreducible over \mathbb{Q}. Let G be the Galois group of g. Let \mathbb{Z}_{4} denote the additive group of the integers mod 4, and let D_{4} be the dihedral group of order 8 . Let $\alpha=(b+2)^{2}-4 a^{2}$ and $\beta=a^{2}-4 b+8$.
(a) Show that G is isomorphic to one of \mathbb{Z}_{4} or D_{4} if and only if neither α nor β is the square of a rational number, and G is cyclic exactly when $\alpha \beta$ is the square of a rational number.
(b) Suppose neither α nor β is square, but $\alpha \beta$ is. Let r be one of the roots of g. (Trivally, $1 / r$ is also a root.) Let $s=\sqrt{\alpha \beta}$, and let

$$
\begin{gathered}
t=\left((s+(b-6) a) r^{3}+\left(a s+(b-8) a^{2}+4(b+2)\right) r^{2}+\right. \\
\left.\left((b-1) s+\left(b^{2}-b+2\right) a-2 a^{3}\right) r+2(b+2) b-6 a^{2}\right) /(2 s) .
\end{gathered}
$$

[^0]Show that $t \in \mathbb{Q}[r]$ is one of the other two roots of g. Comment on the special case $a=b=1$.
11695. Proposed by Ovidiu Furdui. The Stirling numbers of the first kind, denoted $s(n, k)$, can be defined by their generating function: $z(z-1) \cdots(z-n+1)=\sum_{k=0}^{n} s(n, k) z^{k}$. Let m and p be nonnegative integers with $m>p-4$. Prove that

$$
\begin{gathered}
\int_{0}^{1} \int_{0}^{1} \frac{\log x \cdot \log ^{m}(x y) \cdot \log y}{(1-x y)^{p}} d x d y \\
=\left\{\begin{array}{l}
(-1)^{m} \frac{1}{6}(m+3)!\zeta(m+4), \quad \text { if } p=1 ; \\
(-1)^{m+p-1} \frac{(m+3)!}{6(p-1)!} \sum_{k=1}^{p-1}(-1)^{k} s(p-1, k) \zeta(m+4-k) \quad \text { if } p>1 .
\end{array}\right.
\end{gathered}
$$

11696. Proposed by Enkel Hysnelaj and Elton Bojaxhiu.

Let T be a triangle with sides of length a, b, c, inradius r, circumradius R, and seimiperimeter p. Show that

$$
\frac{1}{2\left(r^{2}+4 R r\right)}+\frac{1}{9} \sum_{\mathrm{cyc}} \frac{1}{c(p-c)} \geq \frac{4}{9} \sum_{\mathrm{cyc}}\left(\frac{1}{9 R r-c(p-c)}\right) .
$$

11697. Proposed by Moubinool Omarjee. Let n and q be integers, with $2 n>q \geq 1$. Let

$$
f(t)=\int_{\mathbb{R}^{q}} \frac{e^{-t\left(x_{1}^{2 n}+\ldots+x_{q}^{2 n}\right)}}{1+x_{1}^{2 n}+\ldots x_{q}^{2 n}} d x_{1} \cdots d x_{q} .
$$

Prove that $\lim _{t \rightarrow \infty} t^{q / 2 n} f(t)=n^{-q}(\Gamma(1 / 2 n))^{q}$.

[^0]: *This group involves students and staff of the Department of Mathematics, Trinity College, Dublin. Please address correspondence either to Timothy Murphy (tim@maths.tcd.ie), or Colm Ó Dúnlaing (odunlain@maths.tcd.ie).

