AMM problems April 2013, due before 31 August 2013

TCDmath problem group Mathematics, Trinity College, Dublin 2, Ireland*

July 1, 2013

11698. Proposed by Timothy Hall. Provide an algorithm that takes as input a positive integer n and a nonzero constant k and returns polynomials F and G in variables u and v such that when x^n is substituted for u, and x+k/x is substituted for v, F(u,v)/G(u,v) simplifies (disregarding removable singularities) to x. (For example, when k = 1 and n = 3, F = u + v and $G = v^2 - 1$ will do.)

11699. Proposed by Bakir Farhi. Let $\langle a_k \rangle$ be a strictly increasing sequence of positive integers such that $\sum_{k=2}^{\infty} \frac{1}{a_k \log a_k}$ diverges. Prove that $\operatorname{lcm}(a_1, \ldots, a_k) = \operatorname{lcm}(a_1, \ldots, a_{k+1})$ for infinitely many k in \mathbb{N} .

11700. Proposed by Evan O'Dorney (student). Let n be an integer greater than 1. Let a, b, and c be complex numbers with $a + b + c = a^n + b^n + c^n = 0$. Prove that the absolute values of a, b, and c cannot be distinct.

11701. Proposed by D.M. Bătineţu-Giurgiu and Neculai Stanciu. (a) Let $\langle x_n \rangle$ be the sequence defined by $\sum_{k=1}^{mn} 1/k = \gamma + \log(mn + x_n)$, where γ is the Euler-Mascheroni constant. Find $\lim_{n\to\infty} x_n$. (b) let $\langle y_n \rangle$ be the sequence defined by $\sum_{k=1}^{mn} = \gamma + \log(m(n + y_n))$. Find $\lim_{n\to\infty} y_n$.

11702. *Proposed by Greg Oman.* Find all nonzero rings R (not assumed to be commutative or to contain a multiplicative identity) with these properties:

(a) There exists $x \in R$ that is neither a left nor a right zero divisor, and (b) Every map ϕ from R to R that satisfies $\phi(x+y) = \phi(x) + \phi(y)$ also satisfies $\phi(xy) = \phi(x)\phi(y)$. (That is, every additive homomorphism on R is a ring homomorphism.)

^{*}This group involves students and staff of the Department of Mathematics, Trinity College, Dublin. Please address correspondence either to Timothy Murphy (tim@maths.tcd.ie), or Colm Ó Dúnlaing(odunlain@maths.tcd.ie).

11703. Proposed by Richard Bagby. For $\lambda > 0$, let $\Gamma(\lambda) = \{(x, y, z) \in \mathbb{R}^3 : z \ge \lambda \sqrt{x^2 + y^2}\}$, and let $C(\lambda)$ be the (half-cone) boundary of $\Gamma(\lambda)$. Prove that every point in the interior of $\Gamma(\lambda)$ is the focus of at least one ellipse in $C(\lambda)$, and find the largest μ such that every ellipse in $C(\lambda)$ has at least one focus in $\Gamma(\mu)$.

11704. Proposed by Olivier Bernardi, Thaynara Arielly de Lima, and Richard Stanley. Let S_{2n} denote the symmetric group of all permutations of $\{1, \ldots, 2n\}$ and let T_{2n} denote the set of all fixed-point-free involutions in S_{2n} . Choose u and v from T_{2n} at random (any element of T_{2n} being as likely as any other) and independently. What is the probability that 1 and 2 will be in the same cycle of the permutation uv? (For example, when n = 2, $T_{2n} = \{2143, 3412, 4321\}$, (u, v) can be (3412, 4321) or (4321, 3412), and the required probability is 2/9.)