AMM problems April 2013, due before 31 August 2013

TCDmath problem group
Mathematics, Trinity College, Dublin 2, Ireland*

July 1, 2013
11698. Proposed by Timothy Hall. Provide an algorithm that takes as input a positive integer n and a nonzero constant k and returns polynomials F and G in variables u and v such that when x^{n} is substituted for u, and $x+k / x$ is substituted for $v, F(u, v) / G(u, v)$ simplifies (disregarding removable singularities) to x. (For example, when $k=1$ and $n=3, F=u+v$ and $G=v^{2}-1$ will do.)
11699. Proposed by Bakir Farhi. Let $\left\langle a_{k}\right\rangle$ be a strictly increasing sequence of positive integers such that $\sum_{k=2}^{\infty} \frac{1}{a_{k} \log a_{k}}$ diverges. Prove that $\operatorname{lcm}\left(a_{1}, \ldots, a_{k}\right)=\operatorname{lcm}\left(a_{1}, \ldots, a_{k+1}\right)$ for infinitely many k in \mathbb{N}.
11700. Proposed by Evan O'Dorney (student). Let n be an integer greater than 1. Let a, b, and c be complex numbers with $a+b+c=a^{n}+b^{n}+c^{n}=0$. Prove that the absolute values of a, b, and c cannot be distinct.
11701. Proposed by D.M. Bătineţu-Giurgiu and Neculai Stanciu.
(a) Let $\left\langle x_{n}\right\rangle$ be the sequence defined by $\sum_{k=1}^{m n} 1 / k=\gamma+\log \left(m n+x_{n}\right)$, where γ is the EulerMascheroni constant. Find $\lim _{n \rightarrow \infty} x_{n}$.
(b) let $\left\langle y_{n}\right\rangle$ be the sequence defined by $\sum_{k=1}^{m n}=\gamma+\log \left(m\left(n+y_{n}\right)\right)$. Find $\lim _{n \rightarrow \infty} y_{n}$.
11702. Proposed by Greg Oman. Find all nonzero rings R (not assumed to be commutative or to contain a multiplicative identity) with these properties:
(a) There exists $x \in R$ that is neither a left nor a right zero divisor, and
(b) Every map ϕ from R to R that satisfies $\phi(x+y)=\phi(x)+\phi(y)$ also satisfies $\phi(x y)=\phi(x) \phi(y)$. (That is, every additive homomorphism on R is a ring homomorphism.)

[^0]11703. Proposed by Richard Bagby. For $\lambda>0$, let $\Gamma(\lambda)=\left\{(x, y, z) \in \mathbb{R}^{3}: z \geq \lambda \sqrt{x^{2}+y^{2}}\right\}$, and let $C(\lambda)$ be the (half-cone) boundary of $\Gamma(\lambda)$. Prove that every point in the interior of $\Gamma(\lambda)$ is the focus of at least one ellipse in $C(\lambda)$, and find the largest μ such that every ellipse in $C(\lambda)$ has at least one focus in $\Gamma(\mu)$.
11704. Proposed by Olivier Bernardi, Thaynara Arielly de Lima, and Richard Stanley. Let $S_{2 n}$ denote the symmetric group of all permutations of $\{1, \ldots, 2 n\}$ and let $T_{2 n}$ denote the set of all fixed-point-free involutions in $S_{2 n}$. Choose u and v from $T_{2 n}$ at random (any element of $T_{2 n}$ being as likely as any other) and independently. What is the probability that 1 and 2 will be in the same cycle of the permutation $u v$? (For example, when $n=2, T_{2 n}=\{2143,3412,4321\},(u, v)$ can be $(3412,4321)$ or $(4321,3412)$, and the required probability is $2 / 9$.)

[^0]: *This group involves students and staff of the Department of Mathematics, Trinity College, Dublin. Please address correspondence either to Timothy Murphy (tim@maths.tcd.ie), or Colm Ó Dúnlaing (odunlain@maths.tcd.ie).

