AMM problems May 2013, due before 30 September 2013

TCDmath problem group
Mathematics, Trinity College, Dublin 2, Ireland*

July 1, 2013
11705. Proposed by John Loase. Let $C(n)$ be the number of distinct multisets of two or more primes that sum to n. Prove that $C(n+1) \geq C(n)$ for all n. (For instance, $C(4)=1, C(5)=1$, and $C(6)=2)$.
11706. Proposed by Nguyen Thanh Binh. Let $A B C$ and $D E F$ be triangles in the plane.
(a) Provide a compass and straightedge construction, which may use $A B C$ and $D E F$, of a triangle $A^{\prime} B^{\prime} C^{\prime}$ that is similar to $A B C$ and circumscribes $D E F$.
(b) Among all triangles $A^{\prime} B^{\prime} C^{\prime}$ of the sort described in part (a), determine which one has the greatest area and which one has the greatest perimeter.
11707. Proposed by José Luis Palacios. For $N \geq 1$, consider the following random walk on the $(N+1)$-cycle with vertices $0,1, \ldots, N$. The walk begins at vertex 0 and continues until every vertex has been visited and the walk returns to vertex 0 . Prove that the expected number of visits to any vertex other than 0 is $\frac{1}{3}(2 N+1)$.
11708. Proposed by James W. Moeller. Let $\left\langle E_{n}\right\rangle$ and $\left\langle P_{n}\right\rangle$ be two sequences of distinct orthogonal projections on an infinite-dimensional Hilbert space H, whose ranges are finite-dimensional and satisfy the intersection property

$$
\operatorname{Ran} E_{n} \cap\left(\operatorname{Ran} P_{n}\right)^{\perp}=\{O\}=\operatorname{Ran} P_{n} \cap\left(\operatorname{Ran} E_{n}\right)^{\perp}
$$

Such sequences are strongly uncorrelated if $\left\langle E_{n}\right\rangle$ converges strongly to O while $\left\langle P_{n}\right\rangle$ converges strongly to I. (A sequence $\left\langle L_{n}\right\rangle$ of bounded linear operators on a Hilbert space H converges strongly to L if $L_{n} x \rightarrow L x$ for all $x \in H$.)

Show that the set of strongly uncorrelated sequences of projections is nonempty.

[^0]11709. Proposed by Moubinool Omarjee. Find
$$
\int_{x=0}^{\infty} \frac{1}{x} \int_{y=0}^{x} \frac{\cos (x-y)-\cos (x)}{y} d y d x .
$$
11710. Proposed by B. Voorhees. Let n, k, and r be positive numbers such that $n \geq k+1$ and $r \geq 1$. Show that
$$
r^{n+k}-1 \geq \frac{(k r+n)(n r+k)}{(n-k)^{2}}\left(1-\left(\frac{k r+n}{n r+k}\right)^{n-k}\right)
$$
11711. Proposed by J.A. Grzesik. Show, for integers n and k with $n \geq 2$ and $1 \leq k \leq n$, that
$$
(-1)^{n-k}\binom{n}{k} k \sum_{j=1, j \neq k}^{n} \frac{1}{k-j}=-\sum_{j=1, j \neq k}^{n}(-1)^{n-j}\binom{n}{j} \frac{j}{k-j} .
$$

[^0]: *This group involves students and staff of the Department of Mathematics, Trinity College, Dublin. Please address correspondence either to Timothy Murphy (tim@maths.tcd.ie), or Colm Ó Dúnlaing (odunlain@maths.tcd.ie).

