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11712. Proposed by Daniel W. Cranston and Douglas B. West.In the game ofBulgarian solitaire,n
identical coins are distributed into two piles, and amovetakes one coin from each existing pile to form
a new pile. Beginning with a single pile of sizen, how many moves are needed to reach a position
on a cycle (a position that will eventually repeat)? For example,5 → 41 → 32 → 221 → 311 → 32,
so the answer is2 whenn = 5.

11713. Proposed by Mihaly Bencze.Let x1, . . . , xn be nonnegative real numbers. LetS =
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11714. Proposed by Nicuşor Minculete, and Cătălin Barbu. Let ABCD be a cyclic quadrilateral
(the four vertices lie on a circle). Lete = |AC| andf = |BD|. Let ra be the inradius ofBCD, and
definerb, rc, andrd similarly. Prove thaterarc = frbrd.

11715. Proposed by Marían Štofka.Prove that
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11716. Proposed by Oliver Knill. Let α = (
√
5 − 1)/2. Let pn and qn be the numerator and

denominator of then-th continued fraction convergent toα. (Thus,pn is thenth Fibonnaci number
andqn = pn+1). Show that
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whereCk denotes thek-th Catalan number,given byCk =
2k!

k!(k+1)!
.
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11717. Proposed by Nguyen Thanh Binh.Given a circlec and a line segmentAB tangent toc at a
pointE that lies strictly betweenA andB, provide a compass and straightedge construction of the
circle throughA andB to whichc is internally tangent.

11718. Proposed by Arkady Alt.Given positive real numbersa1, . . . , an with n ≥ 2, minimize
∑

n

i=1 xi subject to the conditions thatx1, . . . , xn are positive and that
∏

n

i=1 xi =
∑

n

i=1 aixi.
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