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11712. Proposed by Daniel W. Cranston and Douglas B. Westhe game oBulgarian solitaire,n
identical coins are distributed into two piles, anthavetakes one coin from each existing pile to form
a new pile. Beginning with a single pile of sizg how many moves are needed to reach a position
on a cycle (a position that will eventually repeat)? For egbnd — 41 — 32 — 221 — 311 — 32,

so the answer i8 whenn = 5.

11713. Proposed by Mihaly Benczket z4, . .., z,, be nonnegative real numbers. L&t > 7' | z;.
Prove that

n

[T+ < 1+zn: <1—%)“i—lj.

k=1 k=1
11714. Proposed by Nicusor Minculete, anddtdlin Barbu. Let ABC' D be a cyclic quadrilateral
(the four vertices lie on a circle). Let= |AC| andf = |BD|. Letr, be the inradius oBC' D, and
definery, r., andr, similarly. Prove thatr,r. = fryr,.

11715. Proposed by Maén Stofka.Prove that
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11716. Proposed by Oliver Knill. Let o« = (/5 — 1)/2. Let p, andg, be the numerator and
denominator of thei-th continued fraction convergent ta (Thus,p,, is thenth Fibonnaci number
andq, = p,+1). Show that
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where(', denotes thé&-th Catalan numbergiven byC), = k,(i—’il),

*This group involves students and staff of the Departmentati@matics, Trinity College, Dublin. Please address cor-
respondence either to Timothy Murphyi (m@rat hs. t cd. i €), or ColmO Diunlaing pdunl ai n@rat hs. t cd. i e).



11717. Proposed by Nguyen Thanh BinGiven a circlec and a line segmem B tangent tac at a
point E that lies strictly betweenl and B, provide a compass and straightedge construction of the
circle throughA and B to whichc is internally tangent.

11718. Proposed by Arkady AltGiven positive real numbers, . .., a, with n > 2, minimize

> i, z; subject to the conditions that, . . ., z,, are positive and thdt[_, z; = > | a;z;.



