AMM problems June-July 2013, due before 31 October 2013

TCDmath problem group Mathematics, Trinity College, Dublin 2, Ireland*

October 1, 2013

11712. Proposed by Daniel W. Cranston and Douglas B. West. In the game of Bulgarian solitaire, n identical coins are distributed into two piles, and a move takes one coin from each existing pile to form a new pile. Beginning with a single pile of size n, how many moves are needed to reach a position on a cycle (a position that will eventually repeat)? For example, $5 \rightarrow 41 \rightarrow 32 \rightarrow 221 \rightarrow 311 \rightarrow 32$, so the answer is 2 when n = 5.

11713. Proposed by Mihaly Bencze. Let x_1, \ldots, x_n be nonnegative real numbers. Let $S = \sum_{k=1}^n x_k$. Prove that

$$\prod_{k=1}^{n} (1+x_k) \le 1 + \sum_{k=1}^{n} \left(1 - \frac{k}{2n}\right)^{k-1} \frac{S^k}{k!}$$

11714. Proposed by Nicuşor Minculete, and Cătălin Barbu. Let ABCD be a cyclic quadrilateral (the four vertices lie on a circle). Let e = |AC| and f = |BD|. Let r_a be the inradius of BCD, and define r_b, r_c , and r_d similarly. Prove that $er_ar_c = fr_br_d$.

11715. Proposed by Marián Štofka. Prove that

$$\sum_{k=0}^{\infty} \frac{1}{(6k+1)^5} = \frac{1}{2} \left(\frac{2^5 - 1}{2^5} \cdot \frac{3^5 - 1}{3^5} \zeta(5) + \frac{11}{8} \left(\frac{\pi}{3}\right)^5 \cdot \frac{1}{\sqrt{3}} \right)$$

11716. Proposed by Oliver Knill. Let $\alpha = (\sqrt{5} - 1)/2$. Let p_n and q_n be the numerator and denominator of the *n*-th continued fraction convergent to α . (Thus, p_n is the *n*th Fibonnaci number and $q_n = p_{n+1}$). Show that

$$\sqrt{5}\left(\alpha - \frac{p_n}{q_n}\right) = \sum_{k=0}^{\infty} \frac{(-1)^{(n+1)(k+1)}C_k}{q_n^{2k+2}5^k},$$

where C_k denotes the k-th Catalan number, given by $C_k = \frac{2k!}{k!(k+1)!}$.

^{*}This group involves students and staff of the Department of Mathematics, Trinity College, Dublin. Please address correspondence either to Timothy Murphy (tim@maths.tcd.ie), or Colm Ó Dúnlaing (odunlain@maths.tcd.ie).

11717. Proposed by Nguyen Thanh Binh. Given a circle c and a line segment AB tangent to c at a point E that lies strictly between A and B, provide a compass and straightedge construction of the circle through A and B to which c is internally tangent.

11718. Proposed by Arkady Alt. Given positive real numbers a_1, \ldots, a_n with $n \ge 2$, minimize $\sum_{i=1}^n x_i$ subject to the conditions that x_1, \ldots, x_n are positive and that $\prod_{i=1}^n x_i = \sum_{i=1}^n a_i x_i$.