AMM problems June-July 2013, due before 31 October 2013

TCDmath problem group
Mathematics, Trinity College, Dublin 2, Ireland*

October 1, 2013
11712. Proposed by Daniel W. Cranston and Douglas B. West. In the game of Bulgarian solitaire, n identical coins are distributed into two piles, and a move takes one coin from each existing pile to form a new pile. Beginning with a single pile of size n, how many moves are needed to reach a position on a cycle (a position that will eventually repeat)? For example, $5 \rightarrow 41 \rightarrow 32 \rightarrow 221 \rightarrow 311 \rightarrow 32$, so the answer is 2 when $n=5$.
11713. Proposed by Mihaly Bencze. Let x_{1}, \ldots, x_{n} be nonnegative real numbers. Let $S=\sum_{k=1}^{n} x_{k}$. Prove that

$$
\prod_{k=1}^{n}\left(1+x_{k}\right) \leq 1+\sum_{k=1}^{n}\left(1-\frac{k}{2 n}\right)^{k-1} \frac{S^{k}}{k!}
$$

11714. Proposed by Nicuşor Minculete, and Cătălin Barbu. Let $A B C D$ be a cyclic quadrilateral (the four vertices lie on a circle). Let $e=|A C|$ and $f=|B D|$. Let r_{a} be the inradius of $B C D$, and define r_{b}, r_{c}, and r_{d} similarly. Prove that $e r_{a} r_{c}=f r_{b} r_{d}$.
11715. Proposed by Marián Štofka. Prove that

$$
\sum_{k=0}^{\infty} \frac{1}{(6 k+1)^{5}}=\frac{1}{2}\left(\frac{2^{5}-1}{2^{5}} \cdot \frac{3^{5}-1}{3^{5}} \zeta(5)+\frac{11}{8}\left(\frac{\pi}{3}\right)^{5} \cdot \frac{1}{\sqrt{3}}\right) .
$$

11716. Proposed by Oliver Knill. Let $\alpha=(\sqrt{5}-1) / 2$. Let p_{n} and q_{n} be the numerator and denominator of the n-th continued fraction convergent to α. (Thus, p_{n} is the nth Fibonnaci number and $q_{n}=p_{n+1}$). Show that

$$
\sqrt{5}\left(\alpha-\frac{p_{n}}{q_{n}}\right)=\sum_{k=0}^{\infty} \frac{(-1)^{(n+1)(k+1)} C_{k}}{q_{n}^{2 k+2} 5^{k}}
$$

where C_{k} denotes the k-th Catalan number, given by $C_{k}=\frac{2 k!}{k!(k+1)!}$.

[^0]11717. Proposed by Nguyen Thanh Binh. Given a circle c and a line segment $A B$ tangent to c at a point E that lies strictly between A and B, provide a compass and straightedge construction of the circle through A and B to which c is internally tangent.
11718. Proposed by Arkady Alt. Given positive real numbers a_{1}, \ldots, a_{n} with $n \geq 2$, minimize $\sum_{i=1}^{n} x_{i}$ subject to the conditions that x_{1}, \ldots, x_{n} are positive and that $\prod_{i=1}^{n} x_{i}=\sum_{i=1}^{n} a_{i} x_{i}$.

[^0]: *This group involves students and staff of the Department of Mathematics, Trinity College, Dublin. Please address correspondence either to Timothy Murphy (tim@maths.tcd.ie), or Colm Ó Dúnlaing (odunlain@maths.tcd.ie).

