AMM problems August-September2013, due before 30 November 2013

TCDmath problem group
Mathematics, Trinity College, Dublin 2, Ireland*

October 30, 2013
11719. Proposed by Nicolae Anghel. Let f be a twice-differentiable function from $[0, \infty)$ into $(0, \infty)$ such that

$$
\lim _{x \rightarrow \infty} \frac{f^{\prime \prime}(x)}{f(x)\left(1+f^{\prime}(x)^{2}\right)^{2}}=\infty
$$

Show that

$$
\lim _{x \rightarrow \infty} \int_{t=0}^{x} \frac{\sqrt{1+f^{\prime}(t)^{2}}}{f(t)} d t \int_{t=x}^{\infty} \sqrt{1+f^{\prime}(t)^{2}} f(t) d t=0
$$

11720. Proposed by Ira Gessel. Let $E_{n}(t)$ be the Eulerian polynomial defined by

$$
\sum_{k=0}^{\infty}(k+1)^{n} t^{k}=\frac{E_{n}(t)}{(1-t)^{n+1}},
$$

and let B_{n} be the nth Bernoulli number. Show that $\left(E_{n+1}(t)-(1-t)^{n}\right) B_{n}$ is a polynomial with integer coefficients.
11721. Proposed by Roberto Tauraso. Let p be a prime greater than 3 , and let q be a complex number other than 1 such that $q^{p}=1$. Evaluate

$$
\sum_{k=1}^{p-1} \frac{\left(1-q^{k}\right)^{5}}{\left(1-q^{2 k}\right)^{3}\left(1-q^{3 k}\right)^{2}}
$$

11722. Proposed by Nguyen Thanh Binh. Let $A B C$ be an acute triangle in the plane, and let M be a point inside $A B C$. Let O_{1}, O_{2}, and O_{3} be the circumcenters of $B C M, C A M$, and $A B M$, respectively. Let c be the circumcircle of $A B C$. Let D, E, and F be the points opposite A, B, and C, respectively, at which $A M, B M$, and $C M$ meet c. Prove that $O_{1} D, O_{2} E$, and $O_{3} F$ are concurrent at

[^0]a point P that lies on c.
11723. Proposed by L.R. King. Let A, B, and C be three points in the plane, and let D, E, and F be points lying on $B C, C A, A B$, respectively. Show that there exists a conic tangent to $B C, C A$, and $A B$ at D, E, and F, respectively, if and only if $A D, B E$, and $C F$ are concurrent.
11724. Proposed by Andrew Cusumano. Let $f(n)=\sum_{k=1}^{n} k^{k}$ and let $g(n)=\sum_{k=1}^{n} f(k)$. Find
$$
\lim _{n \rightarrow \infty} \frac{g(n+2)}{g(n+1)}-\frac{g(n+1)}{g(n)}
$$
11725. Proposed by Mher Safaryan. Let m be a positive integer. Show that, as $n \rightarrow \infty$,
$$
\left|\log 2-\sum_{k=1}^{n} \frac{(-1)^{k-1}}{k}\right|=\frac{C_{1}}{n}+\frac{C_{2}}{n^{2}}+\ldots+\frac{C_{m}}{n^{m}}+o\left(\frac{1}{n^{m}}\right)
$$
where
$$
C_{k}=(-1)^{k} \sum_{i=1}^{k} \frac{1}{2^{i}} \sum_{j=1}^{i}(-1)^{j}\binom{i-1}{j-1} j^{k-1}
$$
for $1 \leq k \leq m$.

[^0]: *This group involves students and staff of the Department of Mathematics, Trinity College, Dublin. Please address correspondence either to Timothy Murphy (tim@maths.tcd.ie), or Colm Ó Dúnlaing (odunlain@maths.tcd.ie).

