AMM problems October 2013, due before 28 February 2014

TCDmath problem group Mathematics, Trinity College, Dublin 2, Ireland*

November 16, 2013

11726. Proposed by Stephen Scheinberg. Let K be Cantor's middle-third set. Let $K^* = K \times \{0\}$. Is there a function F from \mathbb{R}^2 to \mathbb{R} such that

- 1. For each $x \in \mathbb{R}$, the function $t \mapsto F(x, t)$ is continuous on \mathbb{R} ,
- 2. for each $y \in \mathbb{R}$, the function $s \mapsto F(s, y)$ is continuous on \mathbb{R} , and
- 3. *F* is continuous on the complement of K^* and discontinuous on K^* ?

11727. Proposed by Nguyen Thanh Binh. Let R be a circle with center O. Let R_1 and R_2 be circles with centers O_1 and O_2 inside R, such that R_1 and R_2 are externally tangent and both are internally tangent to R. Give a straightedge and compass construction of the circle R_3 that is internally tangent to R and externally tangent to R_1 and R_2 .

11728. Proposed by Walter Blumberg. Let p be a prime congruent to 7 mod 8. Prove that

$$\sum_{k=1}^{p} \left\lfloor \frac{k^2 + k}{p} \right\rfloor = \frac{2p^2 + 3p + 7}{6}.$$

11729. Proposed by Vassilis Papanicolaou. An integer n is called b-normal if all digits $0, 1, \ldots, b-1$ appear the same number of times in the base-b expansion of n. Let \mathcal{N}_b be the set of all b-normal integers. Determine those b for which

$$\sum_{n\in\mathcal{N}_b}\frac{1}{n}<\infty.$$

11730. Proposed by Mircea Merca. Let p be the partition function (counting the ways to write n as a sum of positive integers), extended so that p(0) = 1 and p(n) = 0 for n < 0. Prove that

$$\sum_{k=0}^{\infty} \sum_{j=0}^{2k} (-1)^k p\left(n - \frac{k(3k+1)}{2} - j\right) = 1.$$

^{*}This group involves students and staff of the Department of Mathematics, Trinity College, Dublin. Please address correspondence either to Timothy Murphy (tim@maths.tcd.ie), or Colm Ó Dúnlaing (odunlain@maths.tcd.ie).

11731. Proposed by Meijie Ma and Douglas West. The integer simplex with dimension d and sidelength m is the graph T_m^d whose vertices are the nonnegative integer (d + 1)-tuples summing to m, with two vertices adjacent when they differ by 1 in two places and are equal in all other places. Determine the connectivity, the chromatic number, and the edge-chromatic number of T_m^d (the latter when m > d).

11732. Proposed by Marcel Chirita. Let a and b be real, with 1 < a < b, and let m and n be real with $m \neq 0$. Find all continuous functions f from $[0, \infty)$ to \mathbb{R} such that for $x \ge 0$,

$$f(a^x) + f(b^x) = mx + n.$$