AMM problems October 2013, due before 28 February 2014

TCDmath problem group
Mathematics, Trinity College, Dublin 2, Ireland*

November 16, 2013
11726. Proposed by Stephen Scheinberg. Let K be Cantor's middle-third set. Let $K^{*}=K \times\{0\}$. Is there a function F from \mathbb{R}^{2} to \mathbb{R} such that

1. For each $x \in \mathbb{R}$, the function $t \mapsto F(x, t)$ is continuous on \mathbb{R},
2. for each $y \in \mathbb{R}$, the function $s \mapsto F(s, y)$ is continuous on \mathbb{R}, and
3. F is continuous on the complement of K^{*} and discontinuous on K^{*} ?
4. Proposed by Nguyen Thanh Binh. Let R be a circle with center O. Let R_{1} and R_{2} be circles with centers O_{1} and O_{2} inside R, such that R_{1} and R_{2} are externally tangent and both are internally tangent to R. Give a straightedge and compass construction of the circle R_{3} that is internally tangent to R and externally tangent to R_{1} and R_{2}.
5. Proposed by Walter Blumberg. Let p be a prime congruent to $7 \bmod 8$. Prove that

$$
\sum_{k=1}^{p}\left\lfloor\frac{k^{2}+k}{p}\right\rfloor=\frac{2 p^{2}+3 p+7}{6}
$$

11729. Proposed by Vassilis Papanicolaou. An integer n is called b-normal if all digits $0,1, \ldots, b-1$ appear the same number of times in the base-b expansion of n. Let \mathcal{N}_{b} be the set of all b-normal integers. Determine those b for which

$$
\sum_{n \in \mathcal{N}_{b}} \frac{1}{n}<\infty .
$$

11730. Proposed by Mircea Merca. Let p be the partition function (counting the ways to write n as a sum of positive integers), extended so that $p(0)=1$ and $p(n)=0$ for $n<0$. Prove that

$$
\sum_{k=0}^{\infty} \sum_{j=0}^{2 k}(-1)^{k} p\left(n-\frac{k(3 k+1)}{2}-j\right)=1 .
$$

[^0]11731. Proposed by Meijie Ma and Douglas West. The integer simplex with dimension d and sidelength m is the graph T_{m}^{d} whose vertices are the nonnegative integer $(d+1)$-tuples summing to m, with two vertices adjacent when they differ by 1 in two places and are equal in all other places. Determine the connectivity, the chromatic number, and the edge-chromatic number of T_{m}^{d} (the latter when $m>d$).
11732. Proposed by Marcel Chirita. Let a and b be real, with $1<a<b$, and let m and n be real with $m \neq 0$. Find all continuous functions f from $[0, \infty)$ to \mathbb{R} such that for $x \geq 0$,
$$
f\left(a^{x}\right)+f\left(b^{x}\right)=m x+n .
$$

[^0]: *This group involves students and staff of the Department of Mathematics, Trinity College, Dublin. Please address correspondence either to Timothy Murphy (tim@maths.tcd.ie), or Colm Ó Dúnlaing (odunlain@maths.tcd.ie).

