# AMM problems November 2013, due before 31 March 2014 

TCDmath problem group<br>Mathematics, Trinity College, Dublin 2, Ireland*

January 22, 2014
11733. Proposed by Donald Knuth. Let $V=\{0,1,2,3,4\}^{2}$. Say that nonnegative integers $a$ and $b$ are adjacent when their base- 5 expansions $\ldots a_{2} a_{1} a_{0}$ and $\ldots b_{2} b_{1} b_{0}$ satisfy the condition that if $i>j \geq 0$ and $\left(a_{i}, a_{j}\right) \neq\left(b_{i}, b_{j}\right)$ then $\left(a_{i}, a_{j}\right)$ and $\left(b_{i}, b_{j}\right)$ are consecutive in the path through $V$ shown at right (horizontal coordinate listed first). Thus, for example, 0 is adjacent to 1 . Similarly, 48 (expansion $143_{5}$ ) is adjacent to 47 (expansion $142_{5}$ ) and 73 (expansion $243_{5}$ ).
(a) Prove that every positive integer is adjacent to exactly two nonnegative
 integers.
(b) Prove that with this definition of adjacency, the nonnegative integers form a path $\left\langle x_{0}, x_{1}, x_{2}, \ldots\right\rangle$ starting with $x_{0}=0$.
(c) Explain how to compute efficiently from $n$ the number $x_{n}$ that comes $n$ steps after 0 , and determine $x_{1,000,000}$.
11734. Proposed by Vahagn Aslanyan. Find all lists $(a, k, m, n)$ of positive integers such that

$$
a^{m+n}+a^{n}-a^{m}-1=15^{k}
$$

11735. Proposed by Cosmin Pohoata. Let $P$ be a point inside triangle $A B C$. Let $d_{A}, d_{B}$, and $d_{C}$ be the distances from $m$ (sic) to $A, B$, and $C$, respectively. Let $r_{A}, r_{B}$, and $r_{C}$ be the radii of the circumcircles of $P B C, P C A$, and $P A B$, respectively. Prove that

$$
\frac{1}{d_{A}}+\frac{1}{d_{B}}+\frac{1}{d_{C}} \geq \frac{1}{r_{A}}+\frac{1}{r_{B}}+\frac{1}{r_{C}}
$$

11736. Proposed by Mircea Merca. For $n \geq 1$, let $f$ be the symmetric polynomal in variables $x_{1}, \ldots, x_{n}$ given by

$$
f\left(x_{1}, \ldots, x_{n}\right)=\sum_{k=0}^{n-1}(-1)^{k+1} e_{k}\left(x_{1}+x_{1}^{2}, x_{2}+x_{2}^{2}, \ldots, x_{n}+x_{n}^{2}\right),
$$

[^0]where $e_{k}$ is the $k$ th elementary polynomials in $n$ variables. (For example, when $n=6, e_{2}$ has 15 terms, each a product of two distinct variables.) Also, let $\xi$ be a primitive $n$th root of unity. Prove that
$$
f\left(1, \xi, \xi^{2}, \ldots, \xi^{n-1}\right)=L_{n}-L_{0}
$$
where $L_{k}$ is the $k$-th Lucas number (that is, $L_{0}=2, L_{1}=1$, and $L_{k}=L_{k-1}+L_{k-2}$ for $k \geq 2$ ).
11737. Proposed by Nguyen Thanh Binh. Given an acute triangle $A B C$, let $O$ be its circumcenter, let $M$ be the intersection of lines $A O$ and $B C$, and let $D$ be the other intersection of $A O$ with the circumcircle of $A B C$. Let $E$ be that point on $A D$ such that $M$ is the midpoint of $E D$. Let $F$ be the point at which the perpendicular to $A D$ at $M$ meets $A C$. Prove that $E F$ is perpendicular to $A B$.
11738. Proposed by Stefano Siboni. Three point particles are constrained to move without friction along a unit circle. Three ideal massless springs of stiffness $k_{1}, k_{2}$, and $k_{3}$ connect the particles pairwise. Show that an equilibrium in which the particles occupy three distinct positions exists if and only if $1 / k_{1}, 1 / k_{2}$, and $1 / k_{3}$ can be the lengths of the sides of a triangle. Show also that if this happens, the equilibrium length $L$ of the spring with stiffness $k_{1}$ is given by
$$
L=\sqrt{k_{2} k_{3}} \sqrt{\left(\frac{1}{k_{2}}+\frac{1}{k_{3}}\right)^{2}-\frac{1}{k_{1}^{2}}} .
$$

11739. Proposed by Fred Adams, Anthony Bloch, and Jeffrey Lagarias. Let $B(x)=\left(\begin{array}{ll}1 & x \\ x & 1\end{array}\right)$. Consider the infinite matrix product

$$
M(t)=B\left(2^{-t}\right) B\left(3^{-t}\right) B\left(5^{-t}\right) \ldots=\prod_{p} B\left(p^{-t}\right)
$$

where the product runs over all primes, taken in increasing order. Evaluate $M(2)$.


[^0]:    *This group involves students and staff of the Department of Mathematics, Trinity College, Dublin. Please address correspondence either to Timothy Murphy (tim@maths.tcd.ie), or Colm Ó Dúnlaing (odunlain@maths.tcd.ie).

