AMM problems December 2013, due before 30 April 2014

TCDmath problem group Mathematics, Trinity College, Dublin 2, Ireland*

January 29, 2014

11740. *Proposed by Cosmin Pohoata.* Let \mathcal{P}, \mathcal{Q} be prime ideals in a commutative Noetheran ring R with unity. Suppose that $\mathcal{P} \subset \mathcal{Q}$. Let I be the set of all prime ideals \mathcal{J} in R such that $\mathcal{P} \subset \mathcal{J} \subset \mathcal{Q}$. Prove that I is either empty or infinite.

11741 Proposed by Chindea Filip-Andrei. Given a ring A, let Z(A) denote the *center* of A, which is the set of all z in A that commute with every element of A. Prove or disprove: For every ring A, there is a map $f : A \to Z(A)$ such that f(1) = 1 and f(a + b) = f(a) + f(b) for all $a, b \in A$.

11742 Proposed by Alexandr Gromeko. For $0 \le p < q < 1$, find all zeros in \mathbb{C} of the function f given by

$$f(z) = \sum_{n = -\infty}^{\infty} (aq^n, p/(aq^n); p)(-z)^n q^{n(n-1)/2},$$

where $(u, v; w) = \prod_{m=0}^{\infty} (1 - uw^m)(1 - vw^m)$.

11743 Proposed by François Capacès. Let n be a positive integer, let x be a real number, and let B be the n-by-n matrix with 2x in all diagonal entries, 1 in all sub- and super-diagonal entries, and 0 in all other entries. Compute the inverse, when it exists, of B as a function of x.

11744 Proposed by C.P. Cholkar and M.N. Deshpande. Flip a fair coin until the start of the *r*th run. (For instance, if r = 3 then TTTHHT is one possible outcome.) Let Y be the number of runs consisting of one head. Find the expected value and variance of Y.

^{*}This group involves students and staff of the Department of Mathematics, Trinity College, Dublin. Please address correspondence either to Timothy Murphy (tim@maths.tcd.ie), or Colm Ó Dúnlaing (odunlain@maths.tcd.ie).

11745 Proposed by Robin Oakapple. Let P_1, P_2, P_3 , and P_4 be points on a circle K, in the order listed, that do not form a rectangle. Let the diagonals of the convex quadrilateral $P_1P_2P_3P_4$ cross at E. Let E' be the image of E under inversion about K. Let K^{\perp} be the circle with center E' that intersects K orthogonally. Let M and M' be the points at which K^{\perp} meets the line EE', with M inside K and M' outside. For $1 \le i \le 4$, let Q_i be the second intersection of MP_i with K, and let Q'_i be the second intersection of $M'P_i$ with K.

(The figure is inaccurate.)

Prove that Q_1, \ldots, Q_4 form the vertices of a rectangle, as do Q'_1, \ldots, Q'_4 , and that the two rectangles are mirror images across the line EE'. (The figure omits Q'_1, \ldots, Q'_4 and some of K^{\perp}).

11746 Proposed by Pál Péter Dályay. Let F be a continuous function from $[0, \infty)$ to \mathbb{R} such that the following integrals converge: $S = \int_0^\infty f^2(x) dx$, $T = \int_0^\infty x^2 f^2(x) dx$, and $U = \int_0^\infty x^4 f^2(x) dx$. Let $V = T + \sqrt{T^2 + 3SU}$. Given that f is not identically 0, show that

$$\left(\int_0^\infty |f(x)| dx\right)^4 \le \frac{\pi^2 S (T+V)^2}{9V}.$$