AMM problems December 2013, due before 30 April 2014

TCDmath problem group
Mathematics, Trinity College, Dublin 2, Ireland*

January 29, 2014
11740. Proposed by Cosmin Pohoata. Let \mathcal{P}, \mathcal{Q} be prime ideals in a commutative Noetheran ring R with unity. Suppose that $\mathcal{P} \subset \mathcal{Q}$. Let I be the set of all prime ideals \mathcal{J} in R such that $\mathcal{P} \subset \mathcal{J} \subset \mathcal{Q}$. Prove that I is either empty or infinite.

11741 Proposed by Chindea Filip-Andrei. Given a ring A, let $Z(A)$ denote the center of A, which is the set of all z in A that commute with every element of A. Prove or disprove: For every ring A, there is a map $f: A \rightarrow Z(A)$ such that $f(1)=1$ and $f(a+b)=f(a)+f(b)$ for all $a, b \in A$.

11742 Proposed by Alexandr Gromeko. For $0 \leq p<q<1$, find all zeros in \mathbb{C} of the function f given by

$$
f(z)=\sum_{n=-\infty}^{\infty}\left(a q^{n}, p /\left(a q^{n}\right) ; p\right)(-z)^{n} q^{n(n-1) / 2}
$$

where $(u, v ; w)=\prod_{m=0}^{\infty}\left(1-u w^{m}\right)\left(1-v w^{m}\right)$.

11743 Proposed by François Capacès. Let n be a positive integer, let x be a real number, and let B be the n-by- n matrix with $2 x$ in all diagonal entries, 1 in all sub- and super-diagonal entries, and 0 in all other entries. Compute the inverse, when it exists, of B as a function of x.

11744 Proposed by C.P. Cholkar and M.N. Deshpande. Flip a fair coin until the start of the r th run. (For instance, if $r=3$ then TTTHHT is one possible outcome.) Let Y be the number of runs consisting of one head. Find the expected value and variance of Y.

[^0]11745 Proposed by Robin Oakapple. Let P_{1}, P_{2}, P_{3}, and P_{4} be points on a circle K, in the order listed, that do not form a rectangle. Let the diagonals of the convex quadrilateral $P_{1} P_{2} P_{3} P_{4}$ cross at E. Let E^{\prime} be the image of E under inversion about K. Let K^{\perp} be the circle with center E^{\prime} that intersects K orthogonally. Let M and M^{\prime} be the points at which K^{\perp} meets the line $E E^{\prime}$, with M inside K and M^{\prime} outside. For $1 \leq i \leq 4$, let Q_{i} be the second intersection of $M P_{i}$ with K, and let Q_{i}^{\prime} be the second intersection of $M^{\prime} P_{i}$ with K.

(The figure is inaccurate.)
Prove that Q_{1}, \ldots, Q_{4} form the vertices of a rectangle, as do $Q_{1}^{\prime}, \ldots, Q_{4}^{\prime}$, and that the two rectangles are mirror images across the line $E E^{\prime}$. (The figure omits $Q_{1}^{\prime}, \ldots, Q_{4}^{\prime}$ and some of K^{\perp}).

11746 Proposed by Pál Péter Dályay. Let F be a continuous function from $[0, \infty)$ to \mathbb{R} such that the following integrals converge: $S=\int_{0}^{\infty} f^{2}(x) d x, T=\int_{0}^{\infty} x^{2} f^{2}(x) d x$, and $U=\int_{0}^{\infty} x^{4} f^{2}(x) d x$. Let $V=T+\sqrt{T^{2}+3 S U}$. Given that f is not identically 0 , show that

$$
\left(\int_{0}^{\infty}|f(x)| d x\right)^{4} \leq \frac{\pi^{2} S(T+V)^{2}}{9 V}
$$

[^0]: *This group involves students and staff of the Department of Mathematics, Trinity College, Dublin. Please address correspondence either to Timothy Murphy (tim@maths.tcd.ie), or Colm Ó Dúnlaing (odunlain@maths.tcd.ie).

