AMM problems February 2014, due before 30 June

TCDmath problem group
Mathematics, Trinity College, Dublin 2, Ireland*

June 20, 2014
11754. Proposed by David Beckwith. When a fair coin is tossed n times, let $P(n)$ be the probability that the lengths of all runs (maximal constant strings) in the resulting sequence are of the same parity as n. Prove that

$$
P(n)= \begin{cases}\left(\frac{1}{2}\right)^{n / 2} & \text { if } n \text { is even } \\ \left(\frac{1}{2}\right)^{n-1} F_{n} & \text { if } n \text { is odd }\end{cases}
$$

where F_{n} is the n-th Fibonacci number, defined by $F_{0}=0, F_{1}=1$, and $F_{n}=F_{n-1}+F_{n-2}$ for $n \geq 2$.
11755. Proposed by Pál Péter Dályay. Compute

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{2 n-1} \sum_{k=n+1}^{\infty} \frac{(-1)^{k-1}}{2 k-1}
$$

11756. Proposed by Paolo Perfetti. Let f be a function from $[-1,1]$ to \mathbb{R} with continuous derivatives of all orders up to $2 n+2$. Given $f(0)=f^{\prime}(0)=\ldots=f^{(2 n)}(0)=0$, prove

$$
\frac{1}{2}((2 n+2)!)^{2}(4 n+5)\left(\int_{-1}^{1} f(x) d x\right)^{2} \leq \int_{-1}^{1}\left(f^{(2 n+2)}(x)\right)^{2} d x
$$

11757. Proposed by Ira Gessel. Let $\left[x^{a} y^{b}\right] f(x, y)$ denote the coefficient of $x^{a} y^{b}$ in the Taylor's series expansion of f. Show that

$$
\left[x^{n} y^{n}\right] \frac{1}{(1-3 x)\left(1-y-3 x+3 x^{2}\right)}=9^{n}
$$

11758. Proposed by Bryan Brzycki. Acute triangle $A B C$ has several ancillary points and properties shown in the figure. Segment $A X_{A}$ is perpendicular to $B C$, and segments marked with the same

[^0]symbol have the same length. The angle at C is less than the angle at B, and lines $P N$ and $R M$ are parallel and perpendicular, respectively, to $B C$.

(a) Prove that $|R O| /|O M|=2$.
(b) Prove that $P Q$ is not parallel to $B C$.
(c) Letting D be the intersection of $P Q$ and $B C$, show that if $A D$ is perpendicular to $B X_{B}$, then P, R, N, and M lie on a common circle.
(d) For fixed B and C, describe the set of A such that $A D$ is perpendicular to $B X_{B}$.
11759. Proposed by Octavian Ganea and Cezar Lupu. Let A be an $n \times n$ skew-symmetric real matrix. Show that for positive real numbers x_{1}, \ldots, x_{k} with $k \geq 2$,
$$
\operatorname{det}\left(A+x_{1} I\right) \cdots \operatorname{det}\left(A+x_{k} I\right) \geq\left(\operatorname{det}\left(A+\left(x_{1} \cdots x_{k}\right)^{1 / k} I\right)\right)^{k} .
$$

In addition, show that if also all x_{i} lie on the same side of 1 , then

$$
\operatorname{det}(A+I)^{k-1} \operatorname{det}\left(A+x_{1} \cdots x_{k} I\right) \geq \operatorname{det}\left(A+x_{1} I\right) \cdots \operatorname{det}\left(A+x_{k} I\right) .
$$

11760. Proposed by Stefano Siboni. Let D be the closure of a simply connected, bounded open subset of \mathbb{R}^{2}. Let W be the subset of $[0,1]^{n}$ consisting of all points $\left(w_{1}, \ldots, w_{n}\right)$ such that $w_{1}+\ldots+w_{n}=1$. Let g be a point in D, and let n be an integer, $n>1$. With $p=\left(p_{1}, \ldots, p_{n}\right) \in D^{n}$, let M be the function from $D^{n} \times W$ to \mathbb{R} given by

$$
M(p, w)=\sum_{k=1}^{n} w_{k}\left\|p_{k}-g\right\|^{2},
$$

where $\|\cdot\|$ is the Euclidean norm on \mathbb{R}^{2}.
(a) Show that if $M(p, w)$ is maximised at $\left(p^{\prime}, w^{\prime}\right)$, then all entries of p^{\prime} lie on the boundary of D.
(b) Restricting now to the case in which $n=2$ and the boundary of D is an ellipse, let $\left.\left(p_{1}^{\prime}, p_{2}^{\prime}\right)\left(w_{1}^{\prime}, w_{2}^{\prime}\right)\right)$ be a point at which $M\left(\left(p_{1}, p_{2}\right),\left(w_{1}, w_{2}\right)\right)$ is maximized. Show that p_{1}^{\prime} and p_{2}^{\prime} lie opposite each other on the major axis of the ellipse.
(c) Show that if D is a disk of radius r about the origin, then the maximum value of M is $r^{2}-\|g\|^{2}$.

[^0]: *This group involves students and staff of the Department of Mathematics, Trinity College, Dublin. Please address correspondence either to Timothy Murphy (tim@maths.tcd.ie), or Colm Ó Dúnlaing (odunlain@maths.tcd.ie).

