AMM problems April 2014, due before 31 August

TCDmath problem group
Mathematics, Trinity College, Dublin 2, Ireland*

July 25, 2014
11768. Proposed by Ovidiu Furdui. Let f be a bounded continuous function mapping $[0, \infty)$ to itself. Find

$$
\lim _{n \rightarrow \infty} n\left(\sqrt[n]{\int_{0}^{\infty} f^{n+1}(x) e^{-x} d x}-\sqrt[n]{\int_{0}^{\infty} f^{n}(x) e^{-x} d x}\right)
$$

11769. Proposed by Pál Péter Dályay. Let a_{1}, \ldots, a_{n} and b_{1}, \ldots, b_{n} be positive real numbers. Show that

$$
\left(\sum_{j=1}^{n} \frac{a_{j}}{b_{j}}\right)^{2}-2 \sum_{j, k=1}^{n} \frac{a_{j} a_{k}}{\left(b_{j}+b_{k}\right)^{2}} \leq 2\left(\sum_{j, k=1}^{n} \frac{a_{j} a_{k}}{\left(b_{j}+b_{k}\right)} \sum_{l, m=1}^{n} \frac{a_{l} a_{m}}{\left(b_{l}+b_{m}\right)^{3}}\right)^{1 / 2} .
$$

11770. Proposed by Spiros P. Andriopoulos. Prove, for real numbers a, b, x, y with $a>b>1$ and $x>y>1$, that

$$
\frac{a^{x}-b^{y}}{x-y}>\left(\frac{a+b}{2}\right)^{(x+y) / 2} \log \left(\frac{a+b}{2}\right) .
$$

11771. Proposed by D. M. Bătineţ-Giurgiu and Neculai Stanciu. Let $n!!=\prod_{i=0}^{\lfloor(n-1) / 2\rfloor}(n-2 i)$. Find

$$
\lim _{n \rightarrow \infty}\left(\sqrt[n]{(2 n-1)!!}\left(\tan \frac{\pi \sqrt[n+1]{(n+1)!}}{4 \sqrt[n]{n!}}-1\right)\right)
$$

11772. Proposed by Mircea Merca. Let n be a positive integer. Prove that the number of integer partitions of $2 n+1$ that do not contain 1 as a part is less than or equal to the number of integer partitions of $2 n$ that contain at least one odd part.

[^0]11773. Proposed by Moubinool Omarjee. Given a positive real number a_{0}, let $a_{n+1}=\exp \left(-\sum_{k=0}^{n} a_{k}\right)$ for $n \geq 0$. For which values of b does $\sum_{n=0}^{\infty}\left(a_{n}\right)^{b}$ converge?
11774. Proposed by Yunus Tunçbilek and Danny Lee. Let ω be the circumscribed circle of triangle $A B C$. The A-mixtilinear incircle of $A B C$ and ω is the circle that is internally tangent to $\omega, A B$, and $A C$, and similarly for B and C. Let A^{\prime}, P_{B}, and P_{C} be the points on $\omega, A B$, and $A C$, respectively, at which the A-mixtilinear circle touches. Define B^{\prime} and C^{\prime} in the same manner that A^{\prime} was defined. (See figure.)

Prove that triangles $C^{\prime} P_{B} B$ and $C P_{C} B^{\prime}$ are similar.

[^0]: *This group involves students and staff of the Department of Mathematics, Trinity College, Dublin. Please address correspondence either to Timothy Murphy (tim@maths.tcd.ie), or Colm Ó Dúnlaing (odunlain@maths.tcd.ie).

