AMM problems May 2014, due before 30 September

TCDmath problem group
Mathematics, Trinity College, Dublin 2, Ireland*

July 28, 2014
11775. Proposed by Isaac Sofair. Let A_{1}, \ldots, A_{k} be finite sets. For $J \subseteq\{1, \ldots, k\}$, let $N_{J}=$ $\left|\bigcup_{j \in J} A_{j}\right|$, and let $S_{m}=\sum_{J:|J|=m} N_{J}$.
(a) Express in terms of S_{1}, \ldots, S_{k} the number of elements that belong to exactly m of the sets A_{1}, \ldots, A_{k}.
(b) Same question as in (a), except that we now require the number of elements belonging to at least m of the sets A_{1}, \ldots, A_{k}.
11776. Proposed by David Beckwith. Given urns U_{1}, \ldots, U_{n} in a line, and plenty of identical blue and identical red balls, let a_{n} be the number of ways to put balls into the urns subject to the conditions that
(i) Each urn contains at most one ball,
(ii) any urn containing a red ball is next to exactly one urn containing a blue ball, and
(iii) no two urns containing a blue ball are adjacent.
(a) Show that

$$
\sum_{n=0}^{\infty} a_{n} t^{n}=\frac{1+t+2 t^{2}}{1-t-t^{2}-3 t^{3}} .
$$

(b) Show that

$$
a_{n}=\sum_{j \geq 0} \sum_{m \geq 0} 4^{j}\left[\binom{n-2 m}{j}\binom{m}{j}+\binom{n-2 m-1}{j}\binom{m}{j}+2\binom{n-2 m}{j}\binom{m-1}{j}\right] .
$$

Here, $\binom{k}{l}=0$ if $k<l$.
11777. Proposed by Marian Dincă. Let x_{1}, \ldots, x_{n} be real numbers such that $\prod_{k=1}^{n} x_{k}=1$. Prove that

$$
\sum_{k=1}^{n} \frac{x_{k}^{2}}{x_{k}^{2}-2 x_{k} \cos (2 \pi / n)+1} \geq 1
$$

[^0]11778. Proposed by Li Zhou. Let x, y, z be positive real numbers such that $x+y+z=\pi / 2$. Let $f(x, y, z)=1 /\left(\tan ^{2} x+4 \tan ^{2} y+9 \tan ^{2} z\right)$. Prove that
$$
f(x, y, z)+f(y, z, x)+f(z, x, y) \leq \frac{9}{14}\left(\tan ^{2} x+\tan ^{2} y+\tan ^{2} z\right)
$$
11779. Proposed by Michel Bataille. Let M, A, B, C, and D be distinct points (in any order) on a circle Γ with center O. Let the medians through M of triangles $M A B$ and $M C D$ cross lines $A B$ and $C D$ at P and Q, respectively, and meet Γ again at E and F, respectively. Let K be the intersection of $A F$ with $D E$, and let L be the intersection of $B F$ with $C E$. Let U and V be the orthogonal projections of C onto $M A$ and D onto $M B$, respectively, and assume $U \neq A$ and $V \neq B$. Prove that A, B, U, and V are concyclic if and only if O, K, and L are collinear. [The figure is inaccurate].
11780. Proposed by Cezar Lupu and Tudorel Lupu. Let f be a
 positive-valued, concave function on $[0,1]$. Prove that
$$
\frac{3}{4}\left(\int_{0}^{1} f(x) d x\right)^{2} \leq \frac{1}{8}+\int_{0}^{1} f^{3}(x) d x
$$
11781. Proposed by Roberto Tauraso. For $n \geq 2$, call a positive integer n-smooth if none of its prime factors is larger than n. Let S_{n} be the set of all n-smooth positive integers. Let C be a finite, nonempty set of nonnegative integers, and let a and d be positive integers. Let M be the set of all positive integers of the form $m=\sum_{k=1}^{d} c_{k} s_{k}$, where $c_{k} \in C$ and $s_{k} \in S_{n}$ for $k=1, \ldots, d$. Prove that there are infinitely many primes p such that $p^{a} \notin M$.

[^0]: *This group involves students and staff of the Department of Mathematics, Trinity College, Dublin. Please address correspondence either to Timothy Murphy (tim@maths.tcd.ie), or Colm Ó Dúnlaing (odunlain@maths.tcd.ie).

