Solutions to AMM problems 11628, 11631, and 11636

TCDmath problem group
Mathematics, Trinity College, Dublin 2, Ireland*

July 12, 2012

1 AMM problem 11628

Solvers: TCDmath problem group, Mathematics, Trinity College, Dublin 2, Ireland.
The Lenstra number of a commutative unital ring R is the maximum cardinality of all sets A with the property that for every pair $a, b \in A$, if $a \neq b$ then $a-b$ is invertible. Show that when $R=\mathbb{Z}[1 / N]$, where N is a positive integer, the Lenstra number of R is the smallest prime p not dividing N.

Answer. Elements of R can be written as x / N^{r} where $x \in \mathbb{Z}$ and $r \geq 0$. If

$$
\frac{x}{N^{r}} \frac{y}{N^{s}}=1
$$

then $x y$ is a nonnegative power of N, whence x and y both divide sufficiently high powers of N, and it follows that x / N^{r} is invertible, where $x \neq 0$, if and only if every prime dividing x also divides N.

Let $A=\{0, \ldots, p-1\}$. Given $a \neq b \in A,|b-a|<p$, so every prime dividing $a-b$ also divides N, so $a-b$ is invertible. This shows that p is a lower bound for the Lenstra number.

Let B be any subset of R with $|B|>p$. Claim that for some $a \neq b \in B, a-b$ is not invertible. Since if z is invertible then so is $z N^{t}$ for any t, we can assume that $B \subseteq \mathbb{Z}$. But $|B|>p$, so there exist $a \neq b \in B$ so that $a \equiv b(\bmod p)$. Then p divides $a-b$, so $a-b$ is not invertible. This shows that p is an upper bound for the Lenstra number.

[^0]
2 AMM problem 11631

Solvers: TCDmath problem group, Mathematics, Trinity College, Dublin 2, Ireland.
A quasigroup Q is a (nonempty) set with a binary operation $x \times y$
(a) which is left and right cancellative.

Equivalently, in its Cayley table, every row and column defines a permutation. Say a Cayley table has property P if
(b) all rows are cyclic shifts of one another,
and
(c) every element is an idempotent.

Question: for which n does there exist a P-quasigroup of order n ?

Answer: (d) n admits such a quasigroup iff n is odd.

To show this, we assume that the Cayley tables have elements $\{1, \ldots, n\}$ and the i, j entry is $i \times j$. Congruence $\bmod n$ is denoted \equiv_{n}.

We identify the i-th row with the permutation $j \mapsto i \times j$, and let π represent the top row, i.e., $j \mapsto 1 \times j$. Assuming (b), the i-th row is a cyclic shift of the first, by a shift of g_{i} places, say. For (c), writing ' $i \operatorname{Mod} n$ ' for $((i-1) \bmod n)+1$,

$$
i \times i=i \quad \Longleftrightarrow \quad \pi\left(\left(i+g_{i}\right) \operatorname{Mod} n\right)=i \quad \Longleftrightarrow \quad g_{i} \equiv_{n} \pi^{-1}(i)-i
$$

We now assume (b) and (c), so $g_{i} \equiv_{n} \pi^{-1}(i)-i$, and every row has distinct elements. Assuming (b) and (c), claim: (a) holds iff all g_{i} are distinct modulo n.

If they are not distinct modulo n, so $g_{i} \equiv_{n} g_{j}$ where $i \neq j$, then $\pi\left(j+g_{i}\right)=\pi\left(j+g_{j}\right)=j$, and j occurs in the j-th column at positions i and j, so (a) does not hold.

If they are distinct modulo n, then every column is a permutation of the first row, hence of $\{1, \ldots, n\}$, with distinct elements, so (a) holds, proving the claim.

Proof of (d):
Given n is odd, consider the Cayley table whose top row is $1, n, n-1, \ldots, 3,2$, and with properties (b) and (c). If $i>1$ then $\pi(i)=\pi^{-1}(i)=n+2-i \equiv_{n} 2-i$, also valid for $i=1$, and $\pi^{-1}(i)-i \equiv_{n} 2-2 i$. Since n is odd, for $1 \leq i \leq n$ these numbers are distinct modulo n, and (a) holds: we have a P-quasigroup.

Given n is even, and assuming (b) and (c), we consider

$$
\sum_{i} g_{i} \equiv_{n} \sum_{i}\left(\pi^{-1}(i)-i\right) \equiv_{n} n(n+1) / 2-n(n+1) / 2 \equiv_{n} 0
$$

Claim that the g_{i} cannot all be distinct (modulo n). Otherwise, $\sum_{i} g_{i} \equiv_{n} n(n-1) / 2$. But if n is even, then the highest power of 2 dividing n does not divide $n(n-1) / 2$, so $n(n-1) / 2 \not \equiv_{n} 0$ and (a) cannot hold.

3 AMM problem 11636

Solvers: TCDmath problem group, Mathematics, Trinity College, Dublin 2, Ireland.
Given a convex quadrilateral $A B C D$, suppose there exists a point M on the diagonal $B D$ such that the following triangle perimeter lengths are equal (in length): ${ }^{1}$

$$
\begin{equation*}
\triangle A B M=\triangle B C M \quad \text { and } \quad \triangle A M D=\triangle M C D . \tag{3.1}
\end{equation*}
$$

Prove that

$$
\begin{equation*}
|A B|=|B C| \quad \text { and } \quad|A D|=|C D| . \tag{3.2}
\end{equation*}
$$

Equivalently, we suppose (3.2) false and deduce that (3.1) is false. We consider the position of M relative to the perpendicular bisector V of $A C$. Also, we consider three cases separately. Without loss of generality, $|A B| \leq|B C|$.

Case 1: one pair equal; wlog $|A B|=|B C|$ and $|A D|<|C D|$. The bisector V passes through B and M must be to the left of V. Then $|A M|<|M C|$, so $\triangle A B M<\triangle B C M$.

Case 2: $|A B|<|B C|$ and $|A D|>|C D|$. In this case V intersects the diagonal $B D$. If M is below this intersection, then $|A M|<|M C|$ so $\triangle A B M<\Delta B C M$. If M is above, then $|A M|>$ $|M C|$ so $\triangle A M D>\triangle M C D$.

Case 3: $|A B|<|B C|$ and $|A D|<|C D|$. Then M is always to the left of V, and $\triangle A B M<$ $\triangle B C M$.

[^1]
[^0]: *This group involves students and staff of the Department of Mathematics, Trinity College, Dublin. Please address correspondence either to Timothy Murphy (tim@maths.tcd.ie), or Colm Ó Dúnlaing (odunlain@maths.tcd.ie).

[^1]: ${ }^{1}$ We use $\triangle A B C$ to denote $|A B|+|B C|+|C A|$.

