Gradual buildup towards solving some Olympiad problems

November 16, 2010

1. In a row of railings, every k-th is white and the rest are black. Show that in every group of k consecutive railings, there is exactly one white railing.
2. Show that every product of k consecutive integers is divisible by k.
3. Define

$$
\binom{n}{k}=\frac{n(n-1) \ldots(n-k+1)}{k!}, \quad n \geq k \geq 0
$$

This covers the cases where $k=0$:

$$
\binom{n}{0}=1 .
$$

Show (directly, by simplifying both sides)

$$
\binom{n+1}{k+1}=\binom{n}{k+1}+\binom{n}{k}
$$

and deduce the binomial coefficients are all integers, and hence every product of k consecutive integers is divisible by k !.
4. Show that if $x_{i} \leq \alpha, 1 \leq i \leq n$, then the average is $\leq \alpha$.
5. Show that in a class of 25 or more students, there are at least 3 whose birthday is in the same month.
6. Suppose that 200 people answer a survey with 6 questions, and each question is answered by at least 101 people. Show that, for any pair (there are 15 pairs, not that that matters) of questions, at least 2 people answer both of the questions.
Show that somebody answers at least 4 questions.
Show there exist at least two different people who between them answer all the questions.
7. Suppose n numbers x_{i} are given, and $m \leq n$, and the average of any m of the numbers is $<\beta$. Show that the $n-m$ smallest numbers are $<\beta$.
8. Show that from a group of seven people whose (integer) ages add up to 332 , one can select 3 with a total age of at least 142 .
9. In how many ways can a cube be rotated around its centre so that every corner is mapped to a corner, possibly itself? (Include the identity map.)
10. A graph (V, E) has a finite set V of vertices and a set E of edges. Each edge is an unordered pair of distinct vertices, $\{u, v\}$ or $u v$ (the curly braces don't help), incident to u and to v (and vice-versa).

The degree of each vertex is the number of incident edges. Show that the number of odd-degree vertices is even.
11. A path in a graph is a sequence u_{0}, \ldots, u_{k} of vertices such that for $0 \leq j \leq k-1, u_{j} u_{j+1}$ is an edge.

A graph is acyclic if there exists at most one path joining any two vertices.
A connected component of a graph is a maximal nonempty set of nodes which are pairwise connected by paths. (A connected acyclic graph, that is, an acyclic graph with one component, is called a free tree.)

Show (by induction?) that if G is an acyclic graph with n vertices, then G has at most $n-1$ edges.
12. A set S of points in the plane is convex if for any two points $x, y \in S$, the line-segment $[x, y]$ is contained in S.

More long-windedly, for any straight line $L, L \cap S$ is either (i) \emptyset (ii) a single point (L tangent) (iii) a bounded line-segment, possibly including one or both endpoints (iv) a semi-infinite line (possibly including its endpoint), or (v) all of L.
Show that the set

$$
\left\{(x, y) \in \mathbb{R}^{2}: y \geq x^{2}\right\}
$$

is convex. More specifically, the only possibilities for $L \cap S$ are (i) \emptyset (ii) a single point (iii) a closed line-segment (including both endpoints), or (iv) a closed semi-infinite line (including its endpoint).
13. Show that in any graph (with 2 or more vertices) at least 2 vertices have the same degree.
14. Show that in any graph with at least 1 edge at least 2 vertices have the same degree where the degree is nonzero.

