PROBLEM SOLVING: SOLUTION TO Q5 FROM THE MATHS BATTLE

VLADIMIR DOTSENKO

The goal of this note is to explain a solution to a (very difficult) problem 5 from the last maths battle. Recall its statement.

Suppose that for two positive integers $a, b \ge 2$, it is known that $a^n - 1$ is divisible

by $b^n - 1$ for all $n \in \mathbb{N}$. Show that $a = b^k$ for some $k \in \mathbb{N}$.

The proof of this statement relies on the following

Lemma. Let x_1, \ldots, x_k be pairwise distinct rational numbers in $(1, +\infty)$, let c_1, \ldots, c_k be nonzero real numbers, and let $\{m_n\}_{n\geq 1}$ be a sequence of integers. Assume that

$$\lim_{n\to\infty}\left(\sum_{j=1}^k c_j x_j^n - m_n\right) = 0.$$

Then x_1, \ldots, x_k are in fact integers.

Before proving this lemma, let us show that it implies the desired statement. Indeed, since $a^n - 1$ is divisible by $b^n - 1$, we have $a \ge b$, so $a^k \le b < a^{k+1}$ for some positive integer k. Let $x_j = \frac{a}{b^j}$ for j = 1, ..., k, $c_1 = c_2 = \cdots = c_k = 1$, and $m_n = \frac{a^n - 1}{b^n - 1}$. Then we have

$$\sum_{j=1}^{k} c_j x_j^n - m_n = \sum_{j=1}^{k} \frac{a^n}{b^{jn}} - \frac{a^n - 1}{b^n - 1} = \frac{a^n}{b^n} \frac{1 - \frac{1}{b^{k_n}}}{1 - \frac{1}{b^n}} - \frac{a^n - 1}{b^n - 1} = \frac{a^n}{b^{k_n}} \frac{b^{k_n} - 1}{b^n - 1} - \frac{a^n - 1}{b^n - 1} = \frac{1}{b^{k_n}} \frac{b^{k_n} - a^n}{b^n - 1},$$

which has zero limit as $n \to \infty$: since $a^k \le b$, this quantity does not exceed $\frac{2}{b^n-1}$ in absolute value. Therefore all x_i are integers, and the quantity

$$\sum_{j=1}^{k} c_j x_j^n - m_n = \frac{1}{b^{kn}} \frac{b^{kn} - a^n}{b^n - 1}$$

is an integer. A sequence of integers has limit zero only if all terms starting from some point are equal to zero. Hence, $a^n = b^{kn}$, and $a = b^k$.

Proof of Lemma. Induction on *k*. Let us first deal with k = 1. Let $x_1 = \frac{p}{q}$ in lowest terms. Let $\varepsilon = \frac{1}{p+q}$. We have $|c_1 x_1^n - m_n| < \varepsilon$ for all sufficiently large n, say $n \ge n_0$. For such n, we of course have $|pc_1x_1^n - pm_n| < p\varepsilon$ and $|qc_1x_1^{n+1} - qm_n| < q\varepsilon$. Note that $px_1^n = qx_1^{n+1}$, so

$$|pm_n - qm_{n+1}| \le |pc_1x_1^n - pm_n| + |qc_1x_1^{n+1} - qm_n| < p\varepsilon + q\varepsilon = 1.$$

Since $pm_n - qm_{n+1}$ is an integer, this can only happen for $pm_n - qm_{n+1} = 0$, that is $m_{n+1} = \frac{p}{q}m_n$. We conclude that $m_{n_0+k} = \frac{p^k}{q^k} m_{n_0}$, so m_{n_0} is divisible by q^k for all k. It is possible for q = 1 or $m_{n_0} = 0$. In the former case, we are done, in the latter case $m_{n_0+k} = 0$ for all k, so $\lim_{n \to \infty} c_1 x_1^n = 0$, a contradiction with our assumptions $c_1 \neq 0$ and $x_1 > 1$.

Let us justify the induction step (it will be done in a very similar fashion to handling the basis of induction). Fix $1 \le l \le k$, and let $x_l = \frac{p}{q}$. We have

$$\lim_{n \to \infty} \left(\sum_{j=1}^k pc_j x_j^n - pm_n \right) = 0 \quad \text{and} \quad \lim_{n \to \infty} \left(\sum_{j=1}^k qc_j x_j^{n+1} - qm_{n+1} \right) = 0,$$
$$\lim_{n \to \infty} \left(\sum_{j=1}^k c_j (x_j q - p) x_j^n - (qm_{n+1} - pm_n) \right) = 0,$$

so

$$\lim_{n \to \infty} \left(\sum_{j=1}^{k} c_j (x_j q - p) x_j^n - (q m_{n+1} - p m_n) \right) = 0,$$

where the coefficients $c_j(x_jq - p)$ of x_i^n are nonzero for $j \neq l$, and the coefficient of x_l^n is zero. By induction hypothesis, we conclude that all numbers x_i with $j \neq l$ are integers. Since this can be done for any *l*, all the numbers x_i are integers.