VLADIMIR DOTSENKO

The goal of this note is to explain a solution to a (very difficult) problem 5 from the last maths battle. Recall its statement.

Suppose that for two positive integers $a, b \geq 2$, it is known that $a^{n}-1$ is divisible by $b^{n}-1$ for all $n \in \mathbb{N}$. Show that $a=b^{k}$ for some $k \in \mathbb{N}$.
The proof of this statement relies on the following
Lemma. Let x_{1}, \ldots, x_{k} be pairwise distinct rational numbers in $(1,+\infty)$, let c_{1}, \ldots, c_{k} be nonzero real numbers, and let $\left\{m_{n}\right\}_{n \geq 1}$ be a sequence of integers. Assume that

$$
\lim _{n \rightarrow \infty}\left(\sum_{j=1}^{k} c_{j} x_{j}^{n}-m_{n}\right)=0
$$

Then x_{1}, \ldots, x_{k} are in fact integers.
Before proving this lemma, let us show that it implies the desired statement. Indeed, since $a^{n}-1$ is divisible by $b^{n}-1$, we have $a \geq b$, so $a^{k} \leq b<a^{k+1}$ for some positive integer k. Let $x_{j}=\frac{a}{b j}$ for $j=1, \ldots, k, c_{1}=c_{2}=\cdots=c_{k}=1$, and $m_{n}=\frac{a^{n}-1}{b^{n}-1}$. Then we have

$$
\sum_{j=1}^{k} c_{j} x_{j}^{n}-m_{n}=\sum_{j=1}^{k} \frac{a^{n}}{b^{j n}}-\frac{a^{n}-1}{b^{n}-1}=\frac{a^{n}}{b^{n}} \frac{1-\frac{1}{b^{k n}}}{1-\frac{1}{b^{n}}}-\frac{a^{n}-1}{b^{n}-1}=\frac{a^{n}}{b^{k n}} \frac{b^{k n}-1}{b^{n}-1}-\frac{a^{n}-1}{b^{n}-1}=\frac{1}{b^{k n}} \frac{b^{k n}-a^{n}}{b^{n}-1}
$$

which has zero limit as $n \rightarrow \infty$: since $a^{k} \leq b$, this quantity does not exceed $\frac{2}{b^{n}-1}$ in absolute value. Therefore all x_{i} are integers, and the quantity

$$
\sum_{j=1}^{k} c_{j} x_{j}^{n}-m_{n}=\frac{1}{b^{k n}} \frac{b^{k n}-a^{n}}{b^{n}-1}
$$

is an integer. A sequence of integers has limit zero only if all terms starting from some point are equal to zero. Hence, $a^{n}=b^{k n}$, and $a=b^{k}$.

Proof of Lemma. Induction on k. Let us first deal with $k=1$. Let $x_{1}=\frac{p}{q}$ in lowest terms. Let $\varepsilon=\frac{1}{p+q}$. We have $\left|c_{1} x_{1}^{n}-m_{n}\right|<\varepsilon$ for all sufficiently large n, say $n \geq n_{0}$. For such n, we of course have $\left|p c_{1} x_{1}^{n}-p m_{n}\right|<p \varepsilon$ and $\left|q c_{1} x_{1}^{n+1}-q m_{n}\right|<q \varepsilon$. Note that $p x_{1}^{n}=q x_{1}^{n+1}$, so

$$
\left|p m_{n}-q m_{n+1}\right| \leq\left|p c_{1} x_{1}^{n}-p m_{n}\right|+\left|q c_{1} x_{1}^{n+1}-q m_{n}\right|<p \varepsilon+q \varepsilon=1
$$

Since $p m_{n}-q m_{n+1}$ is an integer, this can only happen for $p m_{n}-q m_{n+1}=0$, that is $m_{n+1}=\frac{p}{q} m_{n}$. We conclude that $m_{n_{0}+k}=\frac{p^{k}}{q^{k}} m_{n_{0}}$, so $m_{n_{0}}$ is divisible by q^{k} for all k. It is possible for $q=1$ or $m_{n_{0}}=0$. In the former case, we are done, in the latter case $m_{n_{0}+k}=0$ for all k, so $\lim _{n \rightarrow \infty} c_{1} x_{1}^{n}=0$, a contradiction with our assumptions $c_{1} \neq 0$ and $x_{1}>1$.

Let us justify the induction step (it will be done in a very similar fashion to handling the basis of induction). Fix $1 \leq l \leq k$, and let $x_{l}=\frac{p}{q}$. We have

$$
\lim _{n \rightarrow \infty}\left(\sum_{j=1}^{k} p c_{j} x_{j}^{n}-p m_{n}\right)=0 \quad \text { and } \quad \lim _{n \rightarrow \infty}\left(\sum_{j=1}^{k} q c_{j} x_{j}^{n+1}-q m_{n+1}\right)=0
$$

so

$$
\lim _{n \rightarrow \infty}\left(\sum_{j=1}^{k} c_{j}\left(x_{j} q-p\right) x_{j}^{n}-\left(q m_{n+1}-p m_{n}\right)\right)=0
$$

where the coefficients $c_{j}\left(x_{j} q-p\right)$ of x_{j}^{n} are nonzero for $j \neq l$, and the coefficient of x_{l}^{n} is zero. By induction hypothesis, we conclude that all numbers x_{j} with $j \neq l$ are integers. Since this can be done for any l, all the numbers x_{j} are integers.

