Time-Consistent Supervisory Accounting

K.-Th. Eisele and Ph. Artzner

Université de Strasbourg

Risk Day, September 17, 2010, ETH Zürich

eisele@unistra.fr

artzner@math.unistra.fr
Content

1. Introductory Remarks
2. Financial Market
3. Time-consistent Risk Assessment
4. Market Consistency
5. Business Plan Accounting of an Insurance Company
6. Market-consistent Supervisory Provision of Obligations
7. The Optimal Replicating Portfolio of Obligations
8. Transfer of Obligations, Technical Provision
9. Solvency Capital Requirement and Supervisory Accounting Equation
10. Conclusions
Introductory Remarks

This work intends to connect the theory of risk measures with the ongoing solvency discussion: Solvency II and Swiss Solvency Test (SST) by:

1. constructing a **top-down** model of risk for insurance companies starting from
 - a market-consistent best-estimate operator, in particular for non-hedgeable cash-flows,
 - a multiperiod risk assessment operator;

This construction includes successive precise definitions of:
 - free capital (F),
 - supervisory provision (SP) and optimal replicating portfolio (ORP) of given obligations,
 - Technical provision (TP),
 - risk margin (RM), and
 - solvency capital requirement (SCR).

2. Comparing these items with the corresponding items of the industry **bottom-up** constructions in Solvency II and SST.
Financial Market

We work with a discrete time space \(\{0, \ldots, T\} \) and a finite filtered probability space \((\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \leq T}, \mathbb{P})\).

The financial market is given by processes:

\[
\left\{ S^i, i = 0, \ldots, d \right\}
\]

with \(S^0 = r \) as numéraire.

\[
r(s) := \frac{1}{r_s} \mathbb{1}_{s \geq s} \cdot r
\]

are the saving processes starting at \(s \) in the asset \(r \).

\(\mathcal{M} \neq \emptyset \) is the set of risk-neutral pricing probabilities.

The set of zero-cost asset values at \(t \) is

\[
N_t := \left\{ D_t = \sum_{i=0}^{d} S^i_t \cdot \xi^i_{t-1} \mid \sum_{i=0}^{d} S^i_{t-1} \cdot \xi^i_{t-1} = 0, \ \xi^i_{t-1} \text{ are } \mathcal{F}_{t-1}\text{-measurable} \right\}.
\]

(2)
We understand by a time-consistent risk assessment $\Psi = (\Psi_t)_{t \leq T}$ a family of functionals Ψ_t of adapted processes X to \mathcal{F}_t-measurable random variables with the following properties:

1. **Final assessment:**
2. **Localization:**
3. **Monotonicity:**
4. **Dependence on future values:**
5. **Cash invariance:**
6. **Lower semi-continuity:**
7. **Time-consistency:**
We understand by a **time-consistent risk assessment** \(\Psi = (\Psi_t)_{t \leq T} \) a family of functionals \(\Psi_t \) of adapted processes \(X \) to \(\mathcal{F}_t \)-measurable random variables with the following properties:

1. **Final assessment**: \(\Psi_T = 0 \),
2. **Localization**: \(\Psi_t(X \cdot 1_A) = \Psi_t(X) \cdot 1_A \),
3. **Monotonicity**: If \(X \leq Y \) then \(\Psi_t(X) \leq \Psi_t(Y) \),
4. **Dependence on future values**: If \(X1_{t>t} = Y1_{t>t} \), then \(\Psi_t(X) = \Psi_t(Y) \),
5. **Cash invariance**: \(\Psi_t(X + Y_t \cdot r(t)) = \Psi_t(X) + Y_t \), \((3) \)
6. **Lower semi-continuity**: If \(X_n \rightharpoonup X \) for \(n \to \infty \), then \(\Psi_t(X_n) \rightharpoonup \Psi_t(X) \), \(t \in T \).
7. **Time-consistency**: For all \(0 \leq s \leq t < T \)

\[
\Psi_s(X) = \Psi_s(X1_{t \leq t} + \Psi_t(X) \cdot r(t)1_{t>t}).
\] \((4) \)
Remark 1

Note that the definition does not contain any convexity or coherence condition.
Supervisory Arbitrage

Definition 2

A family $\Phi = (\Phi_t)_{t \leq T}$ of functionals Φ_t on processes X allows supervisory arbitrage if for some X and $t < T$

$$
\sup_{D_u \in N_u, \ t < u \leq T} \Phi_t \left(X + \sum_{u > t} D_u \cdot r(u) \right) = +\infty.
$$

(5)

Proposition 1

Let Φ as before with

$$
\Phi_t (X) \leq \mathbb{E}_Q \left[X_T \frac{r_t}{r_T} \bigg| \mathcal{F}_t \right]
$$

(6)

for some $Q \in \mathcal{M}$. Then Φ doesn’t allow supervisory arbitrage.
Remark 2

For the risk assessment ψ, we shall assume

$$\psi_t(X) \leq \mathbb{E}_Q \left[X_T \frac{r_t}{r_T} \mid \mathcal{F}_t \right] \tag{7}$$

for some $Q \in \mathcal{M}$, which is weaker than coherence and at the same time excludes supervisory arbitrage.

We fix $Q \in \mathcal{M}$ with (7) for the rest of the talk.
Definition 3

A family $\Phi = (\Phi_t)_{t \leq T}$ of functionals on processes X is called market consistent if for all X, $t < u \leq T$ and $D_u \in N_u$

$$\Phi_t(X) = \Phi_t(X + D_u \cdot r(u)).$$ \hspace{1cm} (8)
Business Plan Accounting

The business plan \((C, Z) = (C_t, Z_t)_{t\in\mathbb{T}}\) of an insurance company is a sequence of current assets values \(C_t\) and obligations cash-flows \(Z_t\). \(Z_t\) is the obligation that company has to pay at time \(t\) to its policy-holders according to the contracts signed at \(t = 0\). \(Z\) is exogenously given.

We always assume the self-financing (w. r. t. \(Z\)) condition:
For each \(t > 0\)
\[
D_t := C_t + Z_t - C_{t-1} \frac{r_t}{r_{t-1}} \in N_t,
\]
(9)

\(D_t\) is the company’s trading-risk exposure

However, \(Z_t\) is generally not in the market.
The process of estimated obligations

Definition 4

The process of estimated obligations \overline{Z} is given by

$$\overline{Z}_t := \mathbb{E}_Q \left[\sum_{u > t} Z_u \frac{r_t}{r_u} \mid \mathcal{F}_t \right].$$

(10)

In Solvency II and SST, \overline{Z}_t is the Best Estimate of the obligation.

Since we use $\mathcal{Q} \in \mathcal{M}$, we get a market consistent functional.
Acceptable business plan

A business plan \((C, Z)\) satisfies the solvency condition at time \(t\) if and only if

\[
\psi_t(C - Z) \geq 0. \tag{11}
\]

Then, \((C, Z)\) is called \(t\)-acceptable.

Definition 5 (Free capital)

The free capital process \(F(C, Z)\) of a business plan is

\[
F_t(C, Z) := \psi_t(C - Z). \tag{12}
\]

By cash invariance, we have

\[
\psi_t \left(C - \psi_t(C - Z) \cdot r(t) - Z \right) = \psi_t(C - Z) - \psi_t(C - Z) = 0.
\]

Thus, \((C - F_t(C, Z) \cdot r(t), Z)\) is a \(t\)-acceptable business plan.
Supervisory Provision

Definition 6

The process of supervisory provisions $SP(Z) = (SP_t(Z))_{t\leq T}$ for a cash-flow process Z of obligations is given by

$$SP_t(Z) := \inf \{ C_t \mid (C, Z) \text{ is a } t\text{-acceptable plan} \}.$$ \hfill (13)

SP_t is market-consistent (as a functional of Z).
Proposition 2

We find

\[SP_t(Z) - \bar{Z}_t = -\psi_t^* (-\bar{Z}) \geq 0 \quad (14) \]

where

\[\psi_t^*(X) := \sup_{\substack{D_u \in N_u \\ t < u \leq T}} \psi_t \left(X + \sum_{u=t+1}^{T} D_u \cdot r(u) \right) \quad (15) \]

is the market-consistent majorant of \(\psi_t \).
Optimal Replicating Portfolio

For each C, we saw that $(C - F_t(C, Z) \cdot r(t), Z)$ is a t-acceptable business plan, hence

$$C_t - F_t(C, Z) \geq SP_t(Z)$$

We study the case where in (13) the inf is actually reached by $C_t - F_t(C, Z)$: i.e.

$$C^*_t - F_t(C^*, Z) = SP_t(Z).$$

Definition 7

An process C^* of current asset values is called a t-optimal replicating portfolio for the obligation process Z if and only if C^* satisfies the self-financing condition (9) and

$$C^*_t = SP_t(Z) + F_t(C^*, Z).$$

(16)
Market prudence of a risk assessment Ψ

There are examples where ORP does not exist.

An additional assumption on Ψ called “market prudence” detects trading-risk exposures different from zero:

Definition 8

The risk assessment Ψ is called **market prudent** if for all $0 \leq t < T$ and all $D_{t+1} \in N_{t+1} \setminus \{0\}$, we have a. s.

$$\Psi_t(D_{t+1} \cdot r(t + 1)) < 0.$$ \hspace{1cm} (17)

For a market prudent Ψ, r is the only asset evaluated according to market prices by Ψ.

Existence of an optimal replicating portfolio

Market prudence implies the existence of the extremum in the definition of the supervisory provision:

Proposition 3

Let Ψ be a homogeneous, continuous and market prudent assessment. Then for every obligation process Z, $t \leq T$ and each current asset value C_t, there exists a self-financing t-optimal replicating portfolio C^* with $C^*_t = C_t$. Moreover, C^* is u-optimal replicating for all $u \geq t$.
Acceptability by rebalancing of the asset portfolio

Definition 7 and Proposition 3 show for a market-prudent Ψ that the “solvability condition”

$$C_0 \geq SP_0(Z)$$

allows for a (optimal replicating) portfolio C^* with $C^*_0 = C_0$ and

$$C^*_0 = SP_0(Z) + F_0(C^*, Z),$$

hence $F_0(C^*, Z) \geq 0$ and the plan (C^*, Z) is acceptable.

Solvability implies acceptability under ORP.
Transfer of obligations of a non-solvable company

Now assume $C_0 < SP_0(Z)$.

No plan (\tilde{C}, Z) with $\tilde{C}_0 = C_0$ can be acceptable and we look for a transfer of the obligations Z.

The tool is the value investors are willing to pay for the “insurance option” (=terminal free capital=terminal current asset value)

$$(C^*_T)^+$$

of a candidate company choosing an optimal replicating portfolio C^* with $C^*_0 \geq SP_0(Z)$.

The new empty company needs at date 0 a current asset value of at least $SP_0(Z)$. It can be funded out of two sources:
• A first amount $\text{SCR}_0^*(Z)$ (fixed by the regulator) which the market accepts to pay for the option $(C_T^*)^+$, C^* being the ORP of Z. This $\text{SCR}_0^*(Z)$ would be of own funds (or “Eigenkapital”) type.

• A second amount:

$$TP_0(Z) := SP_0(Z) - \text{SCR}_0^*(Z), \quad (20)$$

called technical provision, provided by the old company which is then released of its obligations Z. This $TP_0(Z)$ is added as “foreign capital” or “Fremdkapital” to the new company, which is now acceptable under the ORP C^* since

$$C_0^* = SP_0(Z) + F_0(C^*, Z) \geq \text{SCR}_0^*(Z) + TP_0(Z) = SP_0(Z). \quad (21)$$

(Acceptability by transfer under ORP)

Note that the transfer is only possible as long as the old company has a current asset value of at least $TP_0(Z)$. 21 / 26
For $u > t$ we now fix $D_u \in N_u$ and define

$$\tilde{C} := \sum_{u > t} (D_u - Z_u) \cdot r(u).$$

such that the D_u are the trading-risk exposures of \tilde{C}. Then $(\tilde{C} - \psi_t(\tilde{C} - \bar{Z}) \cdot r(t), \bar{Z})$ is t-acceptable. Moreover $-\psi_t(\tilde{C} - \bar{Z})$ is the minimal asset value for any t-acceptable business (C, Z) with the same D_u.

Since $\tilde{C}_t = 0$, we get

$$-\psi_t(\tilde{C} - \bar{Z}) \geq SP_t(Z) \geq TP_t(Z). \quad (22)$$
Solvency Capital Requirement (SCR)

Definition 9

1. The difference between the necessary asset value \(-\psi_t(\tilde{C} - \bar{Z})\) and the technical provision \(TP_t(Z)\) is the solvency capital requirement (SCR):

\[
SCR_t(C, Z) := -\psi_t(\sum_{u> t} (D_u - Z_u) \cdot r(u) - \bar{Z}) - TP_t(Z). \tag{23}
\]

According to (22), the solvency capital requirement splits into two parts:

2. \(SCR_t^*(Z) := SP_t(Z) - TP_t(Z) \tag{24}\)

is the solvency capital requirement under OPR. It depends only on the obligation cash-flows \(Z\).

3. \(SCR_t'(C, Z) := -\psi_t(\sum_{u> t} (D_u - Z_u) \cdot r(u) - \bar{Z}) - SP_t(Z) \geq 0 \tag{25}\)

is the relative solvency capital requirement (rSCR).
Characterizing the optimal replicating portfolio

Proposition 4

C is a t-optimal replicating portfolio for the obligation process *Z* if and only if

$$SCR_i^t(C, Z) = 0.$$ (26)
Supervisory accounting equality

One can show that for any business plan (C, Z) with trading-risk exposures $D_u, u > t$,

$$C_t - \psi_t(C - \overline{Z}) = -\psi_t(\sum_{u > t} (D_u - Z_u) \cdot r(u) - \overline{Z})$$ \hspace{1cm} (27)

so that

$$C_t - \psi_t(C - \overline{Z}) - SP_t(Z) = SCR_t^r(C, Z).$$ \hspace{1cm} (28)

This implies:

Proposition 5

$$C_t = F_t(C - \overline{Z}) + SCR_t(C, Z) + TP_t(Z).$$ \hspace{1cm} (29)

This is the *supervisory accounting equality*.
Conclusions

• We distinguish four supervisory actions:
 1. Acceptability, if \(C_0 \geq TP_0(Z) + SCR_0(C, Z) \),
 2. Rebalancing of the portfolio, if \(C_0 \geq TP_0(Z) + SCR^*_0(Z) \),
 3. Transfer to a new company, if \(C_0 \geq TP_0(Z) \),
 4. Closing of the company, if \(C_0 < TP_0(Z) \).

• The top-down approach allows to impose reasonable properties from the very beginning.

• The definitions of the provisions \(SP_t(Z), TP_t(Z) \) depend only on the obligations \(Z \).

• The concept of \(SCR^*_t(Z) \) essential for \(TP_t(Z) \) needs a precise definition of optimal replicating portfolio, which itself is based on the supervisory provision. Therefore supervisory provision is a cornerstone in the construction, even if it does not appear explicitly in supervisory accounting equation.