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SIGNED WORDS AND PERMUTATIONS, V;
A SEXTUPLE DISTRIBUTION

Dominique Foata and Guo-Niu Han

Abstract
We calculate the distribution of the sextuple statistic over the hyperoctahedral
group Bn that involves the flag-excedance and flag-descent numbers “fexc”
and “fdes,” the flag-major index “fmaj,” the positive and negative fixed point
numbers “fix+” and “fix−” and the negative letter number “neg.” Several
specializations are considered. In particular, the joint distribution for the pair
(fexc, fdes) is explicitly derived.

1. Introduction

As has been shown in our series of four papers ([FoHa07], [FoHa05],
[FoHa06], [FoHa07a]), the length function “`” (see [Bo68], p. 7, or [Hu90],
p. 12) and the flag major index “fmaj” introduced by Adin and Roichman
[AR01] have become the true q-analog makers for the calculation of
various multivariable distributions on the hyperoctahedral group Bn of
the signed permutations. The elements of Bn may be viewed as words
w = x1x2 · · ·xn, where each xi belongs to the set {−n, . . . ,−1, 1, . . . , n}
and |x1||x2| · · · |xn| is a permutation of 12 . . . n. The set (resp. the number)
of negative letters among the xi’s is denoted by Negw (resp. negw).
A positive fixed point of the signed permutation w = x1x2 · · ·xn is a
(positive) integer i such that xi = i. It is convenient to write i := −i
for each integer i. If xi = i with i positive, we say that i is a negative
fixed point of w. The set of all positive (resp. negative) fixed points of w is
denoted by Fix+ w (resp. Fix− w). Notice that Fix− w ⊂ Negw. Also let

(1.1) fix+ w := # Fix+ w; fix− w := # Fix− w.

There are 2nn! signed permutations of order n. The symmetric group Sn

may be considered as the subset of all w from Bn such that Negw = ∅.
When w is an (ordinary) permutation from Sn, then Fix− w = ∅, so that
we define Fixw := Fix+ w and fixw = #Fixw.
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Now, for each statement A let χ(A) = 1 or 0 depending on whether A is
true or not. Besides the integer-valued statistics “fix+,” “fix−” and “neg”
the now classical flag-descent number “fdes”, flag-major index “fmaj” and
flag-excedance number “fexc” are also needed in the following study. They
are defined for each signed permutation w = x1x2 · · ·xn by

fdesw := 2 desw + χ(x1 < 0);
fmajw := 2 majw + negw;
fexcw := 2 excw + negw;

where “des” is the number of descents desw :=
∑n−1

i=1 χ(xi > xi+1), “maj”
the major index majw :=

∑n−1
i=1 i χ(xi > xi+1) and “exc” the number of

excedances excw :=
∑n−1

i=1 χ(xi > i).
Our intention is to calculate the distribution of the sextuple statistic

(fexc, fdes, fmaj,fix+,fix−,neg) on the group Bn. This means that for each
n ≥ 0 the generating polynomial

(1.2) Bn(s, t, q, Y0, Y1, Z) :=
∑

w∈Bn

sfexc wtfdes w qfmaj w Y fix+ w
0 Y fix− w

1 Zneg w

can be considered and, with a suitable normalization, the generating
function for those polynomials be summed. Furthermore, the summation
is to yield an appropriate closed form. Finally, the calculation must be
compatible with the symmetric group Sn in the sense that when the
variable Z is given the zero value, earlier results derived for that group are
to be recovered. As is shown below, this goal will be achieved by working
in the algebra of q-series.

Our derivation has been motivated by the following recent statis-
tical studies on Bn and Sn. In [FoHa07a] and [FoHa07b] we have
respectively calculated the generating functions for the polynomials
Bn(1, t, q, Y0, Y1, Z) and An(s, t, q, Y0) , where

(1.3) An(s, t, q, Y ) :=
∑

σ∈Sn

sexc σtdes σqmaj σY fix σ

and shown that by giving certain variables specific values the former
statistical results on Sn and Bn could be reobtained. Note that, using the
previous definitions of “fexc,” “fdes” and “fmaj,” the latter polynomial is
nothing but Bn(s1/2, t1/2, q1/2, Y, 0, 0).

In the diagram of Fig. 1 the polynomials on the top (resp. bot-
tom) level are specializations of the polynomial Bn(s, t, q, Y0, Y1, Z) (resp.
An(s, t, q, Y )). Each vertical arrow is given a (Z = 0)-label. This means
that when Z is given the 0-value, each polynomial Bn(· · ·) is transformed
into the corresponding polynomial An(· · ·). The other arrows labelled s,
t and Z indicate that each target polynomial is mapped onto the source
polynomial when s (resp. t, resp. Z) is given the 1-value.
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Fig. 1
The polynomials appearing on the top are all generating polynomials

for the group Bn. Four of them are reproduced in boldface. Their factorial
generating polynomials are derived in the present paper. The generating
functions for the other six polynomials have been explicitly determined in
earlier papers: An(1, 1, q, Y ) and An(1, t, q, Y ) by Gessel and Reutenauer
[GeRe03], then An(s, 1, q, Y ) by Shareshian and Wachs [ShWa06], fur-
thermore An(s, t, q, Y ) in [FoHa07b], finally Bn(1, 1, q, Y0, Y1, Z) and
Bn(1, t, q, Y0, Y1, Z) in [FoHa07a].

The classical notation on q-series will be used. First, the q-ascending
factorials

(a; q)n :=
{

1, if n = 0;
(1− a)(1− aq) · · · (1− aqn−1), if n ≥ 1.

(a; q)∞ :=
∏
n≥1

(1− aqn−1);

then, the two q-exponentials (see [GaRa90, chap. 1])

eq(u) =
∑
n≥0

un

(q; q)n
=

1
(u; q)∞

; Eq(u) =
∑
n≥0

q(
n
2) un

(q; q)n
= (−u; q)∞.

The main purpose of this paper is to prove the following theorem.

Theorem 1.1. For each n ≥ 0 let Bn(s, t, q, Y0, Y1, Z) be the generating
polynomial for the hyperoctahedral group Bn by the six-variable statistic
(fexc, fdes, fmaj,fix+,fix−,neg) as defined in (1.2). Then, the factorial
generating function for the polynomials Bn(s, t, q, Y0, Y1, Z) is given by:

(1.4)
∑
n≥0

(1 + t)Bn(s, t, q, Y0, Y1, Z)
un

(t2; q2)n+1

=
∑
r≥0

tr
(u; q2)br/2c+1

(uY0; q2)br/2c+1

(−usqY1Z; q2)b(r+1)/2c

(−usqZ; q2)b(r+1)/2c
Fr(u; s, q, Z),
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where

(1.5) Fr(u; s, q, Z)

=
(us2q2; q2)br/2c (1− s2q2) (u; q2)b(r+1)/2c (u; q2)br/2c

(u; q2)br/2c+1

(
(u; q2)b(r+1)/2c

(
(u; q2)br/2c − s2q2 (us2q2; q2)br/2c

)
+ sqZ (u; q2)br/2c

(
(u; q2)b(r+1)/2c − (us2q2; q2)b(r+1)/2c

))
.

The factorial generating functions for the other polynomials writ-
ten in boldface in the diagram of Fig. 1 are shown to be specializa-
tions of the factorial generating function for the six-variable polynomials
Bn(s, t, q, Y0, Y1, Z), as stated in the next three Corollaries.

Corollary 1.2. The factorial generating function for the polynomials
Bn(s, 1, q, Y0, Y1, Z) is given by

(1.6)
∑
n≥0

Bn(s, 1, q, Y0, Y1, Z)
un

(q2; q2)n
=
eq2(uY0)Eq2(usqY1Z)

Eq2(usqZ)

× (1− s2q2)
eq2(us2q2)− s2q2eq2(u) + sqZ(eq2

(
us2q2)− eq2(u)

) .
Corollary 1.3. The factorial generating function for the polynomials
Bn(s, t, q, Y0, Y1, 1) is given by

(1.7)
∑
n≥0

(1 + t)Bn(s, t, q, Y0, Y1, 1)
un

(t2; q2)n+1

=
∑
r≥0

tr
(u; q2)br/2c+1

(uY0; q2)br/2c+1

(−usqY1; q2)b(r+1)/2c

(−usq; q2)b(r+1)/2c
Fr(u; s, q, 1),

where Fr(u; s, q, 1) is given by

(1.8) Fr(u; s, q, 1) =
(us2q2; q2)br/2c

(u; q2)br/2c+1

×
(1− sq) (u; q2)b(r+1)/2c (usq; q2)br/2c

(u; q2)b(r+1)/2c (usq; q2)br/2c − sq (usq; q2)b(r+1)/2c (us2q2; q2)br/2c
.

Corollary 1.4. The factorial generating function for the polynomials
Bn(s, 1, q, Y0, Y1, 1) is given by

(1.9)
∑
n≥0

Bn(s, 1, q, Y0, Y1, 1)
un

(q2; q2)n

=
eq2(uY0)Eq2(usqY1)

Eq2(usq)
(1− sq)

eq2(us2q2)− sq eq2(u)
.
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The proof of Theorem 1.1 requires several steps. First, the factorial
generating function for the polynomials Bn(s, t, q, Y0, Y1, Z), as it appears
on the left-hand side of (1.4), is shown to be equal to a series

∑
r≥0

trar,
where each ar is the product of the rational function

(u; q2)br/2c+1

(uY0; q2)br/2c+1

(−usqY1Z; q2)b(r+1)/2c

(−usqZ; q2)b(r+1)/2c

by the generating series
∑
uλwsfexc wqtot cZneg w for the set WSP(r) of the

so-called weighted signed permutations by a certain four-variable statistic
(λ, tot, fexc,neg) (see Theorem 4.2). The combinatorics of the weighted
signed permutations was introduced in our previous paper [FoHa07a], but
this time the extra variable “s” is to be added to make the calculation. All
this derivation is developed in Sections 2 and 3. Noticeably, the variables Y0

and Y1 that carry the information on fixed points occur only in the above
fraction, but not in the latter generating series. Also, the positive fixed
point counter Y0 occurs in the denominator of that fraction, while the
negative fixed point counter Y1 only in the numerator.

The next step is to show that this generating series for weighted
signed permutations is also equal to the generating series for words,
whose letters belong to the interval [0, r], by another four-variable statistic
(λ, tot v, evdec + odd, odd). This is achieved by means of the construction
of a bijection of the set of weighted signed permutations onto the set of
those words having the adequate properties (see Theorem 5.1).

The crucial calculation is to evaluate the latter generating function and
show that it is equal to the expression Fr(u; s, q, Z) displayed in (1.5).
Two proofs are given, the first one using a V -word decomposition theorem
(see Theorem 6.1) derived in [FoHa07b] together with the traditional q-
series telescoping technique, the second one taking advantage of a word
factorization, which consists of cutting each word after every odd letter
(see Section 8).

Formula (1.6) (resp. (1.9)) is deduced from (1.4) (resp. from (1.7))
by the traditional token that consists of multiplying the latter one by
(1− t) and letting r tend to +∞, so that Corollaries 1.2 and 1.4 are easy
consequences of Theorem 1.1 and Corollary 1.3.

We prove Corollary 1.3 in two different ways: first, as a specialization
of Theorem 1.1 by an evaluation of the fraction Fr(u; s, q, Z) for Z = 1
(this requires some manipulations on q-series), second, by showing directly
that Fr(u; s, q, 1) is the generating function for words by the two-variable
statistic (tot, 2 evdec +odd), using a bijection constructed in our previous
paper [FoHa07b]. We end the paper by deriving several specializations of
Theorem 1.1, in particular, the joint distribution of the pair (fexc, fdes)
over the group Bn.
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2. Weighted signed permutations

This section will appear to be an updated version of Section 4 of our
previous paper [FoHa07a], where the notion of weighted signed permutation
was introduced. With the addition of “fexc” it was essential to ascertain
how that statistic behaved in the underlying combinatorial construction.

We use the following notations: if c = c1c2 · · · cn is a word, whose
letters are nonnegative integers, let λ(c) := n be the length of c, tot c :=
c1+c2+· · ·+cn the sum of its letters and odd c the number of its odd letters.
Furthermore, NIWn (resp. NIWn(r)) designates the set of all nonincreasing
monotonic words of length n, whose letters are nonnegative integers (resp.
nonnegative integers at most equal to r). Also let NIWe

n(r) (resp. DWo
n(r))

be the subset of NIWn(r) of the monotonic nonincreasing (resp. strictly
decreasing) words all letters of which are even (resp. odd).

Next, each pair
(

c
w

)
is called a weighted signed permutation of order n

if the four properties (wsp1)–(wsp4) hold:
(wsp1) c is a word c1c2 · · · cn from NIWn;
(wsp2) w is a signed permutation x1x2 · · ·xn from Bn;
(wsp3) ck = ck+1 ⇒ xk < xk+1 for all k = 1, 2, . . . , n− 1;
(wsp4) xk is positive (resp. negative) whenever ck is even (resp. odd).

When w has no fixed points, either negative or positive, we say that
(

c
w

)
is a weighted signed derangement. The set of weighted signed permutations
(resp. derangements)

(
c
w

)
=

(
c1c2···cn

x1x2···xn

)
of order n is denoted by WSPn (resp.

by WSDn). The subset of all those weighted signed permutations (resp.
derangements) such that c1 ≤ r is denoted by WSPn(r) (resp. by WSDn(r)).

For example, the following pair

(
c

w

)
=

 1 2 3 4 5 6 7 8 9 10 11 12 13
10 10 9 7 7 7 4 4 4 3 2 2 1
1 2 7 6 5 4 3 8 9 10 12 13 11


is a weighted signed permutation of order 13. It has four positive fixed
points (1,2,8,9), two negative fixed points (5, 10) and two excedances
(12, 13).

Proposition 2.1. With each weighted signed permutation
(

c
w

)
from the

set WSPn(r) can be associated a unique sequence (i, j, k,
(

c′

w′

)
, ve, vo) such

that
(1) i, j, k are nonnegative integers of sum n;

(2)
(

c′

w′

)
is a weighted signed derangement from the set WSDi(r);

(3) ve is a nonincreasing word with even letters from the set NIWe
j(r);

(4) vo is a decreasing word with odd letters from the set DWo
k(r);
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having the following properties:

(2.1)
tot c = tot c′ + tot ve + tot vo; negw = negw′ + λ(vo);

fix+ w = λ(ve); fix− w = λ(vo); fexcw = fexcw′ + λ(v0).

The bijection
(

c
w

)
7→ (

(
c′

w′

)
, ve, vo) is quite natural to define. Only its

reverse requires some attention. To get the latter three-term sequence from(
c
w

)
proceed as follows:

(a) let l1, . . . , lα (resp. m1, . . . , mβ) be the increasing sequence of the
integers li (resp. mi) such that xli (resp. xmi

) is a positive (resp. negative)
fixed point of w;

(b) define: ve := cl1 · · · clα and vo := cm1 · · · cmβ
;

(c) remove all the columns
(

cl1
xl1

)
, . . . ,

(
clα
xlα

)
,
(

cm1
xm1

)
, . . . ,

(
cmβ
xmβ

)
from

(
c
w

)
and let c′ be the nonincreasing word derived from c after the removal;

(d) once the letters xl1 , . . . , xlα , xm1 , . . . , xmβ
have been removed from

the signed permutation w the remaining ones form a signed permutation
of a subset A of [n], of cardinality n− α− β. Using the unique increasing
bijection φ of A onto the interval [n − α − β] replace each remaining
letter xi by φ(xi) if xi > 0 or by −φ(−xi) if xi < 0. Let w′ be the signed
derangement of order n − α − β thereby obtained. There is no difficulty
verifying that the properties listed in (2.1) hold.

For instance, with the above weighted signed permutation we have:
ve = 10, 10, 4, 4 and vo = 7, 3. After removing the fixed point columns we
obtain: 3 4 6 7 11 12 13

9 7 7 4 2 2 1
7 6 4 3 12 13 11

 and then
(
c′

w′

)
=

 1 2 3 4 5 6 7
9 7 7 4 2 2 1
4 3 2 1 6 7 5

 .

The signed permutation w (resp. w′) has two excedances 12, 13 (resp. 6, 7)
and six (resp. four) negative letters. Furthermore, v0 = 7, 3 is of length 2.
Hence fexcw = 2 excw + negw = 2 × 2 + 6 = 10 = 2 × 2 + 4 + 2 =
fexcw′ + λ(v0).

For reconstructing
(

c
w

)
from the sequence (

(
c′

w′

)
, ve, vo) consider the

nonincreasing rearrangement of the juxtaposition product vevo in the form
bh1
1 · · · bhm

m , where b1 > · · · > bm and hi ≥ 1 (resp. hi = 1) if bi is even
(resp. odd). The pair

(
c′

w′

)
being decomposed into matrix blocks, as shown

in the example, each letter bi indicates where the hi fixed point columns
are to be inserted. We do not give more details and simply illustrate the
construction with the running example.

With the previous example bh1
1 · · · bhm

m = 102 7 42 3. First, implement
102:  1 2 3 4 5 6 7 8 9

10 10 9 7 7 4 2 2 1
1 2 6 5 4 3 8 9 7

 ;
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then 7:  1 2 3 4 5 6 7 8 9 10
10 10 9 7 7 7 4 2 2 1
1 2 7 6 5 4 3 9 10 8

 ;

notice that because of condition (wsp3) the letter 7 is to be inserted in
second position in the third block; then insert 42: 1 2 3 4 5 6 7 8 9 10 11 12

10 10 9 7 7 7 4 4 4 2 2 1
1 2 7 6 5 4 3 8 9 11 12 10

 .

The implementation of 3 gives back the original weighted signed permu-
tation

(
c
w

)
.

3. A summation on weighted signed permutations

For 0 ≤ k ≤ n let
[
n

k

]
q

:=
(q; q)n

(q; q)k (q; q)n−k
be the usual q-binomial

coefficient. It is q-routine (see, e.g., [An76, chap. 3]) to prove the following
identities, where v1 is the first letter of v:

1
(u; q)N

=
∑
n≥0

[
N + n− 1

n

]
q

un;
[
N + n

n

]
q

=
∑

v∈NIWn(N)

qtot v;

1
(u; q)N+1

=
∑
n≥0

un
∑

v∈NIWn(N)

qtot v =
1

1− u

∑
v∈NIWn

qtot vuv1 ;

(3.1)
1

(u; q2)br/2c+1
=

∑
n≥0

un
∑

ve∈NIWe
n(r)

qtot ve

;

(3.2) (−uq; q2)b(r+1)/2c =
∑
n≥0

un
∑

vo∈DWo
n(r)

qtot vo

.

The last two formulas and Proposition 2.1 are now used to calculate
the generating function for the weighted signed permutations. The symbols
NIWe(r), DWo(r), WSP(r), WSD(r) designate the unions for n ≥ 0 of the
corresponding symbols with an n-subscript.

Proposition 3.1. The following identity holds:

(3.3)
∑
n≥0

un
∑

(c
w)∈WSPn(r)

qtot csfexc wY fix+ w
0 Y fix− w

1 Zneg w

=
(u; q2)br/2c+1

(uY0; q2)br/2c+1

(−usqY1Z; q2)b(r+1)/2c

(−usqZ; q2)b(r+1)/2c
×

∑
n≥0

un
∑

(c
w)∈WSPn(r)

qtot csfexc wZneg w .
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Proof. First, summing over (we, wo,
(

c
w

)
) ∈ NIWe(r)×DWo(r)×WSP(r),

we have∑
we,wo,(c

w)
uλ(we)qtot we

×(usZ)λ(wo)qtot wo

×uλ(c)qtot csfexc wY fix+ w
0 Y fix− w

1 Zneg w

(3.4) =
(−usqZ; q2)b(r+1)/2c

(u; q2)br/2c+1
×

∑
(c

w)
uλ(c)qtot csfexc wY fix+ w

0 Y fix− w
1 Zneg w

by (3.1) and (3.2). As fexcw = fexcw′ + λ(vo), Proposition 2.1 implies
that the initial expression can also be summed over five-term sequences
(
(

c′

w′

)
, ve, vo, we, wo) from WSD(r)×NIWe(r)×DWo(r)×NIWe(r)×DWo(r)

in the form∑
(c′

w′),ve,vo,we,wo

uλ(c′)qtot c′sfexc w′
Zneg w′

× (uY0)λ(ve)qtot ve

× (usY1Z)λ(vo)qtot vo

× uλ(we)qtot we

× (usZ)λ(wo)qtot wo

=
∑
ve,vo

(uY0)λ(ve)qtot ve

× (usY1Z)λ(vo)qtot vo

×
∑

(c′
w′),we,wo

uλ(c′)qtot c′sfexc w′
Zneg w′

× uλ(we)qtot we

× (usZ)λ(wo)qtot wo

.

The first summation can be evaluated by (3.1) and (3.2), while by
Proposition 2.1 again the second sum can be expressed as a sum over
weighted signed permutations

(
c
w

)
∈ WSP(r). Therefore, the initial sum is

also equal to

(3.5)
(−usqY1Z; q2)b(r+1)/2c

(uY0; q2)br/2c+1
×

∑
(c

w)∈WSP(s)

uλ(c)qtot csfexc wZneg w.

Identity (3.3) follows by equating (3.4) with (3.5).

4. A further evaluation

Proposition 4.1. Let Bn(s, t, q, Y0, Y1, Z) denote the generating poly-
nomial for the group Bn by the statistic (fexc, fdes,maj,fix+,fix−,neg).
Then

(4.1)
1 + t

(t2; q2)n+1
Bn(s, t, q, Y0, Y1, Z)

=
∑
r≥0

tr
∑

(c
w)∈WSPn(r)

qtot csfexc wY fix+ w
0 Y fix− w

1 Zneg w.
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Proof. A very similar calculation has been made in the proof of
Theorem 4.1 in [FoHa05]. We also make use of the identities on the q-
ascending factorials that were recalled in the previous section. First,

1 + t

(t2; q2)n+1
=

∑
r′≥0

(t2r′ + t2r′+1)
[
n+ r′

r′

]
q2

=
∑
r≥0

tr
[
n+ br/2c
br/2c

]
q2

=
∑
r≥0

tr
∑

b∈NIWn(br/2c)

q2 tot b.

Then,

1 + t

(t2; q2)n+1
Bn(s, t, q, Y0, Y1, Z)

=
∑
r≥0

tr
∑

b∈NIWn,
2b1≤r

q2 tot b
∑

w∈Bn

sfexc wtfdes wqfmaj wY fix+ w
0 Y fix− w

1 Zneg w

=
∑
r≥0

tr
∑

b∈NIWn, w∈Bn

2b1+fdes w≤r

sfexc wq2 tot b+fmaj wY fix+ w
0 Y fix− w

1 Zneg w.

As proved in [FoHa05, § 4] to each
(

c
w

)
=

(
c1···cn

x1···xn

)
∈ WSPn(s) there

corresponds a unique b = b1 · · · bn ∈ NIWn such that 2b1 +fdesw = c1 and
2 tot b+fmajw = tot c. Moreover, the mapping

(
c
w

)
7→ (b, w) is a bijection

of WSPn(r) onto the set of all pairs (b, w) such that b = b1 · · · bn ∈ NIWn

and w ∈ Bn with the property that 2b1 + fdesw ≤ r.
The word b is determined as follows: write the signed permutation w

as a linear word w = x1x2 . . . xn and for each k = 1, 2, . . . , n let zk be the
number of descents (xi > xi+1) in the right factor xkxk+1 · · ·xn and let εk
be equal to 0 or 1 depending on whether xk is positive or negative. Also
for each k = 1, 2, . . . , n define ak := (ck − εk)/2, bk := (ak − zk) and form
the word b = b1 · · · bn.

For example,
Id = 1 2 3 4 5 6 7 8 9 10
c = 9 7 7 4 4 4 2 2 1 1
w = 4 3 2 1 5 6 8 9 10 7
z = 1 1 1 1 1 1 1 1 0 0
ε = 1 1 1 0 0 0 0 0 1 1
a = 4 3 3 2 2 2 1 1 0 0
b = 3 2 2 1 1 1 0 0 0 0

Pursuing the above calculation we get (4.1).

The next theorem is then a consequence of Propositions 3.1 and 4.1.

10
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Theorem 4.2. The following identity holds:

(4.2)
∑
n≥0

(1 + t)Bn(s, t, q, Y0, Y1, Z)
un

(t2; q2)n+1

=
∑
r≥0

tr
(u; q2)br/2c+1

(uY0; q2)br/2c+1

(−usqY1Z; q2)b(r+1)/2c

(−usqZ; q2)b(r+1)/2c

∑
(c

w)∈WSP(r)

uλwqtot csfexc wZneg w.

In view of the statements of Theorems 1.1 and 4.2 we see that the former
theorem will be proved if we can show that the following identity holds:

(4.3)
∑

(c
w)∈WSP(r)

uλwqtot csfexc wZneg w = Fr(u; s, q, Z),

with Fr(u; s, q, Z) given by (1.5). In our paper [FoHa06a] the sum∑
qtot cZneg w (

(
c
w

)
∈ WSPn(r)) has been calculated, by setting up a

bijection of WSPn(r) onto the set [0, r]n of the words of length n, whose
letters are taken from the interval [0, r]. Because of the presence of the
new statistic “fexc” another bijection is to be constructed. If v is the im-
age of

(
c
w

)
under the new bijection, then the statistic “fexc” on signed

permutations must have a counterpart on words. This role is played by
the so-called number of even decreases, as shown in the next section.

5. Even decreases on words

Say that a letter yi of a word v = y1y2 · · · yn from [0, r]n is a decrease
in v if 1 ≤ i ≤ n− 1 and yi ≥ yi+1 ≥ · · · ≥ yj > yj+1 for some j such that
i ≤ j ≤ n − 1. Let dec v (resp. evdec v) denote the number of decreases
(resp. of even decreases) in v. Notice that dec v ≥ des v (the number of
descents in v) and dec v = des v whenever v is a permutation (without
repetitions). Also, let odd v be the number of odd letters in v.

Recall that a nonempty word v = y1y2 · · · yn is a Lyndon word, if either
n = 1, or n ≥ 2 and, with respect to the lexicographic order, the inequality
y1y2 · · · yn > yiyi+1 · · · yny1 · · · yi−1 holds for every i such that 2 ≤ i ≤ n.
Let v, v′ be two nonempty primitive words (none of them can be written
as va

0 for a ≥ 2 and some word v0). We write v � v′ if and only if
va ≤ v′a with respect to the lexicographic order for an integer a large
enough. As shown for instance in [Lo83, Theorem 5.1.5] (also see [Ch58],
[Sch65]) each nonempty word v can be written uniquely as a product
l1l2 · · · lk, called its Lyndon factorization, where each li is a Lyndon word
and l1 � l2 � · · · � lk. In the example below the Lyndon factorization
of v has been materialized by vertical bars. The essential property of the
Lyndon factorization needed in the sequel is the following:

dec v = dec l1 + dec l2 + · · ·+ dec lk.

11
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Now, start with the Lyndon factorization l1l2 · · · lk of a word v from
[0, r]n. With such a v we associate a permutation σ from Sn by means of
a procedure developed by Gessel-Reutenauer [GeRe93]: each letter yi of v
belongs to a Lyndon word factor lh, so that lh = v′yiv

′′. Then, form the
infinite word A(yi) := yiv

′′v′yiv
′′v′ · · · If yi and yi′ are two letters of v,

say that yi precedes yi′ if A(yi) > A(yi′) for the lexicographic order, or if
A(yi) = A(yi′) and yi is to the right of yi′ in the word v. This precedence
determines a total order on the n letters of v. The letter that precedes
all the other ones is given label 1, the next one label 2, and so on. When
each letter yi of v is replaced by its label, say, lab(yi), each Lyndon word
factor lj becomes a new word τj . The essential property is that each τj
starts with its minimum element and those minimum elements read from
left to right are in decreasing order. We can then interpret each τj as the
cycle of a permutation and the (juxtaposition) product τ1τ2 · · · τk as the
(functional) product of disjoint cycles. This product, said to be written in
canonical form, defines a unique permutation σ from Sn ([Lo83], § 10.2).

For example,
v = 2 | 3 2 1 1 | 3 | 5 | 6 4 2 1 3 2 3 | 6 6 3 1 6 6 2 | 6
σ = 16 | 12 18 22 21 | 10 | 7 | 4 8 17 20 11 15 9 | 2 5 13 19 3 6 14 | 1

The labels on the second row are obtained as follows: read the letters
equal to 6 (the maximal letter) from left to right and form their as-
sociated infinite words: 64213236421 · · ·, 66316626631 · · ·, 6316621131 · · ·,
662663166 · · ·, 62663166 · · ·, 66666 · · · Those letters 6 read from left to
right will be given the labels 4, 2, 5, 3, 6, 1. We continue the labellings by
reading the letters equal to 5, then 4, . . . in the above word v.

No decrease yi in v can be the rightmost letter of a Lyndon word
factor lh. We have then lh = · · · yiyi+1 · · · yjyj+1 · · · with yi ≥ yi+1 ≥
· · · ≥ yj > yj+1. Consequently, A(yi) > A(yi+1) and lab(yi) < lab(yi+1).
Conversely, if lab(yi) < lab(yi+1) and yi, yi+1 belong to the same Lyndon
factor, then yi is a decrease in v. To each decrease yi in v there corresponds
a unique cycle τh of σ and a pair lab(yi) lab(yi+1) of successive letters of τh
such that lab(yi) < lab(yi+1) and lab(yi+1) = σ(lab(yi)).

Consider the monotonic nonincreasing rearrangement c = c1c2 · · · cn
of v and form the three-row matrix

1 2 · · · n
c1 c2 · · · cn
σ(1) σ(2) · · · σ(n)

Then, if yi is a decrease in v, the lab(yi)-th column of the previous matrix
is of the form lab(yi)

yi

lab(yi+1)
with lab(yi) < lab(yi+1).

12
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At this stage we have dec v = excσ. We then have to transform σ
into a signed permutation w in such a way that only the excedances
corresponding to the even decreases of v are preserved. We proceed as
follows. The word c can be expressed as am1

1 am2
2 · · · amk

k where a1 > a2 >
· · · > ak ≥ 0 and m1 ≥ 1, m2 ≥ 1, . . . , mk ≥ 1. We then define

x1 · · ·xm1 :=
{
σ(1) · · ·σ(m1), if a1 is even;
σ(m1) · · ·σ(1), if a1 is odd;

xm1+1 · · ·xm1+m2 :=
{
σ(m1 + 1) · · ·σ(m1 +m2), if a2 is even;
σ(m1 +m2) · · ·σ(m1 + 1), if a2 is odd;

· · · · · ·

xm1+···+mk−1+1 · · ·xn :=
{
σ(m1+· · ·+mk−1+1) · · ·σ(n), if ak is even;
σ(n) · · ·σ(m1+· · ·+mk−1+1), if ak is odd.

The word w := x1x2 · · ·xn is then a signed permutation. When going from
σ to w, the excedances lab(yi) < lab(yi+1) of σ such that yi is odd have
vanished. The other ones have been preserved. Hence, 2 evdec v+ odd v =
2 excw + negw = fexcw. Finally, as σ(i) > σ(i+ 1) ⇒ ci > ci+1, the pair(

c
w

)
is a weighted signed permutation. We then have the desired bijection

[0, r]n →
(

c
w

)
.

Theorem 5.1. The mapping v →
(

c
w

)
is a bijection of [0, r]n onto

WSPn(r) having the following properties:

tot c = tot v; fexcw = 2 evdec v + odd v; negw = odd v.

With the running example we have

Id= 1 2 3 4 5 6 | 7 | 8 | 9 10 11 12 13 | 14 15 16 17 18 | 19 20 21 22
c =6 6 6 6 6 6 | 5 | 4 | 3 3 3 3 3 | 2 2 2 2 2 | 1 1 1 1
σ =1 5 6 8 13 14 | 7 | 17 | 4 10 15 18 19 | 2 9 16 20 22 | 3 11 12 21
w =1 5 6 8 13 14 | 7 |17 | 19 18 15 10 4 | 2 9 16 20 22 | 21 12 11 3

The signed permutation w has eight excedances (reproduced in boldface)
and ten negative letters. Therefore, fexcw = 2 × 8 + 10 = 26. There
are eight even decreases of the word v: 2 → 1, 6 → 4, 4 → 2,
2 → 1, 6 → 6, 6 → 3, 6 → 6, 6 → 2. Moreover, odd v = 10. Hence
2 evdec v + odd v = 26 = fexcw and of course negw = odd v = 10.

In view of (4.3) and Theorem 5.1 the proof of Theorem 1.1 will be
completed if the identy

(5.1)
∑

v∈[0,r]∗

uλvqtot vs2 evdec v+odd vZodd v = Fr(u; s, q, Z)

holds, the sum being over all words whose letters are in [0, r].
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6. The calculation of the latter sum

As introduced in our previous paper [FoHa07b] a word w = x1x2 . . . xn

of length n ≥ 2 is said to be a V -word, if for some integer i such that
1 ≤ i ≤ n − 1 we have x1 ≥ x2 ≥ · · · ≥ xi > xi+1 and xi+1 ≤ xi+2 ≤
· · · ≤ xn < xi whenever i+ 1 < n. The pair (xi, xi+1) is called the critical
biletter of w. The V -word decomposition for permutations was introduced
by Kim and Zeng [KiZe01]. The following theorem is a simple consequence
of Theorem 3.4 proved in our previous paper [FoHa07b].

Theorem 6.1 (V -word decomposition). To each word v = y1y2 · · · yn

whose letters are nonnegative integers there corresponds a unique sequence
(v0, v1, v2, . . . , vk), where v0 is a monotonic nondecreasing word and v1,
v2, . . . , vk are V -words with the further property that v0v1v2 · · · vk is a
rearrangement of v and

(6.1) evdec v = evdec v1 + evdec v2 + · · ·+ evdec vk.

Let X0, X1, . . . , Xr be (r+ 1) commuting variables. The even weight,
evweight v, of each word v = y1y2 . . . yn is defined to be

evweight v := Xy1Xy2 · · ·Xyn
s2 evdec v.

Now, consider the infinite series:

U(l) :=
∏

l≤j≤r

(1− s2χ(j even)Xj)−1, (1 ≤ l ≤ r);

M(k, l) :=
∏

k≤j≤l−1

(1−Xj)−1, (0 ≤ k < l).

Then, the generating function for V -words, whose critical biletter is (l, k)
(0 ≤ k < l ≤ r), by “evweight” is equal to:

U(l) s2χ(l even)XlXk M(k, l).

The following theorem is then a consequence of Theorem 6.1.

Theorem 6.2. We have the identity:∑
v

evweight v =
M(0, r + 1)

1−
∑

0≤k<l≤r

U(l) s2χ(l even)XlXk M(k, l)
,

where the sum is over all words whose letters belong to the interval [0, r].

Consider the homomorphism φ generated by:

φ(Xk) := uqk(sZ)χ(k odd) (0 ≤ k ≤ r).

If v = y1y2 · · · yn, then φ(evweight v) = uλvqtot vs2 evdec v+odd vZodd v.
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Also

φ(U(l)) =
∏

l≤j≤r

(1− uqjs2χ(j even)(sZ)χ(j odd))−1;

φ(M(k, l)) =
∏

k≤j≤l−1

(1− uqj(sZ)χ(j odd))−1.

Now define

(u)′k :=

{
1, if k = 0;∏
0≤j≤k−1

(1− uqj(sZ)χ(j odd)), if k ≥ 1;

(u)′′l :=

{
1, if l = 0;∏
1≤j≤l

(1− uqjs2χ(j even)(sZ)χ(j odd)), if l ≥ 1.

Then φ(U(l)) =
(u)′′l−1

(u)′′r
(1 ≤ l); φ(M(k, l)) =

(u)′k
(u)′l

(0 ≤ k < l).

Now, take the image of the identity of Theorem 6.2 under φ:

∑
w∈[0,r]∗

uλwqtot ws(2 evdec + odd) wZodd w =
∑

w∈[0,r]∗

φ(evweightw) =
1

(u)′r+1

1
S
,

where

S = 1−
∑

0≤k<l≤r

(u)′′l−1

(u)′′r
s2χ(l even)uql(sZ)χ(l odd)uqk(sZ)χ(k odd) (u)

′
k

(u)′l
.

As −uqk(sZ)χ(k odd)(u)′k = (u)′k+1 − (u)′k, we have:

S = 1 +
∑

1≤l≤r

(u)′′l−1

(u)′′r
s2χ(l even)uql(sZ)χ(l odd) 1

(u)′l
((u)′l − 1).

Now, −uqls2χ(l even)(sZ)χ(l odd)(u)′′l−1 = (u)′′l − (u)′′l−1. Hence,

S =
1

(u)′′r
− 1

(u)′′r

∑
1≤l≤r

(u)′′l−1

(u)′l
uqls2χ(l even)(sZ)χ(l odd).

We are then left to prove:

(6.2)
(u)′′r

(u)′r+1

(
1−

∑
1≤l≤r

(u)′′l−1

(u)′l
uqls2χ(l even)(sZ)χ(l odd)

)−1

= Fr(u; s, q, Z)
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We can also write:

(u)′r = (u; q2)b(r+1)/2c (usqZ; q2)br/2c,

(u)′′r = (usqZ; q2)b(r+1)/2c (us2q2; q2)br/2c,

so that

(6.3)
(u)′′r

(u)′r+1

=
(us2q2; q2)br/2c

(u; q2)br/2c+1
and

(u)′′l−1

(u)′l
=

(us2q2; q2)b(l−1)/2c

(u; q2)b(l+1)/2c
.

Identity (6.2) may be rewritten as

(6.4)
(us2q2; q2)br/2c

(u; q2)br/2c+1
(1− T )−1 = Fr(u; s, q, Z),

where

T :=
∑

1≤l≤r

(us2q2; q2)b(l−1)/2c

(u; q2)b(l+1)/2c
uqls2χ(l even)(sZ)χ(l odd)

=
∑

0≤l≤b(r−1)/2c

(us2q2; q2)l

(u; q2)l+1
uq2lsqZ +

∑
0≤l≤br/2c−1

(us2q2; q2)l

(u; q2)l+1
uq2ls2q2.

We can then introduce

G(m) :=
∑

0≤l≤m

(us2q2; q2)l

(u; q2)l+1
uq2l

and try to sum it. As

(us2q2; q2)l+1

(u; q2)l+1
− (us2q2; q2)l

(u; q2)l
=

(us2q2; q2)l

(u; q2)l+1
uq2l(1− s2q2),

we get

G(m) =
1

1− s2q2

( (us2q2; q2)m+1

(u; q2)m+1
− 1

)
,

so that

T = sqZ G(b(r − 1)/2c) + s2q2G(br/2c − 1)

=
1

1− s2q2

(
sqZ

(us2q2; q2)b(r+1)/2c

(u; q2)b(r+1)/2c
− sqZ

+ s2q2
(us2q2; q2)br/2c

(u; q2)br/2c
− s2q2

)
.

By reporting this value of T into (6.4) we exactly find the expression of
Fr(u; s, q, Z) displayed in (1.5).
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7. Second proof of (5.1)

When Z = 0 in Bn(s, t, q, Y0, Y1, Z), then Y1 is also null. Furthermore,
each polynomial Bn(s, t, q, Y0, 0, 0) is a polynomial in s2, t2, q2, Y0. The
summation on the right-hand side of (1.6) only involves even powers of t.
We then have

(7.1) F2r(u; s, q, 0) =
(us2q2; q2)r (1− s2q2) (u; q2)r

(u; q2)r+1

(
(u; q2)r − s2q2 (us2q2; q2)r

)
and

(7.2)
∑
n≥0

Bn(s, t, q, Y0, 0, 0)
un

(t2; q2)n+1
=

∑
r≥0

t2r (u; q2)r+1

(uY0; q2)r+1
F2r(u; s, q, 0).

But Bn(s1/2, t1/2, q1/2, Y, 0, 0) is the generating polynomial An(s, t, q, Y )
for the symmetric group Sn by the statistic (exc,des,maj,fix) and it was
proved in our previous paper [FoHa06b] that

∑
n≥0

An(s, t, q, Y )
un

(t; q)n+1
=

∑
r≥0

tr
(u; q)r+1

(uY ; q)r+1

(usq; q)r (1− sq) (u; q)r

(u; q)r+1((u; q)r − sq(usq; q)r)
.

Accordingly, (1.4) holds when Z = 0 and consequently (5.1) holds when r
is even and Z null. To show that identity (5.1), which we shall rewrite as

(7.3)
∑

v∈[0,r]∗

EV(v) = Fr(u; s, q, Z),

is true for all values of r and when Z is not necessarily 0 we proceed as
follows.

Cut each word v ∈ [0, r]∗ in the (5.1) summation after every occurrence
of an odd letter. This defines a unique factorization:

(7.4) v = p0i0p1i1 · · · pkikpk+1

of v having the following properties
(C1) k ≥ 0,
(C2) p0, p1, . . . , pk, pk+1 all from P ∗

r with Pr := {0, 2, 4, . . . , 2br/2c},
(C3) i0, i1, . . . , ik all from Ir with Ir := {1, 3, 5, . . . , 2b(r+ 1)/2c − 1}.

The following properties of this factorization are easy to verify:
(P1) tot v = tot(p0i0) + tot(p1i1) + · · ·+ tot(pkik) + tot(pk+1),
(P2) evdec v=evdec(p0i0)+evdec(p1i1)+· · ·+evdec(pkik)+evdec(pk+1),
(P3) odd v = odd(p0i0) + odd(p1i1) + · · ·+ odd(pkik) + odd(pk+1),
(P4) λv = λ(p0i0) + λ(p1i1) + · · ·+ λ(pkik) + λ(pk+1),
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(P5) EV(p0i0p1i1· · ·pkikpk+1)=EV(p0i0) EV(p1i1)· · ·EV(pkik) EV(pk+1),
(P6) EV(pi) = sqZ EV(p(i− 1)) for p ∈ P ∗

r and i ∈ Ir,
(P7) EV(p(2k)) = uq2k EV(p) for p ∈ P ∗

2k.

Hence ∑
v∈[0,r]∗

v =
(
1−

∑
p∈P∗

r ,i∈Ir

pi
)−1 ∑

p∈P∗
r

p;

∑
v∈[0,r]∗

EV(v) =
1

1−
∑

p∈P∗
r ,i∈Ir

EV(pi)

∑
p∈P∗

r

EV(p).(7.5)

On the other hand,∑
p∈P∗

r ,i∈Ir

EV(pi) = sqZ
∑

p∈P∗
r ,i∈Ir

EV(p(i− 1)) = sqZ
∑

p∈P∗
r ,j∈Pr−1

EV(pj).

If r = 2k + 1, then Pr = Pr−1 = P2k, so that∑
p∈P∗

r ,j∈Pr−1

EV(pj) =
∑

p∈P∗
2k

,λ(p)≥1

EV(p) = F2k(u; s, q, 0)− 1,

because (7.3) holds for r even and Z = 0. It follows from (7.5) that

(7.6)
∑

v∈[0,2k+1]∗

EV(v) =
F2k(u; s, q, 0)

1− sqZ
(
F2k(u; s, q, 0)− 1

) .
If r = 2k, then Pr = P2k and Pr−1 = P2k−2, so that∑

p∈P∗
r ,j∈Pr−1

EV(pj) =
∑

p∈P∗
2k

,j∈P2k−2

EV(pj)

=
∑

p∈P∗
2k

,λ(p)≥1

EV(p)−
∑

p∈P∗
2k

EV(p(2k))

= (F2k(u; s, q, 0)− 1)− uq2kF2k(u; s, q, 0)

= (1− uq2k)F2k(u; s, q, 0)− 1.

Hence (7.5) implies

(7.7)
∑

v∈[0,2k]∗

EV(v) =
F2k(u; s, q, 0)

1− sqZ
(
(1− uq2k)F2k(u; s, q, 0)− 1

) .
We can then report the value of F2k(u; s, q, 0) obtained in (7.1) in both
expressions (7.6) and (7.7). By combining them in a single formula we
exactly get the formula displayed in (1.5) for Fr(u; s, q, Z).
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8. Two proofs of Corollary 1.3

For the first proof we proceed as follows. Let Z = 1 in (1.5) and write
the formula as:

(us2q2; q2)br/2c (1− s2q2) (u; q2)b(r+1)/2c

(u; q2)br/2c+1Fr(u; s, q, 1)

= (u; q2)b(r+1)/2c − s2q2
(u; q2)b(r+1)/2c

(u; q2)br/2c
(us2q2; q2)br/2c

+ sq (u; q2)b(r+1)/2c − sq(us2q2; q2)b(r+1)/2c.
We have

s2q2
(u; q2)b(r+1)/2c

(u; q2)br/2c
(us2q2; q2)br/2c + sq(us2q2; q2)b(r+1)/2c

= sq(us2q2; q2)br/2c
(
sq(1− uq2b(r−1)/2c) + 1− us2q2b(r−1)/2c+2

)
= sq(us2q2; q2)br/2c(1 + sq)(1− usq2b(r−1)/2c+1)

= sq(us2q2; q2)br/2c(1 + sq)
(usq; q2)b(r+1)/2c

(usq; q2)br/2c
,

so that
(us2q2; q2)br/2c (1− s2q2) (u; q2)b(r+1)/2c

(u; q2)br/2c+1Fr(u; s, q, 1)

= (1 + sq)
(
(u; q2)b(r+1)/2c − sq(us2q2; q2)br/2c

(usq; q2)b(r+1)/2c

(usq; q2)br/2c
.

By dividing both sides by (1 + sq) we recover (1.8).

For the second proof we again use the notations introduced in Section 7,
namely,

(u)′r :=

{
1, if r = 0;∏
0≤j≤r−1

(1− uqj(sZ)χ(j odd)), if r ≥ 1;

= (u; q2)b(r+1)/2c (usqZ; q2)br/2c,

and directly prove the identity∑
v∈[0,r]n

qtot vs2 evdec v+odd v = Fr(u; s, q, 1),

where Fr(u; s, q, 1) is given by (1.8), an identity that may be rewritten as:

(8.1)
∑

v∈[0,r]n

qtot vs2 evdec v+odd v =
1

(u)′r+1

× (1− sq)(u)′r(usq)
′
r

(u)′r − sq(usq)′r
.
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For each r ≥ 0 let D(r) be the set of all pairs (w, i) such that
w ∈ NIW(r−1), 1 ≤ i ≤ λw−1, λw ≥ 2. In our previous paper ([FoHa07b],
Theorem 2.1) we have constructed a bijection mapping each word v onto
a sequence

(w0, (w1, i1), (w2, i2), . . . , (wk, ik)),

such that w0 ∈ NIW(r) and each pair (wl, il) ∈ D(r) (1 ≤ l ≤ k) and
w0w1 · · ·wk is a rearrangement of v. Furthermore, the bijection has the
following property:

(8.2) 2 evdec v+odd v = i1 + i2 + · · · ik +oddw0 +oddw1 + · · ·+oddwk.

Hence,
∑

v∈[0,r]n
qtot vs2 evdec v+odd v =

A

1−B
, where A =

∑
w∈NIW(r)

qtot wsodd wuλw

and B =
∑

(w,i)∈D(r)

(sq)iqtot wsodd wuλw. But A =
1

(u)′r+1

and

B =
∑

(w,i)∈D(r)

(sq)iqtot wsodd wuλw

=
∑
n≥2

n−1∑
i=1

(sq)i
∑

w∈NIWn(r−1)

qtot wsodd wuλw

=
∑
n≥2

sq − (sq)n

1− sq

∑
w∈NIWn(r−1)

qtot wsodd wuλw

=
sq

1− sq

∑
n≥2

∑
w∈NIWn(r−1)

qtot wsodd wuλw

+
1

1− sq

∑
n≥2

∑
w∈NIWn(r−1)

qtot wsodd w(usq)λw

=
sq

1− sq

( 1
(u)′r

− (1 + cu)
)

+
1

1− sq

( 1
(usq)′r

− (1 + cusq)
)

[where c is the coefficient of u in 1/(u)′r]

= 1 +
1

1− sq

( sq

(u)′r
− 1

(usq)′r

)
.

Finally,
∑

v∈[0,r]n

qtot vs2 evdec v+odd v =
A

1−B
=

1
(u)′r+1

× (1− sq)(u)′r(usq)
′
r

(u)′r − sq(usq)′r
,

which is the expression written in (8.1).

Remark. The method used in the latter proof cannot be applied when
Z 6= 1. Although identity (8.2) always holds, we do not have

odd v = oddw0 + oddw1 + · · ·+ oddwk

in general.
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9. Specializations

In Section 7 we have seen that the generating function for the poly-
nomials An(s, t, q, Y ) can be derived from (1.6) by letting Z = 0 and
replace the triplet (s, t, q, Y0) by (s1/2, t1/2, q1/2, Y ). We just comment the
specializations s = 1 and Y0 = Y1 = Z = 1.

9.1. Case s = 1. We have
Fr(u; 1, q, Z)

=
(uq2; q2)br/2c (1− q2) (u; q2)b(r+1)/2c (u; q2)br/2c

(u; q2)br/2c+1

(
(u; q2)b(r+1)/2c

(
(u; q2)br/2c − q2 (uq2; q2)br/2c

)
+ qZ (u; q2)br/2c

(
(u; q2)b(r+1)/2c − (uq2; q2)b(r+1)/2c

))
,

so that we can divide both numerator and denominator by the product
(u; q2)b(r+1)/2c (u; q2)br/2c. We then get

Fr(u; 1, q, Z) =
1− q2

1− u

(
1− q2

1− uq2br/2c

1− u
+ qZ − qZ

1− uq2b(r+1)/2c

1− u

)−1

=
(
1− u

1− q2br/2c+2

1− q2
− uqZ

1− q2b(r+1)/2c

1− q2

)−1

=
(
1− u

∑
0≤i≤r

qiZχ(i odd)
)−1

.

We then recover identity (1.9) from our paper [FoHa07a] in the form:

(9.1)
∑
n≥0

(1 + t)Bn(1, t, q, Y0, Y1, Z)
un

(t2; q2)n+1

=
∑
r≥0

tr
(u; q2)br/2c+1

(uY0; q2)br/2c+1

(−uqY1Z; q2)b(r+1)/2c

(−uqZ; q2)b(r+1)/2c

(
1− u

r∑
i=0

qiZ
χ(i odd)

)−1

.

9.2. Case Y0 = Y1 = Z = 1. Identity (1.7) simply becomes

(9.2)
∑
n≥0

(1 + t)Bn(s, t, q, 1, 1, 1)
un

(t2; q2)n+1
=

∑
r≥0

trFr(u; s, q, 1),

where Fr(u; s, q, 1) is given by (1.8). Note that Bn(s, t, q, 1, 1, 1) is the
generating polynomial for the groupBn by (fexc, fdes, fmaj). WriteBn(s, t)
for Bn(s, t, 1, 1, 1, 1). From (9.2) we deduce

(9.3)
∑
n≥0

Bn(s, t)
un

(1− t2)n
=

∑
r≥0

( (1− s)(1− t)t2r

(1− u)r+1(1− us2)−r − s(1− u)

+
(1− s)(1− t)t2r+1

(1− u)r+1(1− us2)−r − s(1− us)

)
.
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To obtain the marginal distribution Bn(s, 1) =
∑

w∈Bn

sfexc w it is convenient
to specialize formula (1.9). We obtain

(9.4)
∑
n≥0

Bn(s, 1)
un

n!
=

1− s

−s+ exp(u(s2 − 1))
.

As for Bn(1, t) =
∑

w∈Bn

tfdes w we specialize (9.1) and find:

(9.5)
∑
n≥0

Bn(1, t)
un

(1− t2)n
=

∑
r≥0

tr
1− t

1− u(r + 1)
.

Hence, Bn(1, t)/(1− t2)n = (1− t)
∑
r≥0

tr(r + 1)n and

(9.6)
∑
n≥0

Bn(1, t)
un

n!
=

1− t

−t+ exp(u(t2 − 1))
.

It follows from (9.4) and (9.6) that Bn(s, 1) = Bn(1, s), so that “fexc”
and “fdes” are equally distributed on the group Bn. For k, n ≥ 0 let Bn,k

be the number of signed permutations w from Bn such that fdesw = k. In
our paper [FoHa06] we have derived the recurrence formula for the Bn,k’s
in a more general context. The recurrence reads as follows

B0,0 = 1, B0,k = 0 for all k 6= 0;
B1,0 = 1, B1,1 = 1, B1,k = 0 for all k 6= 0, 1;

Bn,k = (k + 1)Bn−1,k +Bn−1,k−1 + (2n− k)Bn−1,k−2;

for n ≥ 2 and 0 ≤ k ≤ 2n− 1. Let B′
n,k := #{w ∈ Bn : fexcw = k}. The

coefficients B′
n,k’s satisfy the same recurrence as the Bn,k’s. The induction

is easy, so that we can fabricate a bijection ψ of Bn onto itself such that
fexcw = fdesψ(w).

10. Concluding remarks

The statistical study of the group Bn and some other Weyl groups
has been initiated by Reiner ([Re93a], [Re93b], [Re93c], [Re95a], [Re95b])
and continued by the Roman school ([Br94], [Bi03], [BiCa04]). It has
been rejuvenated by Adin, Roichman [AR01] with their definition of
the flag major index for signed permutations and the first proof of
the fact that length function and flag-major index were equidistributed
over Bn ([ABR01], [ABR05], [ABR06]). In our series “Signed words and
permutations; I–V” we have tried to work out analytical expressions for the
multivariable distributions on the group Bn that were natural extensions of
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the expressions already derived for the symmetric group Sn. Other works
along those lines are due to Gessel and his school ([ChGe07], [Ch03]).
Further algebraic extensions have recently been done by the Minnesota
school [BRS07].

We should like to thank Christian Krattenthaler [Kr07] who urged us to
use the telescoping technique to shorten our q-calculations (see Section 6).
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