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FOREWORD

In those ten papers (1) bound in a single volume (five [1--5] in the
series “Signed words and permutations,” three [6--8] in the series “Fix-
Mahonian Calculus” and two isolated papers, [9] “Decreases and descents
on words,” [10] “Permutations with extremal number of fixed points”) our
main goal has been to calculate multivariable statistical distributions on
the hyperoctahedral group B,, and the symmetric group &,,. As indicated
by the title of this memoir, those calculations first involve the studies
of statistical distributions on words, then the standardizations of those
words by permutations, signed or plain, suitably coded, finally g-calculus
methods to derive generating functions for those permutations by desired
multivariable statistics.

1. Word statistical study. This first step is so fundamental that
our results could be regarded as contributions to Combinatorial Theory of
Words with applications to Statistical Theory of Weyl groups. The words
in question are linear sequences w = x1xs - - - T, whose letters z1, zo, ... ,
x,, belong to the finite alphabet [0,7] = {0,1,...,r}. This set of words is
denoted by [0, r|*, often referred to as the free monoid generated by [0, r].

By way of illustration, we should like to mention two derivations
developed in [2] and [8]. Consider the sequence H,(u) (r = 0,1,2...)
of rational functions defined by the recurrence

1 1—ugZ(1-Y)
Ho(u) = =3 Hilw) = . and for r > 1
1—u(g(l =YVZ+q?+¢3Z + -+ g2 17 4 g2
Hor(w) = - ) g ?(’1 3—1 ;1 )Hzr—z(uq2>§
l—uX+qZ+@+@PZ+ -+ @217+ ¢*)
1—u(g(l =VZ+@FZ+¢3Z+ - +¢*> +¢*> 117
Hopo1 (1) = (g )Z+4q +4 " +q ) Hyo (ug?).

N 1-uX+qZ+@+@Z+ -+ ¢ +q¢2+17)

Each rational function H,.(u) (r > 0) can be interpreted as a generating
function for [0,7]* by a certain vector (A, tot,evenlower, oddlower, odd),
say,

(11> H, (’LL) _ Z u\c\qtot ¢ x evenlower cyroddlower ¢ 7odd c.
c€[0,r]*

(1) The references to those papers are written in typewriter font: [1-10]. We use the
usual Roman font for the other papers: [KiZe01], etc.
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but what are the five components of that vector? First, A is just the
length of each word. For ¢ = cycq---¢, we have A¢ = n. Then, totc =
c1+ca+ - +epn. Aletter ¢; (1 <14 <n)is said to be an even lower record
(resp. odd lower record) of c, if ¢; is even (resp. odd) and if ¢; > ¢; (resp.
¢; > ¢;) for all j such that 1 < j < i—1. For instance, the even (resp. odd)
lower records of the word ¢ = 5544 121040 3 are reproduced in boldface
(resp. in italic). Let evenlower ¢ (resp. oddlower ¢) be the number of even
(resp. odd) lower records of ¢ and odd ¢ be the number of odd letters in c.
With the above example we have Ac¢c = 11, totc = 29, evenlower ¢ = 4,
oddlower ¢ = 2, odd ¢ = 5. See [2], theorem 2.2 for the proof of (1.1).
Now, let

1, if n =0;
(@) = { (1—a)(1—aq)---(1—ag™?t), ifn>1;
(@; @)oo = [ ] (1 — ag™);

n>0

be the traditional g-ascending factorials. The next step is to form the series
> >0t Hr(u) and show that it can be expanded as a factorial series

u’I’L

(t%5¢*) g1’

d tHy(u)=> (1+1t)Bn(t,q, X,Y, Z)

r>0 n>0

where each coefficient B, (t,q, X,Y, Z) is a polynomial with nonnegative
integral coefficients |2, § 3]. The final step is to prove that B, (t,q, X,Y, Z)
is the generating polynomial for the hyperoctahedral group B,, by a well-
defined statistic (fdes, fmaj, lowerp, lowern, neg). The proof is based on a
standardization process, the so-called MacMahon Verfahren, that maps
each word ¢ € [0,7]* onto a pair (w,b), where w is an element of the
group B, and b an increasing word (see [2], theorem 4.1).

In the second example the rational fraction

(1 — sq) (u; q)r (usq; q)r
((u; q)r — sq(usq; q)r) (WY q)rs1

(1.2) C(r;u,s,q,Y) = (r >0)

can be shown [8] to be the generating function

(1.3) O(rr’ U, 8, q7 Y) — Z U/)\Csdec thot CYinreCC,
cel0,r]*

where “dec” and “inrec” are two word statistics defined as follows. Let
c = x1x2---T, be an arbitrary word. We say that the letter z; is
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a decrease value (resp. increase value) of ¢ if 1 < i < n — 1 and
Ti = Tijp1 = " = Tj > Tj41 (resp. Ti = Tijp1 = - = Tj < {le_|_1)
for some j such that i < j < n — 1. By convention, x,4+1 = +00. The
number of decrease values of ¢ is denoted by decc. Furthermore, x; is a
record value of ¢ if x; < x; for all j < ¢ — 1. Let inrec ¢ be the number of
letters of ¢ which are both record and increase values. For instance, the
decrease values (resp. letters which are both record and increase values)
of the word ¢ = 325642366366 are in boldface (resp. underlined), so
that decc = 5 and inrecc = 3. Identity (1.3) is proved in [8], Corollary
2.2 and in [9] by a different method. In [8] we make use of the word-
analog of the Kim-Zeng transformation [KiZe01]; in [9] identity (1.3) is a
consequence of a more general result involving other geometric properties
on words.

As above, the second step is to show that we have the expansion

u’I’L

D tTC(rus,q.Y) =) An(s,t.q.Y) t

Y

where A, (s,t,q,Y) is the generating polynomial for the symmetric
group S,, by a well-defined statistic (exc, des, maj, fix). This is achieved
by means of another standardization, introduced by Gessel-Reutenauer
[GeRe93], that maps each word ¢ onto a pair (o, b), where this time o is a
(plain) permutation.

2. Length function and major index. As is well-known, the
length function of the symmetric group &,,, when regarded as a Weyl
group, is the usual inversion number “inv,” defined for each permutation
oc=0(1)o(2)---0(n) by

invo := Z ZX(U(i>>U(j>),

1<i<n—1 i<j

making use of the y-notation that maps each statement A to the value
X(A) = 1 or 0 depending on whether A is true or not. The inversion
number is a true g-analog maker, in the sense that each generating function
for G,, by some statistic “stat” is liable to have a true g-extension if we
know how to calculate the generating function by the pair (stat,inv). The
major index “maj”, defined by

majo := Z ix(o(i) > o(i+1)),

invo

plays an analogous role. Although the two generating polynomials) _g¢
and ) _¢™¥7 (0 € &,) are equal (as a matter of fact to (¢;¢)n/(1—q)"),

(43 7

the g-extensions using either “inv,” or “maj” can be very much different.
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In the early nineties Reiner [Re93a, b, ¢, d, Re95] has calculated several
g-generating functions for the hyperoctahedral group B,, using the length
function. The results he obtained were natural extensions of what was
known for &,, when “inv” was used instead of “maj.” There remained to
do a parallel work for B,, with the g-formulas derived for &,, by means of
the major index. What was needed was an appropriate extension of “maj”
for B,,. It was found by Adin and Roichman [ARO1] with their flag-major
index, whose definition will be given shortly, together with the flag-descent
number and flag-inversion number.

By signed word we mean a word w = xi2s2...%,,, whose letters are
positive or negative integers. If m = (mj,ma,...,m,) is a sequence of
nonnegative integers such that m; +mo + --- +m, = m, let By, be the
set of all rearrangements w = x12x> ... x,, of the sequence 1"2™2 y™r,
with the convention that some letters ¢ may be replaced by their opposite
values —i. For typographical reasons we shall use the notation ¢ := —i.
When mqy = mo = --- = m, = 1, m = r, the class By, is simply the
hyperoctahedral group B,, of the signed permutations of order m.

The flag-major index, fmajw, and the flag-descent number, fdes w, of a
signed word w = x125 - - - T,, are defined by

fmajw := 2majw + neg w;
fdesw := 2desw + x(z1 < 0);
where “maj” and “des” are the usual major index majw = ), ix(x; >
xit1) and number of descents desw := ) . x(z; > xi41), and where
negw =3 ;x(z; <0) (1 <j<m).
To define the flag-inversion number, finvw, of a signed word w =
T1Zo -+ X, We use the traditional ‘nversion number

invw := Z Zx(x, > xj),

1<i<m—1i<j

invw := Z Zx(fi>x]~)

1<i<m—1 i<j

together with

and set

finvw := inv w + inv w + neg w.
It is important to note that the restriction finv |g, of the flag-inversion
number to each hyperoctahedral group B, is the length function .

Adin, Brenti and Roichman [ABRO1] proved that “fmaj” and “¢” were
equidistributed on each hyperoctahedral group B,,:

fmajw - 2)
> g ST gt e

weB, w€EB,
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It was then very tantalizing to construct a bijection ¥ of B,, onto itself
such that fmajw = ¢ ¥ (w). However, let

fmajBn(q’ Z) — Z quaijnegw, ﬁann(Q7 Z) — Z qﬁnvanegw.
weB, weBy,

Then, we can calculate those polynomials in the form:

nv q?qn

i Bn(Q7Z>:(_ZQQQ>nﬁ;
hai 14 qZ\"
“5,(0,2) = (s (1)

We see that "™V B, (q, Z) # ™3 B, (¢, Z) as soon as n > 2. For instance,
the coefficient of ¢ in the first polynomial is (n — 1) and 0 in the second.
However, %V B, (¢,1) = ™3 B, (¢,1) = (¢%;¢*)n/(1 — @)™, as done above.
This shows that the transformation ¥ to be constructed cannot preserve
“neg” and will not be a banal extension of the second fundamental
transformation [Lo83] (chap. 10) valid for unsigned words.

Still, as done in [1], such a transformation ¥ could be constructed,
having the following properties:

(a) fmajw = finv ¥(w) for every signed word w;

(b) the restriction of ¥ to each rearrangement class By, of signed
words is a bijection of By, onto itself, so that “fmaj” and “finv” are
equidistributed over each class By,

It is also shown that ¥ preserves the lower records of each signed word
(also called “strict right-to-left minima” ), a property that is fully exploited
in the subsequent paper [2]. It also preserves the so-called inverse ligne
of route.

Let

1, if ¢ and j are both even;

Z, if i and j are both odd;
Z, - {
0, if ¢ and j have different parity.

This allowed us to calculate the expansion of the infinite product (see [3],
formula (4.3))

I —— -

0,550 —uZijqi ¢ ">0 (475 67)n (QQ7QQ> )

Bn(Ql?QQ? Z)7

where the coefficient B,, (ql, G2, Z) is the generating polynomial

2 : fmajw fmaJ w neg w
B QI Q27 q 2 Z & ’
weB,
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together with the expansion of the graded form of that infinite product
(see [3], Theorem 1.1), namely,

> a1 :

_ g
r>0,r>0 0§i§r,0§j§sl uZijq1q;

3. Fixed points. It is readily seen that the polynomials B, (Yp, Y1, Z)
(n > 0) defined by

Z u” exp(u(Yp +Y12))

(3.1) —Bn(Yo,Y1,2) = (1-u(l+2)  x exp(u(l + 2))

n>0

are generating functions for the hyperoctahedral groups B, by a certain
three-variable statisticc. When Z = 0, the variable Y; vanishes and we
recover the generating function for the symmetric groups by the number
of fixed points “fix”:

(3.2) 3 % S v = (1 - )t O200)

n>0 = oce6, exp(u)

Accordingly, the variable Y7 must take another kind of fixed point into

account. If w = z129---x, is a signed permutation, let fix* w (resp.
fix~ u_;) be the number of ¢ such that 1 < ¢ < n and z; = i (resp.
x; =1 = —i). It is rather easy to prove
(3.3) Bn(Yo,Y1,2) = Y Y wyficw guesw,

weB,

As the g-analog of (3.2) has already been derived by Gessel and Reutenauer
[GeRe93] using the major index “maj,” it matters to g-analoguize (3.1)
by means of the flag-major index “fmaj” and also the length function “¢.”
The question is then to calculate the factorial generating functions for the
polynomials

fmajBn(q,Y(),Yl, Z) _ Z quaijOﬁx+w Ylﬁxfw gmegw.
weB,

In [4] we obtain

(3.4) Z@;‘T%fmaimq,yo,m,z)
S _<1—u1+qZ)_1X (4;¢%) e (—uq¥1Z;¢*)oo
B 1—¢? (uY0;¢%)o0  (—uGZ;¢?)s0

Y

together with its graded from (see [4] (1.9)).
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The g-analog of (3.1) using “¢” as a g-maker requires another combina-
torial interpretation for the polynomial B, (Yy, Y1, Z). Let w = x129 - - - 2y,
be a word, all letters of which are integers without any repetitions. Say
that w is a desarrangement if 1 > x9 > --- > xo and w9 < xor41 for
some k > 1. By convention, x,4+; = 0o. The notion was introduced by
Désarménien [De84]. Let w = x129- -z, be a signed permutation. Un-
less w is increasing, there is always a nonempty right factor of w which is
a desarrangement. It then makes sense to define w? as the longest such a
right factor. Hence, w admits a unique factorization w = w~wTw?, called
its pized factorization, where w™ and w™ are both increasing, the letters
of w™ being negative, those of wT positive and where w? is the longest
right factor of w which is a desarrangement. For example, the pixed fac-
torization of the following signed permutation is materialized by vertical
bars: w =53 | 1|42. Let pix_ w := Aw™ and pix" w := Aw™.

If ‘Bn(q, Yo, Y1,Z) == S ¢twYPX wyPX W gmesw the second g-

weB,
analog of (3.1) by the g-maker “¢” reads ([4], Theorem 1.2)

35 > ( “

= (=Z24:0)n (6:9)n

(1= ) (g (3 C0 N0k W)y,

1—q = (Z260)n (g0)n

n

KBTL(CL Y07 Yl: Z)

One specialization of (3.4) is worth mentioning. Let d,, be the number
of permutations ¢ € &,, such that fixc = 0, also called derangements.
Then

dy= Y (2k)(2k+2)n_ok_1 + x(n even).

2<2k<n—1

Thus, d,, is an explicit sum of positive integers. To the best of the authors’
knowledge such a formula has not appeared elsewhere.

4. The statistics “maf” and “maz”. If ¢ = o(1)0(2)---0(n)
is a permutation, let (j1,j2,...,Jm) be the increasing sequence of the
integers k such that 1 < k <n and o(k) # k and “red” be the increasing
bijection of {ji,jo2,...,jm} onto {1,2,...,m}. The word w = x129 -z,
derived from o = o(1)0(2) - - - o(n) by replacing each fixed point by 0 and
each other letter o(jx) by red o(j) will be denoted by ZDer (o). Also let

DESo:={i:1<i<n-—1,0(d) >0o(i+1)}
DEZo := {Z 1<i<n—-1,2; > xi—l—l};
Dero :=redo(j1) redo(ja) --- red o(jm);
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so that Der o is the word derived from ZDer(o) by deleting all the zeros.
Besides “maf” that was introduced in [CHZ97] we found it convenient to
have another statistic “maz”. Their definitions are the following:

maf o := Z 71— Z 1 + maj Der o;

i,0(1)=1 1<i<lfixo

maz o := majZDero; dezo := desZDero.

For instance, for c = 821356497, we have ZDer(c) =501200364,
Dero = 512364, fixc = 3 and mafoc = (2+5+6) — (1 +2+ 3) +
maj(512364) =7+ 6 = 13. Also mazo =1+4+8 = 13.

It is quite unexpected that “maf,” “maz” and “maj” are equidistributed
over &,,. Much more is proved in [6], where we construct two bijections
® and F3 of G,, onto itself having the following properties:

(fix, DEZ, exc) o = (fix, DES, exc) ®(0);

(fix, maz, exc) o = (fix, maf, exc) F5(o);

for every o from &,,.

In [7] composing several other bijections with the new ones ® and Fj
we show that several multivariable statistics are equidistributed either
with the triplet (fix, des, maj), or the pair (fix, maj).

In [10] the equidistribution of (fix, DEZ, exc) with (fix, DES, exc) over
S, enables the two authors to give an immediate proof of a conjecture by
Stanley [St06] on alternating permutations. In fact, they prove a stronger
result dealing with permutations with a prescribed descent set.

5. A quadruple distribution. The distribution of the vector
(exc, des, maj, fix) over &,, had not been calculated before. Several mar-
ginal distributions were known. Let

(5.1)  An(s,t,q,Y) = Y seoplesogmaioyfixe (n > ),
€6,

The distribution of the three-variable statistic (des, maj, fix) had been
calculated by Gessel and Reutenauer [GeRe93] in the form
(5.2) > An(1,t,q,Y)

1 (u;q) r+1
n>0 Ztr( Z ) UY q r+1

Shareshian and Wachs [ShWa07] obtained the distribution of the three-
vector (exc, maj, fix) in the form

(1 =sq)eq(Yu)
I Y T e )

th—l—l
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where e, (u) is the g-exponential > -, u"/(q; ¢),. We were then convinced
that a graded form of (5.3) was to be discovered, which would also be an
extension of (5.2). This was achieved by calculating the distribution of the
vector (exc, des, maj, fix) over &,,, which reads [8]:

(1 —sq) (u; q)r (usq; q)r
ATL 87 t? b tr
Z ( q n—|—1 Z u q : ;

n>0 r>0 - SQ<USQ7 Q)r)(U'Y? Q)T-i-l '

As already explained in Section 1 the derivation was made in two steps,
first showing that the fraction on the right-hand side was a generating
function for words by an appropriate statistic, then using the Gessel-
Reutenauer standardization.

An interesting specialization yields the distribution of the pair of the
two Fulerian statistics “exc” and “des” over &,, in the form:

u” - 1—s
Z An(s,t, 1, 1)m = Zt (1 — U)T'H(l _ us)—T — 8(1 — u)

n>0 r>0

6. A sextuple distribution. Since the distribution of the vector
(fix, exc, des, maj) over &,, could be derived, it was natural to look for an
extension of this result for the hyperoctahedral group B,,. The polynomial

. + —
Bn(S,t, q, YO, Yl, Z) — § :Sfexcwtfdesw quajw Yoﬁx w lﬁx w 7negw
weB,

had to be considered, introducing a new variable “fexc” defined for each
signed permutation w = z1x2 - - -z, by

fexcw := 2 Z x(z; > 1) + negw,
1<i<n—1

which is known to be equidistributed with “fdes.”

t
Bn(S, 1,(],Y0,Y1, Z) - Bn(s7taqa Y07Y17Z)

S S
. Z=0
Bn(lalaQ7Y07Y1>Z) Bn(17taqa OaYIaZ)
Z=0
An(s,1,q,Y) An(s,t,q,Y)
Z=0 t
s Z=0
S
An(1,1,4,Y) An(1,t,q,Y)

Fig. 1

-11-
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The diagram of Fig. 1 shows that the polynomials written in roman can
be obtained from the polynomial Ba(s,t,q,Yo,Y1,Z) written in boldface
by giving certain variables specific values. For instance, the polynomial
An(s,t,q,Y) (defined in (5.1)) is simply B, (sY/2,t/2,¢'/2,Y,0,0). More
importantly, all the generating functions for those polynomials are true
specializations of the generating function derived for the polynomials
Bn(s,t,9,Y0,Y1,Z).

The factorial generating function in question is the following

un

(]- + t>Bn(S7 ta q, Y07 Y17 Z>7
nzz:o (t%5¢*)nt1

r - Y Z; 2 r
ZtT L/2J+1 (—usq¥s g Jir+1/2) Fr(u;s,q,7),
UYO, \_T/2J+1 (—usqZ;q )L(r+1)/2J

where
Fy(u;s,q,2)
B (us®q*;¢%) |ry2) (1 = 52¢%) (u; @) |(r41) /2] (45 G°) | )2)
(U5 6%) 17 /2) 41 ((U; @%) 41y /2) (6 62 /2] — 8262 (us®q%; %) [ /2))

+ 597 (u; 6%) /21 (W ¢°) (1) /2) — (s’ qz)L(r+1)/2J)>'
This derivation is the main result of our paper [5].

7. Our Ur-result. Our last paper [9] may be regarded as our funda-
mental result, as we explicitly calculate a generating function for words by
a statistic that involves siz sets of variables (X)), (Y2), (Z:), (T7), (Y)), (T})
(i > 0). Without getting into details, say that the weight 1 (w) of each
word w includes variables referring to decreases, descents, increases, rises
and records. Let C be the (r + 1) x (r 4+ 1) matrix

O X1 X2 Xr_l Xr
1-2y 1-25 1-Z,1 1-2,
YO 0 X2 Xr—l Xr
1-1Ty 1-2, 1-Z,.1. 1-2,
YO Y1 0 Xr—l Xr
c_|1-Tw 1-T 1—Z,y 1-2Z,
YO Yl Y2 0 Xr
1-Ty 1-T77 1-15 1-2,
YO Y1 Y2 Yr—l 0

1-T, 1-T, 1-T,  1-T._,
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We prove that the generating function for the set [0, 7]* by the weight v

is given by ,

L0+ =)
> ¢<w>:°-’—det(1_ &

wel0,r]*

where I is the identity matrix of order (r + 1).

The basic techniques of proof are the traditional MacMahon Master
Theorem, together with the first fundamental transformation for words.
The specializations are numerous, in particular in g-series Calculus, for
instance,

(U’S; Q)T-I-l
Z Sdec wRinrec wu)\wqtotw _ <UR(7§;T+)1 )
wel0,r]* 1 —Z 4 Lusq!
0<i<r (us q):

We can then use the g-telescoping argument provided by Krattenthaler

(us; @)

l
usq’ =
(w; @)1 1—sq

sq ((US;QM+4,_ (us; q); ) (1<i<r)

(u; @) (u5q)1-1

to reprove identity (1.3).

-13-
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SIGNED WORDS AND PERMUTATIONS, I;
A FUNDAMENTAL TRANSFORMATION

DOMINIQUE FOATA AND GUO-NIU HAN

This paper is dedicated to the memory of Percy Alexander MacMahon.

ABSTRACT. The statistics major index and inversion number, usually defined
on ordinary words, have their counterparts in signed words, namely the so-
called flag-major index and flag-inversion number. We give the construction
of a new transformation on those signed words that maps the former statistic
onto the latter one. It is proved that the transformation also preserves two
other set-statistics: the inverse ligne of route and the lower records.

1. INTRODUCTION

The second fundamental transformation, as it was called later on (see [16],
chap. 10 or [15], ex. 5.1.1.19), was described in these proceedings [8]. Let w =
Z1Tg...T, be a (finite) word, whose letters x1, x3, ... , x,, are integers. The
integer-valued statistics Inversion Number “inv” and Major Indexr “maj” attached
to the word w are defined by

(1.1) invw := Z Zx(xz >z}

1<i<m—1 i<j

(1.2) majw := Z ix(zi > xit1);
1<i<m—1

making use of the y-notation that maps each statement A to the value y(A) =1
or 0 depending on whether A is true or not.

If m = (mqy,ma,...,m,) is a sequence of r nonnegative integers, the rearrange-
ment class of the nondecreasing word 1™12™2 ... r™r that is, the class of all the
words than can be derived from 1122 . . r™r by permutation of the letters, is
denoted by Ry,. The second fundamental transformation, denoted by ®, maps each
word w on another word ®(w) and has the following properties:

(a) majw = inv ®(w);
(b) ®(w) is a rearrangement of w and the restriction of ® to each rearrangement
class Ry, is a bijection of Ry, onto itself.

Further properties were proved later on by Foata, Schiitzenberger [10] and Bjorner,
Wachs [5], in particular, when the transformation is restricted to act on rearrange-
ment classes Ry, such that m; = --- =m, = 1, that is, on symmetric groups G,..
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The purpose of this paper is to construct an analogous transformation not simply
on words, but on signed words, so that new equidistribution properties on classical
statistics, such as the (Coxeter) length function (see [7, p. 9], [14, p. 12]), defined
on the group B, of the signed permutations can be derived. By signed word we
understand a word w = x1xs . ..x,,, whose letters are positive or negative integers.
If m = (mq, ma,...,m,) is a sequence of nonnegative integers such that m; +msy +
<-4+ m, = m, let By, be the set of all rearrangements w = x125...x,, of the
sequence 1™12™2  r™r with the convention that some letters ¢ may be replaced
by their opposite values —i. For typographical reasons we shall use the notation

1 := —1% in the sequel. The class By, contains 2™ (ml m;" mr) signed words. When
mp =mg = ---=m, = 1, m = r, the class By, is simply the group B,, of the

signed permutations of order m.
Next, the statistics “inv” and “maj” must be adapted to signed words and cor-
respond to classical statistics when applied to signed permutations. Let

(@:4) __{1, if n=0;
= 1-w)(l-wq) ... (1—wg"™Y), ifn>1;

denote the usual g-ascending factorial in a ring element w and

{m1+-~-+mﬂ (G Dmittm,
my,...,Mr |, (QQQ)m1"'<q;q)mr

be the g-multinomial coefficient. Back to MacMahon [17, 18, 19] it was known that
the above g-multinomial coefficient, which is the true g-analog of the cardinality
of R, was the generating function for the class Ry, by either one of the statistics
“inv” or “maj.” Consequently, the generating function for By, by the new statistics
that are to be introduced on By, must be a plausible g-analog of the cardinality

of By,. The most natural g-analog we can think of is certainly (—g¢; q) [%j’t;n’“} ,
e L g

that tends to 2™ ("E;FJ;’;“) when ¢ tends to 1. As a substitute for “inv” we are led
to introduce the following statistic “finv,” called the flag-inversion number, which

will be shown to meet our expectation, that is,

(1.3) (—q;q)m{m1+"'+mT]q= > g

my,... My weB
m

This identity is easily proved by induction on r. Let w = z122...2,, be a signed
word from the class By,. To define finvw we use “inv” defined in (1.1), together
with
(1.4) vw:= Y Y x@>u)

1<i<m—1 i<j
and define
(1.5) finvw := invw + invw + Z x(z; <0).

1<j<m

The salient feature of this definition of “finv” is the fact that it does mot involve
the values of the letters, but only the comparisons between letters, so that it can be
applied to each arbitrary signed word. Moreover, the definition of “finv” is similar
to that of “fmaj” given below in (1.7). Finally, its restriction to the group B,, of
the signed permutations is the traditional length function:

(1.6) finv| , =/
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This is easily shown, for instance, by using the formula derived by Brenti [6] for the
length function ¢ over B,,, that reads.

lw=invw + Z |z;| x(x; <0).

1<j<m

Next, the statistic “maj” is to be replaced by “fmaj”, the flag-major index,
introduced by Adin and Roichman [1] for signed permutations. The latter authors
(see also [2]) showed that “fmaj” was equidistributed with the length function ¢
over B,,. Their definition of “fmaj” can be used wverbatim for signed words, as well
as their definition of “fdes.” For a signed word w = x1x5...x, those definitions
read:

(1.7) fmajw := 2majw + Z x(z; <0);
1<j<m
(1.8) fdesw := 2desw + x(x1 < 0);

where “des” is the usual number of descents desw := ), x(x; > xi+1). We postpone
the construction of our transformation ¥ on signed words to the next section. The
main purpose of this paper is to prove the following theorem.

Theorem 1.1. The transformation ¥ constructed in section 2 has the following
properties:
(a) fmajw = finv ¥(w) for every signed word w;
(b) the restriction of ¥ to each rearrangement class Bm of signed words is a
bijection of By onto itself, so that “fmaj” and “finv” are equidistributed over
each class By, .

Definition 1.1. Let w = z125...x, € By be a signed word. We say that a
nonnegative integer ¢ belongs to the inverse ligne of route, lligne w, of w, if one of
the following two conditions holds:

(1) i =0, my > 1 and the rightmost letter x; satisfying |zy| = 1 is equal to 1;
(2) i >1,m; = m;y1 = 1 and the rightmost letter that belongs to {i,4,i+1,7 + 1}
is equal to 7 or ¢z + 1.
For example, with w =441325567 we have: Ilignew = {0, 2, 6}.

Remark. The expression “line of route” was used by Foulkes [11,12]. We have
added the letter “g” making up “ligne of route,” thus bringing a slight touch of
French. Notice that 0 may or may not belong to the inverse ligne of route. The
ligne of route of a signed word w = x1x3 . ..x,, is defined to be the set, denoted by
Lignew, of all the ¢’s such that either 1 <i¢ <m —1 and z; > x;41, or ¢ = 0 and

1 < 0. In particular, majw = >  ix(¢ € Lignew). Finally, if w is a signed
0<i<m—1

permutation, then Ilignew = Lignew™!. For ordinary permutations, some authors
speak of descent set and descent set of the inverse, instead of ligne of route and
inverse ligne of route, respectively.

Theorem 1.2. The transformation ¥V constructed in section 2 preserves the inverse
ligne of route:
(c) Tligne ¥(w) = Ilignew for every signed word w.

-17 -
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Definition 1.2. Let w = x1x2...x,, be a signed word of length m. A letter x;
is said to be a lower record of w, if either i =m, or 1 <i <m —1 and |z;| < |z}
for all j such that i +1 < j < m. When reading the lower records of w from left
to right, we get a signed subword x;, x;, ...x;,, called the lower record subword,
denoted by Lower w, which has the property that: min; x; = |z, | < |24, < -+ <
|z;,.| = |zm|. The notion of lower record is classical in the statistical literature. In
combinatorics the expression “strict right-to-left minimum” is also used.

With our previous example w = 441325567 we get Lowerw = 12567. Our
third goal is to prove the following result.

Theorem 1.3. The transformation ¥ constructed in section 2 preserves all the
lower records:
(d) Lower ¥(w) = Lower w for every signed word w.

For each signed permutation w = x1z2 ... 2, let

(1.11) ifmajw:=2 Y  ix(j €llignew)+ » x(z; <0);

1<j<m 1<j<m
(1.12) ifdesw := 2 Z x(j € llignew) + x(z; = —1 for some 7).
1<jsm

It is immediate to verify that

finvw = finvw™!, ifmajw = fmajw™!, ifdesw = fdesw™?!,

where w~! denotes the inverse of the signed permutation w (written as a linear
word w™l = w™l(1)...w™t(m)).
Let iw := w™!'; then the chain
i v i

w — w1 — W — w3

fdes ifdes ifdes fdes
ifmaj fmaj finv finv
shows that the four generating polynomials 3 tfdeswgifmajw — §™gifdesw gfmajw

S pifdeswofinvew - apnq  Shfdeswofinve (4, ¢ B Y are identical. Their analytic ex-
pression will be derived in a forthcoming paper [9].

2. THE CONSTRUCTION OF THE TRANSFORMATION

For each signed word w = x125...x,, the first or leftmost (resp. last or right-
most) letter z1 (resp. x,,) is denoted by F(w) (resp. L(w)). Next, define s; w :=
T1Z2...T,. The transformation s; changes the sign of the first letter. Together
with s; the main ingredients of our transformation are the bijections v, and ¢,
defined for each integer x, as follows.

If L(w) <z (resp. L(w) > x), then w admits the unique factorization

(Ulyh V2Yy2, . . . 7Upyp)7

called its x-right-to-left factorisation having the following properties:
(i) each y; (1 <i < p)is a letter verifying y; < x (resp. y; > x);
(ii) each v; (1 < ¢ < p) is a factor which is either empty or has all its letters
greater than (resp. smaller than or equal to) x.
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Then, ~, is defined to be the bijection that maps w = viy1v2y2 . .. vpy, onto the
signed word

(2.1) Yz (W) 1= Y101Y202 . . . YpUp.

In a dual manner, if F'(w) > = (resp. F(w) < z) the signed word w admits the
unique factorization
(z1w1, 22w2, . .. , ZqWq)

called its x-left-to-right factorisation having the following properties:
(i) each z; (1 <i < q) is a letter verifying z; > x (resp. z; < x);
(ii) each w; (1 < i < q) is a factor which is either empty or has all its letters less
than (resp. greater than or equal to) z.
Then, J, is defined to be the bijection that sends w = zjw; 20wy . .. z;w, onto the
signed word

(2.2) Iz (w) == wrz1wa2s . .. We2g.
Next, if (v1y1,v2y2, - .., Ypvp) is the z-right-to-left factorization of w, we define
23 B (w) Oz Yo (W), if either T < y; < z,or z <y <7T;
2.3 2 (w) =
0z 81 Yz (w), otherwise.

The fundamental transformation ¥ on signed words that is the main object of
this paper is defined as follows: if w is a one-letter signed word, let ¥(w) := w;
if it has more than one letter, write the word as wx, where z is the last letter.
By induction determine W(w), then apply 3, to U(w) and define ¥(wx) to be the
juxtaposition product:

(2.4) U(wz) := f(¥(w)) z.

The proof of Theorem 1.1 is given in section 3. It is useful to notice the following
relation

(2.5) n<ze Lw) <z
and the identity

(2.6) U(wz) = V(w)x, whenever x < —max{|z;|} or z > max{|z;|}.

Ezample. Let w = 321343. The factorizations used in the definitions of -,
and 0z are indicated by vertical bars. First, U(3) = 3. Then

13] 2% 3 25 |3 23, so that U(32) = 32;
o s e _ _
1312] 2532 2% 32| —5 23, s0 that ¥(321) =231;
12131 22 |23]1] 321, so that ¥(3213) = 32
and U(32134) = 32134, because of (2.6);

o N
1312|134 2% |3]2]1]34] —=32143.
Thus, with w = 321343 we get U(w) = 321433. We verify that fmajw =

finv U(w) = 19, Iligne w = Iligne ¥(w) = {1}, Lower w = Lower ¥(w) = 13.

-19-
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3. PROOF OF THEOREM 1.1
Before proving the theorem we state a few properties involving the above sta-
tistics and transformations. Let |w| be the number of letters of the signed word w

and |w|s, be the number of its letters greater than x with analogous expressions
involving ths subscripts “> 2”7, “< 2” and “< z”. We have:

(3.1) fmajwzr = fmajw + x(z < 0) 4+ 2 |w| x(L(w) > x);
(3.2) finvwz = finvw + |w|s, + |w|<z + x(z < 0);

(3.3) finvy, (w) = finvw + |w|<; — |w| x(L(w) < x);

(3.4) finv 0, (w) = finvw + |w|>, — |w| x(F(w) > z).

Next, let y; denote the first letter of the signed word w”. Then

(3.5) finvsy w” = finvw” + x(y1 > 0) — x(y1 < 0);

(3.6) [s1 0”50 = [w”|5e + x(@ > 0)(x(y1 <T) — x(z < 1))

+x(x <0)(x(yh £ x) —x(T <))

Theorem 1.1 is now proved by induction on the word length. Assume that
fmajw = finv ¥(w) for a given w. Our purpose is to show that

(3.7) fmajwz = finv U(wx)

holds for all letters x. Let w’ = W¥(w), so that by (2.4) the words w and w’
have the same rightmost letter. Denote the z-right-to-left factorization of w’ by
(v1y1, ..., VpYp). By (2.3) the signed word v := [, (w’) is defined by the chain

(3.8) w' =v vy 2w =y Vp = 21W7 - . . ZqW
. =V1Y1-.-Up¥Yp =Y1V1 ... YpUp = Z1W1 . . . Z2¢gWq
oz
— UV =W121 ... WyZ¢q
if either * < y; <z, or x < y; <7, and by the chain
I Ve "
(3.9) w =01y .. VY —— W = Y101 L Yptp
S1 "o — _
—— W =Y U1 .. YpUp = Z1WT . . . ZqWy

6_
— U = W2 - Wk,

otherwise. Notice that (zjwy, ..., z,w,) designates the Z-left-to-right factorization
of w” in chain (3.8) and of w”’ in chain (3.9).

(i) Suppose that one of the conditions T < y; < z, x < y; < T holds, so that
(3.8) applies. We have

finv U(wx) = finver = finvoe + |v|s, + |v|<z + x(z < 0) [by (3.2)]
finvo = finv dz(w”) = finvw” + |w”|>z — |w”| x(F(w") > ) [by (3.4)]
finvw” = finvy, (w') = finve’ + Jw'|<p — || x(L(w') < ) [by (3.3)]
finvw’ = fmajw [by induction]
fmajw = fmajwz — x(z < 0) — 2|w| x(L(w) > x). [by (3.1)]

By induction,
(3.10) L(w) = L(w') and x(L(w'") > z) =1 — x(L(w') < z).
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Also F(w"”) = y1. As w', w”, v are true rearrangements of each other, we have
V>0 + W<z = [wl, [v]<z + [w"|>7 = |w|. Hence,

finv ¥(wx) = fmajwzx + |w|[x(L(w'") < z) — x(y1 > 7).

By (2.5), if T < y; < x holds, then L(w’) < z and the expression between brackets
is null. If z < y; < T holds, then L(w’) > = and the same expression is also null.
Thus (3.7) holds.

(ii) Suppose that none of the conditions T < y; < x, * < y; < T holds, so that
(3.9) applies. We have

finv ¥(wz) = finvor = finvoe + |v|s, + [v]<z + x(z < 0) [by (3.2)]
finvo = finv oz(w”") =finvw"” + |0’ |5z — [0"'| x(F(w"") > Z) [by (3.4)]
finvw"” = finvs; w”’ = finvw” + x(y1 > 0) — x(y1 < 0) [by (3.5)]
finvw” = finv vy, (w') = finvw’ + |w'|<; — |w'| x(L(w') < z) [by (3.3)]
finvw’ = fmajw [by induction]
fmajw = fmajwz — x(z < 0) — 2 |w| x(L(w) > x). [by (3.1)]

X(L(w') < z) = x(L(w) < x). As v and w””’ are rearrangements of each other, we
have |v|<z + |w”'|>z = |w|. Using (3.6) since |v]|s, = |w"'|>z = [s1w”|>, we have:

Moreover, F(w") = 7,, so that x(F(w") > %) = x(y; > T) = x(y1 < x) =

finv U(wz) = [w”|>z + x(z > 0)(x(y1 <T) — x(= < y1))

+x(@ <0)(x(y1 <) = x(T <y1)) +x(z <0)
+ |w| = |w| x(y1 < x) +x(y1 > 0) — x(y1 <0)
+ W'l <o = [w'[ x(y1 < 2)
+ fmajwx — x(x < 0) — 2 |w| + 2|w| x(11 < z)

= fmajwz + x(z > 0)(x(y1 <T) — x(x < 1))
+x(x <0)(x(yh <) —x(@ < 1))
+x(y1 > 0) — x(y1 <0)

= fmaj wz,

for, if none of the conditions T < y; < x, x < y; < T holds, then one of the following
four ones holds: (a) y1 > > 0; (b)y; > >0;(¢c) y1 <z <0; (d) y; <z <0
and in each case the sum of the factors in the above sum involving x is zero.

The construction of W is perfectly reversible. First, note that s; is an involution
and the maps ~,, dz send each class By, onto itself, so that their inverses are
perfectly defined. They can also be described by means of left-to-right and right-to-
left factorizations. Let us give the construction of the inverse ¥=! of W. Of course,
U—1(v) := v if v is a one-letter word. If vz is a signed word, whose last letter
is x, determine v’ := 6_"(v) and let z; be its first letter. If one of the conditions
T <z <zorax< z <7Tholds, the chain (3.8) is to be used in reverse order,
so that W~ (vz) := (U141 -1 (v))x. If none of those two conditions holds, then
U (vx) := (T y sy 621 (). O

-21 -
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4. PROOFS OF THEOREMS 1.2 AND 1.3

Before proving Theorem 1.2 we note the following two properties.

Property 4.1. Let I, ={i € Z :i < —|x|} (resp. J, ={i € Z : —|x| < i < |z|},
resp. K, = {i € Z : |z| < i}) and w be a signed word. Then, the bijections 7, and
dz do not modify the mutual order of the letters of w that belong to I, (resp. J,
resp. K, ).

Proof. Lety € I, and z € I, (resp.y € J, and z € J,, resp. y € K, and z € K,) be
two letters of w with y to the left of z. In the notations of (2.1) (resp. of (2.2)) both
y, z are, either among the y;’s (resp. the z;’s), or letters of the v;’s (resp. the w;’s).
Accordingly, y remains to the left of z when v, (resp. dz) is applied to w. U

Property 4.2. Let w = x122...2, € Bm be a signed word and i be a positive
integer such that m; = m;y1 = 1. Furthermore, let © be an integer such that
x & {i,i,i+ 1,5+ 1}. Then the following conditions are equivalent:

(a) i € llignew; (b) i € llignesyw; (c) i € lligney,w; (d) i € Iligne dzw.

Proof. (a)<(b) holds by definition 1.1, because s; has no action on the rightmost
letter belonging to {i,7,7 + 1,7+ 1}. For the other equivalences we can say the
following. If the two letters of w that belong to {i,7,i+ 1,7 + 1} are in I, (resp. J,,
resp. K, ), Property 4.1 applies. Otherwise, if i € Ilignew, then w is either of the
foorm ...i+1...¢... or ...7...i+1... and the order of those two letters
is immaterial. U

Theorem 1.2 holds for each one-letter signed word. Let w = z122...2,, € Bm
be a signed word, x a letter and 7 a positive integer. Assume that Ilignew =
ligne ¥ (w).

If z = 4, then ¢ € Ilignewxz if and only if w contains no letter equal to +i
and exactly one letter equal to +(i + 1). As 5,V (w) is a rearrangement of w with
possibly sign changes for some letters, the last statement is equivalent to saying
that 5,V (w) has no letter equal to +i and exactly one letter equal to +(i+1). This
is also equivalent to saying that i € Iligne 8, ¥ (w)x = Iligne ¥(wz). In the same
manner, we can show that

if # =7+ 1, then i € llignewx if and only if ¢ € Iligne ¥ (wz);

if z = 1, then i € llignhewx and i & Tligne ¥ (wx);

if v =i+ 1, then i ¢ llignewz and i ¢ lligne ¥ (wx).

Now, let i be such that none of the integers i, i + 1, i, i + 1 is equal to z. There
is nothing to prove if m; = m;y; = 1 does not hold, as ¢ does not belong to
any of the sets Iligne w, Iligne 3, ¥ (w). Otherwise, the result follows from Property
4.2 because V¥ is a composition product of 3., s; and ~z. Finally, the equivalence
[0 € Iligne B, (w)x] < [0 € Iligne wz] follows from Proposition 4.1 when |z|> 1 and
the result is evident when |z|=1. O

The proof of Theorem 1.3 also follows from Property 4.1. By definition the lower
records of wx, other than x, belong to J,. As the bijections 7, and dz do not
modify the mutual order of the letters of w that belong to J,., we have Lower wz =
Lower (3, (w)z when the chain (3.8) is used. When (3.9) is applied, so that y; & J,,
we also have z; = 7, € J,. Thus, neither y;, nor z; can be lower records for each
word ending with z. Again, Lower wx = Lower (3, (w)x. O
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5. CONCLUDING REMARKS

Since the works by MacMahon, much attention has been given to the study of

statistics on the symmetric group or on classes of word rearrangements, in particular
by the M.LT. school ([25, 26, 27, 13, 6]). It was then natural to extend those
studies to other classical Weyl groups, as was done by Reiner [20, 21, 22, 23, 24|
for the signed permutation group. Today the work has been pursued by the Israeli
and Roman schools [1, 2, 3, 4]. The contribution of Adin, Roichman [1] has been
essential with their definition of the flag major index for signed permutations. In
our forthcoming paper [9] we will derive new analytical expressions, in particular
for several multivariable statistics involving “fmaj,” “finv” and the number of lower

records.
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Dans la théorie de Morse, quand on veut étudier
un espace, on introduit une fonction numérique; puis
on aplatit cet espace sur I'axe de la valeur de cette
fonction. Dans cette opération d’aplatissement, on crée
des singularités de la fonction et celles-ci sont en
quelque sorte les vestiges de la topologie qu’on a tuée.

René Thom, Logos et Théorie des catastrophes, 1982.

Dedicated to Richard Stanley,
on the occasion of his sixtieth birthday.

Abstract

As for the symmetric group of ordinary permutations there is also a statistical
study of the group of signed permutations, that consists of calculating multi-
variable generating functions for this group by statistics involving record values
and the length function. Two approaches are here systematically explored, us-
ing the flag-major index on the one hand, and the flag-inversion number on the
other hand. The MacMahon Verfahren appears as a powerful tool throughout.

1. Introduction

The elements of the hyperoctahedral group B, (n > 0), usually called signed
permutations, may be viewed as words w = z1x5 . ..x,, where the letters x; are positive
or negative integers and where |z1||z2| ... |z,| is a permutation of 12 ... n (see [Bo68|
p. 252-253). For typographical reasons we shall use the notation 7 := —i in the sequel.
Using the y-notation that maps each statement A onto the value x(A4) = 1 or 0
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depending on whether A is true or not, we recall that the usual inversion number,
inv w, of the signed permutation w = x5 ...x, is defined by

invw := Z ZX(% > zj).

1<j<n i<y
It also makes sense to introduce
invw = Z Zx(fz > xj),
1<j<n i<j
and verify that the length function (see [Bo68, p. 7], [Hu90, p. 12]), that will be denoted
by “finv” (flag-inversion number) in the whole paper, can be defined, using the notation
negw:= >, x(z; <0), by
1<j<n . —
finvw := invw + inv w + neg w.
Another equivalent definition will be given in (7.1). The flag-major index “fmaj” and
the flag descent number “fdes” were introduced by Adin and Roichman [ARO1] and
read:
fmajw := 2majw + neg w;
fdesw := 2desw + x(x1 < 0);

where majw := >, jx(x; > x;+1) denotes the usual major index of w and desw the
number of descents desw := Zj x(xj; > xj41).

Another class of statistics needed here is the class of lower records. A letter x;
(1 < i < n) is said to be a lower record of the signed permutation w = z1xs...T,,
if |z;| < |z;| for all j such that i +1 < j < n. When reading the lower records of w
from left to right we get a signed subword, called the lower record subword, denoted by
Lower w. Denote the number of positive (resp. negative) letters in Lower w by lowerp w
(resp. lowern w).

In our previous paper [FoHa05] we gave the construction of a transformation ¥ on
(arbitrary) signed words, that is, words, whose letters are positive or negative with
repetitions allowed. When applied to the group B,, the transformation ¥ has the
following properties:

(a) fmajw = finv ¥(w) for every signed permutation w;
(b) W is a bijection of B,, onto itself, so that “fmaj” and “finv” are equidistributed
over the hyperoctahedral group B,;

(c) Lowerw = Lower ¥(w), so that lowerpw = lowerp ¥(w) and lowernw =
lowern ¥ (w).

Actually, the transformation W has stronger properties than those stated above, but
these restrictive properties will suffice for the following derivation. Having properties
(a)—(c) in mind, we see that the two three-variable statistics (fmaj, lowerp, lowern) and
(finv, lowerp, lowern) are equidistributed over B,,. Hence, the two generating polynomials

fmajBn(q, X, Y) — Z quanlowerp wylowernw
weB,

ﬁnVBn(an, Y) = Z qﬁnVXlowerP wYIOWGrnw
wEB,

THE ELECTRONIC JOURNAL OF COMBINATORICS 12 (2005), #R00



-27-

are identical. To derive the analytical expression for the common polynomial we have
two approaches, using the “fmaj” interpretation, on the one hand, and the “finv”
geometry, on the other. In each case we will go beyond the three-variable case, as
we consider the generating polynomial for the group B, by the five-variable statistic
(fdes, fmaj, lowerp, lowern, neg)

(11> fmajBn(t’ q,X, Y, Z) — Z tfdes wquaj leowerp wylowerannegw
weB,

and the generating polynomial for the group B, by the four-variable statistic
(finv, lowerp, lowern, neg)

(1 2) ﬁan (q XY Z) L Z qﬁnv leowerpwylowern w negw
. n I I ) A .
weB,

Using the usual notations for the g-ascending factorial

1, if n=0;
(1.3) (a5 ¢)n := { (1—a)(1—-aq)...(1—aqg"?t), ifn>1;
in its finite form and
(1.4) (a; Q) oo :=limy, (a;q), = 1;[0(1 —aq™);

in its infinite form, we consider the products

(= - 2v))..

()

(1.5) Hoo(u) ==

oo

in its infinite version, and

Z4+q—-2ZY(1—¢?) o
_ 1—¢° (u 1 —¢*+ug>t(Z+q)’ >s
11— +ugt(Z + q) (u Z+g9+X(1-¢%) | 2> ’

1— @2 +ug>t(Z+q)" " Js+1

(1.6) Hos(u):

as well as

(u Z4+q—2ZY(1—¢?) . 2)

9= @ +ug>t2(Zq+1)" 7 st

( (Z+q)+X(1-¢%) 2> ’
1—q?+ug?*t2(Zqg+1)" " /s+1

(17) H28_|_1(U) =

in its graded version under the form »_ t*H(u).
s>0
The purpose of this paper is to prove the following two theorems and derive several

applications regarding statistical distributions over B,,.
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Theorem 1.1 (the “fmaj” approach). Let ™%B,(t,q,X,Y,Z) be the generating
polynomial for the group B,, by the five-variable statistic (fdes, fmaj, lowerp, lowern, neg)
as defined in (1.1). Then

(18) Z<1+t) fmajBn(t7Q7X7Y7 Z)% = ZtSHS(U),
n>0 (t 3 4 )n+1 s>0

where Hg(u) is the finite product introduced in (1.6) and (1.7).

Theorem 1.2 (the “finv” approach). Let "™B, (¢, X,Y, Z) be the generating polyno-
mial for the group B,, by the four-variable statistic
(finv, lowerp, lowern, neg), as defined in (1.2). Then

(1.9) "™B,(¢,X,Y,2)=(X+q+ - +¢" " +¢"Z+ -+ 2Z+ Y Z)
X X+ g+ P+ EZ+ P Z+PY DX +q+ P2+ PYZ) (X +qY 7).

The proofs of those two theorems are very different in nature. For proving Theo-
rem 1.1 we re-adapt the MacMahon Verfahren to make it work for signed permutations.
René Thom’s quotation that appears as an epigraph to this paper illustrates the essence
of the MacMahon Verfahren. The topology of the signed permutations measured by the
various statistics, “fdes”, “fmaj”, ... must be reconstructed when the group of the
signed permutations is mapped onto a set of plain words for which the calculation of
the associated statistic is easy. There is then a combinatorial bijection between signed
permutations and plain words that describes the “flattening” (“aplatissement”) process.
This is the content of Theorem 4.1.

Another approach might have been to make use of the P-partition technique
introduced by Stanley [St72] and successfully employed by Reiner [Re93a, Re93b, Re93c,
Re95a, Re95b] in his statistical study of the hyperoctahedral group.

Theorem 1.2 is based upon another definition of the length function for B,, (see
formula (7.1)). Notice that in the two theorems we have included a variable Z, which
takes the number “neg” of negative letters into account. This allows us to re-obtain the
classical results on the symmetric group by letting Z = 0.

In the next section we show that the infinite product Hg(u) first appears as the gen-
erating function for a class of plain words by a four-variable statistic (see Theorem 2.2).
This theorem will be an essential tool in section 4 in the MacMahon Verfahren for
signed permutations to handle the five-variable polynomial ™2B,, (¢, q, X,Y, Z). Sec-
tion 3 contains an axiomatic definition of the Record-Signed-FEuler-Mahonian Polyno-
mials By(t,q,X,Y, Z). They are defined, not only by (1.8) (with B, replacing ™B,,),
but also by a recurrence relation. The proof of Theorem 1.1 using the MacMahon Ver-
fahren is found in Section 4. In Section 5 we show how to prove that the polynomials
fmajp (t,q,X,Y, Z) satisfy the same recurrence as the polynomials B,(t,q, X,Y, Z),
using an insertion technique. The specializations of Theorem 1.1 are numerous and
described in section 6. We end the paper with the proof of Theorem 1.2 and its special-
izations.
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2. Lower Records on Words

As mentioned in the introduction, Theorem 2.2 below, dealing with ordinary words,
appears to be a preparation lemma for Theorem 1.1, that takes the geometry of signed
permutations into account. Consider an ordinary word ¢ = cica...c,, whose letters
belong to the alphabet {0,1,..., s}, that is, a word from the free monoid {0, 1,..., s}*.
A letter ¢; (1 <i < mn) is said to be an even lower record (resp. odd lower record) of ¢, if
¢; is even (resp. odd) and if ¢; > ¢; (resp. ¢; > ¢;) for all j such that 1 < j <i—1. Notice
the discrepancy between even and odd letters. Also, to define those even and odd lower
records for words the reading is made from left to right, while for signed permutations,
the lower records are read from right to left (see Sections 1 and 4). We could have
considered a totally ordered alphabet with two kinds of letters, but playing with the
parity of the nonnegative integers is more convenient for our applications. For instance,
the even (resp. odd) lower records of the word c = 54415210403 are reproduced in
boldface (resp. in italic).

For each word c¢ let evenlower ¢ (resp. oddlower ¢) be the number of even (resp. odd)
lower records of ¢. Also let tot ¢ (“tot” stands for “total”) be the sum ¢y +co+- - -+c¢, of
the letters of ¢ and odd ¢ be the number of its odd letters. Also denote its length by |c| and
let |c|x be the number of letters in ¢ equal to k. Our purpose is to calculate the generating
function for {0,1,...,s}* by the four-variable statistic (tot, evenlower, oddlower, odd).

Say that ¢ = cica...cp, is of minimal index k (0 < k < s/2), if minc :=
min{cy,...,c,} is equal to 2k or 2k + 1. Let ¢; be the leftmost letter of ¢ equal to
2k or 2k 4 1. Then, ¢ admits a unique factorization

(2.1) c=dc;d,
having the following properties:
de{2k+2,2k+3,...,s}", ¢;j=2kor 2k+1, " € {2k, 2k+1,...,s}".

With the forementioned example we have the factorization ¢ = 544, ¢; = 1,
¢’ =5210403. In this example notice that ¢; =1 # minc = 0.

Lemma 2.1. The numbers of even and odd lower records of a word ¢ can be calculated
by induction as follows: evenlower ¢ = oddlowerc := 0 if ¢ is empty; otherwise, let
¢ = cc;c” be its minimal index factorization (defined in (2.1)). Then

evenlower ¢ = evenlower ¢ + x(¢; = 2k) + || 2x;
oddlower ¢ = oddlower ¢ + x(¢; = 2k + 1).

Proof. Keep the same notations as in (2.1). If ¢; = 2k, then ¢; is an even lower
record, as well as all the letters equal to 2k to the right of ¢;. On the other hand, there
is no even lower record equal to 2k to the left of ¢;, so that (2.2) holds. If ¢; = 2k + 1,
then c; is an odd lower record and there is no odd lower record equal to 2k + 1 to the

right of ¢;. Moreover, there is no odd lower record to the left of ¢; equal to c¢;. Again
(2.3) holds. []
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It is straightforward to verify that the fraction H,(u) displayed in (1.6) and (1.7)
can also be expressed as

1— u([ 2k+1(1 _ Y)Z+q2k+2 R q25—2 + q25—1Z+ qzs])
H28( >— H

(2.4) 1— u(@®X + @172 + @R +2 4 4 g% 2 4 2517 + ¢29])

0<k<s (
H 1— u(q2k+1(1 - Y)Z + [ 2k+2 IS q2s + q2s—|—1z])
u

2.5) Hoy, ;
( ) 2 +1(U) . 1 ( 2kX+q2k+1z+[ 2k+2—|—-~-—|—q25—|—q25+1Z])

where the expression between brackets vanishes whenever k = s, and that the Hq(u)’s
satisfy the recurrence formula

1 _1-ugZ(1-Y)

2. Ho(u) = ———; Hi(u) = d for s > 1
(2.6) o(u) 1 —ux’ 1(u) 1—u(X—|—qZ)’ and for s >
1—u(@l-NZ+@+@PZ+ +¢*>7 17+ ¢*
HZS(U) = (q< ) 2q 3q 2q_1 ;] )HQS_Q(U(]2);
1-—u(X +qZ+@P+ P72+ + ¢ 7+ ¢>)
1—w(g(l =YNZ+q2+¢3 7+ -+qg?5 +g2st17
H28_|_1(U) — <Q( ) q q q q )st_l(uq2).

l—uw(X+¢Z+ @+ @32+ +¢* +¢> T 2)

Theorem 2.2. The generating function for the free monoid {0,1,...,s}* by the four-
variable statistic (tot, evenlower, oddlower, odd) is equal to Hg(u), that is to say,

(27> Z u|c|qtot ¢ yevenlower cyroddlower ¢ yodde _ H, (’LL)
ce{0,1,...,s}*

Proof. Let H}(u) denote the left-hand side of (2.7). Then,

1

H( lelg0xlely0z0 — — —
0 Z Y 1 —uX

ce{0}~*

When s = 1 the minimal index factorization of each nonempty word c reads ¢ = ¢;c”,
so that

Hi(u) =1+u(X +qYZ) Z Ulculqlc//llX'C//|OYOZ|C”|1
c’€{0,1}~

1 1-wugZ(1-Y)
l—u(X +qZ) 1-u(X+qZ)

=1+uX+q¢YZ2)

Consequently, H(u) = Hq(u) for s =0, 1. For s > 2 we write

Hi(w)= ) Hi(u

with 0<k<s/2
* - |e| ,tot ¢ y-evenlower cyroddlower ¢ r7odd ¢
ar(u) = E u'“lg* ot X Y Z :
ce{0,1,...,s}™

min; ¢;=2k or 2k+1
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From Lemma 2.1 it follows that
H o(u) = Z ule| gtot e’ xevenlower ¢’ yroddlower e’ yodd ¢! o WX +qY Z)
c’€{2,...,s}* % Z u|c”|qtotc”X|c”|QZOddc”
¢’ €{0,...,s}*

_ Z (uq2)|c'|qtot c'Xevenlower C'Yoddlower c'Zodd C/X U(X + qYZ)
c’€{0,...,s—2}*

x> (X))l (ug 2)1 N (ug?) 2 (ug® Z) 171 (ugt) e

1
l—u(X+qZ+ @+ P2+ +-)

= H;_,(ug®)u(X + qY Z)

the polynomial in the denominator ending with ---+¢*"'Z +¢*or ---+ ¢ 1 +¢°Z
depending on whether s is even or odd.
On the other hand,

E H? (u) = § ulCl qtot chvenlower Cyoddlower cZodd c
s,k -
1<k<s/2 ce{2,3,...,s}*

— 2 : (qu) lc]| qtot chvenlower cyoddlower cZodd c
ce{0,1,...,s—2}*

:H;—z(uqz>-
u(X +qY2)
H :(1
s(u> +1—U(X+QZ+(]2+QSZ+Q4+
C1—u(@Z1-Y)+ @+ EZ+ ¢+ )
l-—u(X+q¢Z+@P+¢FZ+qt+-)

As the fractions H}(u) satisfy the same induction relation as the H,(u)’s, we conclude
that HY(u) = Hg(u) for all 5. []

Hence,

) a(ua?)

H;_Q(qu).

When s tends to infinity, then Hg(u) tends to Ho(u), whose expression is shown
in (1.5). In particular, we have the identity:

(28) Z u|c|qtot ¢ xevenlower cyroddlower ¢ zodde _ H,. (U) '
c€{0,1,2,...}*

3. The Record-Signed-Euler-Mahonian Polynomials

Our next step is to form the series > ., t*H,(u) and show that the series can be
expanded as a series in the variable u in the form

(3.1) N Cult, . XY, Z) g = > t°H,(u),

n>0 (% 4%)n1 $>0
where B, (t,q,X,Y,Z) = Cp(t,q,X,Y,Z)/(1 + t) is a polynomial with nonnegative
integral coefficients such that B, (1,1,1,1,1) = 2"n!.
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Definition. A sequence (Bn(t, ,X,Y,Z) = Y. t*B, (g, XY, Z)) (n > 0) of
k>0
polynomials in five variables ¢, ¢, X, Y and Z is said to be record-signed- Euler-Mahonian,

if one of the following equivalent three conditions holds:

(1) The (2, ¢?)-factorial generating function for the polynomials
(3.2) Cn(t,q, X,Y,Z):= (14 t)B,(t,q, X,Y, Z)

is given by identity (3.1).

(2) For n > 2 the recurrence relation holds:

(33) (1 - qQ)Bn<t7q7X7 Y7 Z)
Z(X(l — )+ (Zg+ @)1 - ") + ¢ (1 - qz)ZY> B,-1(t,q,X,Y, Z)

—5(1=t)g(1 +¢)(1 +tq)(1 + Z)Bp-1(tq,q, X, Y, Z)

+ 51 =t)q(1 —q)(1 —tq)(1 = Z)Bn-1(-tq,q, X, Y, Z),

DN = DN =

while Bo(t,q, X,Y,Z) =1, Bi(t,q,X,Y,Z) =X +tqY Z.
(3) The recurrence relation holds for the coefficients By, (¢, X,Y, Z):

(3.4) Boo(q, X, Y, Z)=1, Boi(q,X,Y,Z)=0 for all k # 0;
Bio(¢,X,Y,Z)=X, B11(¢,X,Y,Z)=qY Z,
Bi1x(q,X,Y,Z) =0 for all k #0,1;
Bnok(e, X, Y, 2)= (X +q¢Z+@+FZ 4+ +¢*)Bp_121(¢, X, Y, Z)
+¢*Bn_126-1(q,X,Y, Z)
(@ + T2+ + Y Z) B k20, XY, Z),
Bnoki1(¢, X, Y, 2)=(X+q¢Z+ @+ + ¢ + " 2)B 1 0841(¢, X, Y, Z)
+ " ZBy 1 0k(q, X, Y, Z)
+ (q2k+1Z + q2k—|—2 IS q2n—2 + q2n_1YZ>Bn_1,2k_1(q,X, Y, Z),

forn>2and 0<2k+1<2n-1.

Theorem 3.1. The conditions (1), (2) and (3) in the previous definition are equivalent.

Proof. The equivalence (2) < (3) requires a lengthy but elementary algebraic
argument and will be omitted. The other equivalence (1) < (2) involves a more elaborate
g-series technique, which is now developed. Let G (u) := H4(u?); then

1 1-u?qZ(1-Y)

Gl =7y W= 0x 7))
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o (u)_1—u2(q2(1—Y)+q2+q3Z+-~-+q2s‘1Z+q23)

25\%) = 1—RX+qZ+ @+ @2+ + @17+ ¢%)

1— 2 7(1-Y 2 3Z 2s 25+IZ

Gast1(u) = u{aZ( At i hadias s )G2s—1(UQ)7
1_u2<X+qZ+q2+q3Z++q25+q25+12)

for s > 1. Working with the series Y t*G4(u) we obtain
s>0

G25—2 (U’Q) 9

2s 2 Zq+q° q* 2
>t Go() (1= * (X + =5 — 125 (Za+ )

s Zqg+q¢* ¢
+3 ¢ +1G28+1(u)(1—u2(X+ e 2k
s>0

25+2

s(Zq+ 1)))

=1+t(1 —u?qZ(1-Y))
2s

Zg+q¢* ¢
125G, (1— 2(_q2Y _ Zq+ ¢2 )
+S§>1 Gas—a(qu) (1 —u*(—qZY + T Togl q+q))

+ Z t2T 1 Gos 1 (qu) (1 —u?(—qZY +

s>1

Zq+q2 q25—|—2

which may be rewritten as

> t°G () (1 — (X + Zlqjqf)) —14+t(1—u2qZ(1-Y))
s>0

T P/ 0)

s>0 1- q
Zq+ ¢
— Z(tq)Zs (st(u) _ t2q2G25(qu))u2 1q g
—q
s>0
. Zg+1
= D010 (vt (1) ~ P Cona(qu))w’a T
s>0

Now let anobn(t)u% 1= 5ot Gs(u). This gives:

S bn(t)u2”(1 —u2(X + Zlqjq‘f )) —1+t1—u2qZ(1 - Y))

VA 2
+an (2> u 2”(1—u2(—qZY—|— 1q_+qq2 )>
n>0

n(tq) +b n ni2 29 +¢*
_Z )(1—t2q2 —|—2> 2n—+2

n>0 1 ¢
—tq Zq+ 1
o Z )(1 . t2q2n—|—2> 2n+2q T
n>0 q
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1 X +tqY Z
We then have by(t) = =3 bi(t) = - t;_(ltq— 247 and for n > 2
n Zq+ ¢ e no2Zq4+q
bo()(1 — t2¢2") = <X+ - + 2Pl gy — 2Pl e )bn_l(t)
bn_l(tq) 2 9 bn—l(_tQ) 2 2
— = (1 — 2¢%M)g(1 14+ 7))+ 222 (1 — 2¢*")q(1 — q)(1 — 2).
2(1_612)( t“¢"")q(1+q)(1+ Z) + 2(1—q2)( t7q™")q(1 — g)( )

Because of the presence of the factors of the form (1 — #2¢®") we are led to introduce

the coefficients C,,(¢,q, X, Y, Z) := b, (t)(t?;¢*)nt1 (n > 0). By multiplying the latter
equation by (t2;¢?),, we get for n > 2

(3.5) (1 —¢*)Cp(t,q, X,Y, Z)

=<X(1 — )+ (Zg+ @)1 - ¢ ) + ¢ (1 - qz)ZY> Cr-1(t,q,X,Y, Z)

1
- _(]‘ - t2)Q(]— + Q>(1 + Z>Cn—1(tQ7Q7X7 Y7 Z)

=N

+ _(1 - tz)Q(l - Q>(1 - Z>Cn—1(_tQ7Q7X7 Yv Z)7

\)

while Cy(t,q, X, Y, Z)=1+t, Ci(t,q,X,Y,Z)=(14+t)(X +tqY Z).

Finally, with C,(t,q, X,Y,Z) := (1 +t)B,(t,q, X,Y, Z) (n > 0) we get the recur-
rence formula (3.3), knowing that the factorial generating function for the polynomials
Cn(t,q, X,Y,Z)= (14t)B,(t,q,X,Y, Z) is given by (3.1). As all the steps are perfectly
reversible, the equivalence holds. []

4. The MacMahon Verfahren

Now having three equivalent definitions for the record-signed-Euler-Mahonian
polynomial B,,(t,q, X,Y, Z), our next task is to prove the identity

(4.1) majp (t,q,X,Y,Z) = Bu(t,q,X,Y, Z).

Let N (resp. NIW(n)) be the set of all the words (resp. all the nonincreasing
words) of length n, whose letters are nonnegative integers. As we have seen in section 2
(Theorem 2.2), we know how to calculate the generating function for words by a certain
four-variable statistic. The next step is to map each pair (b, w) € NIW(n) x B,, onto
¢ € N" in such a way that the geometry on w can be derived from the latter statistic
on c.

For the construction we proceed as follows. Write the signed permutation w as the
linear word w = x1x2...x,, where ) is the image of the integer k (1 < k < n). For
each k = 1,2,...,n let zx be the number of descents in the right factor xxzgi1... 2,
and €, be equal to 0 or 1 depending on whether x; is positive or negative. Next, form
the words z = z129...2, and € = €165 ... €,.
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Now, take a nonincreasing word b = bibs...b, and define ar = bp + 2z,

¢, '=2ar+ €, (1 <k <n), then a:=ajaz...a, and ¢ := cjc,...c,,. Finally, form the
/ / /

two-matrix [ 1 2 "7 7). Its bottom row is a permutation of 12 ... n; rearrange

the columns in such a way that the bottom row is precisely 12 ... n. Then the word
¢ = c1¢z ... ¢, which corresponds to the pair (b, w) is defined to be the top row in the
resulting matrix.

Ezample. Start with the pair (b, w) below and calculate all the necessary ingredi-
ents:

b=1110000
w=6541732
2z=2111100
e=0110011
a=3221100
d=6552211
c=2115562

Theorem 4.1. For each nonnegative integer r the above mapping is a bijection of
the set of all the pairs (b,w) = (biba...by, x129...2,) € NIW(n) x B,, such that
2b1 + fdesw = r onto the set of the words ¢ = cica...c, € N™ such that maxc = r.
Moreover,

201 + fdesw = maxc¢;  2tot b+ fmajw = tot ¢;

(4.3) lowerp w = evenlower ¢; lowernw = oddlower ¢; negw = odd c.

Before giving the proof of Theorem 4.1 we derive its analytic consequences. First,
it is g-routine to prove the three identities, where by is the first letter of b,

= TR M

(45) {N:"Lz T e

bENIW(N), by <n

(4.6) + = Z u" Z g,

"
(@) N+1 n>0  bENIW(N), b <n

We then consider

1+t fmaj
m JBn(t7Q7X7Y7Z)7

where

fmaJBn<t, q, X, Y, Z) = § : 75fdes wquaj leowerpwylowern wZnegw,
weB,
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which we rewrite as

/ / + 7’ :
S e “){” } B (t,q, X, Y, Z) [by (4.4)]
>0 r q?
2 .
Zﬂ[”t /g/ ] fmaip (t.q, X, Y, 7) fand by (4.5)]
r>0 q?

— E :tr E : q2 tot b E : tfdeswquaj leowerpwylowerannegw
r>0  beNIW(n),2b1<r weB,

— § : s § : q2 tot b+fmaj leowerp wylowern w negw
s>0 beENIW (n), weB,,
2b1+fdes w<s

By Theorem 4.1 the set {(b,w) : b € NIW(n), w € B,, 2b; 4+ fdesw < s} is in bijection
with the set {0,1,...,s}™ and (4.2) and (4.3) hold. Hence,

1 +t maj s c venlower c WET C c
Wf B, (t,q, X,Y, Z) = Zt thot evenlower cyroddlower ¢ yodd ¢
’ " 520 ce{0,...,s}™

Now use Theorem 2 2

§ : t5H § : s § : c| tot chvenlower cyoddlower cZodd c

s>0 520 ce{0,1,...,s}*

— § : u” § : s § : qtot chvenlower cyoddlower cZodd c

n>0 520 ce{0,1,...,s}™

un

= 1+¢)™iB (t.¢. XY, 2)——.
> (1+1) (t,q )(t2;q2)n+1

n>0

Thus, identity (4.1) is proved, as well as Theorem 1.1.

Let us now complete the proof of Theorem 4.1. First, maxc = ¢} = 2a1 + ¢; =
2b1 +221 +€1 = 2b; +fdes w; also tot ¢ = tot ¢’ = 2tota+tote = 2totb+2tot z+tote =
2tot b + fmajw. Hence (4.2) holds.

Next, prove that (b, w) — cis bijective. As both sequences b and z are nonincreasing,
a = b+ z is also nonincreasing. If xy > xp11, then 2z = 241 + 1 and ap, > apy1 + 1,
then ¢, = 2ax + € > 2ap11 + 2+ € > 2ap1 + 2 > 2ap41 + €x11 = ¢ ;- Thus,

(4.7) Tp > L1 = € > Cppq.
To construct the reverse bijection we proceed as follows. Start with a sequence

¢ = ci1¢y...cy; form the word 6 = 6105 ...0,, where §; := x(¢; even) — x(¢; odd)
(1<i< n) and the two-row matrix

Ci C2 ... Cp
151 252 n(5n ’
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Rearrange the columns in such a way that (C;) occurs to the left of (CJJ), if either ¢; > ¢;,
or ¢; = ¢j, t < j. The bottom of the new matrix is a signed permutation w. After those
two transformations the new matrix reads

A\ (...
w Tr1 T2 ... Ty ’

The sequences € and z are defined as above, as well as the sequence a := (¢’ —¢€)/2.
As the sequence ¢’ is nonincreasing, the inequality ¢j, — e, > ¢} | — €x11 holds if ¢, = 0
or if € = €41 = 1. It also holds when €, = 1 and €41 = 0, because in such a case ¢},
is odd and ¢} ; even and then ¢j, > 1+ ¢} ;. Hence, a is also nonincreasing.

Finally, define b := a — z. Because of (4.7) we have z;, = zp11 +1 = ¢, > ¢ ;-
If ¢}, and ¢}, are of the same parity, then ¢, > ¢, = ar > apg1. If ¢, > ¢
holds and the two terms are of different parity, then ¢, is even and ¢}, odd. Hence,
ar = ¢, /2 > (Chy1 — €ry1)/2 = agq1. Thus zp = 211 + 1= ap > apy1. As 2, = 0, we
conclude by a decreasing induction that by = a — 2z > ag4+1 — 2k+1 = br+1, so that b
is a nonincreasing sequence of nonnegative integers.

There remains to prove (4.3). First, the letter c¢; of ¢ is odd, if and only if j occurs
with the minus sign in w, so that negw = oddc. Next, suppose that z; is a positive
lower record of w = z1x2...2,. For j < i we have z; < |z;|. Hence, the following
implications hold: |x;| < z; = i < j = ¢} > ¢ = ¢|4;| < ¢|y,| and ¢, is an even lower
record of c. If z; is a negative lower record of w, then j < i = —z; < |z;|, so that
2| < —xj =i < j = ¢ >} = Cpy) < e, and ¢y, is an odd lower record of ¢. []

5. The Insertion Method

Another method for proving identity (4.1) is to make use of the insertion method.
Each signed permutation w’ = z} ...z _; of order (n — 1) gives rise to 2n signed
permutations of order n when n or —n is inserted to the left or to the right w’, or between
two letters of w’. Assuming that w’ has a flag descent number equal to fdesw’ = k, our
duty is then to watch how the statistics “fmaj”, “lowerp”, “lowern”, “neg” are modified
after the insertion of n or —n into the possible n slots. Such a method has already
been used by Adin et al. [ABRO1], Chow and Gessel [ChGe04], Haglund et al. [HLRO04],
for “fmaj” only. They all have observed that for each j = 0,1,...,2n — 1 there is one
and only one signed permutation of order n derived by the insertion of n or —n whose
flag-major index is increased by j.

In our case we observe that the number of positive (resp. negative) lower records
remains alike, except when n (resp. —n) is inserted to the right of w’, where it increases
by 1. The number of negative letters increases only when —n is inserted. For controlling
“fdes” we make a distinction between the signed permutations having an even flag
descent number and those having an odd one. For the former ones the first letter
is positive. When n (resp. —n) is inserted to the left of w’, the flag descent number
increases by 2 (resp. by 1). For the latter ones the first letter is negative. When n (resp.
—n) is inserted to the left of w’, the flag descent number increases by 1 (resp. remains
invariant).
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Forn>2,0<k<2n-—1let

fmaJBn,k = E quaJ leowerp wylowern w 7neg w’
weEB,,, fdes w=k

and fm"J‘J‘BO’O =1, fmajBQk := 0 when k # 0; fm"J‘J‘BLO = X, fmajBl’l = qY Z. Making use
of the observations above we easily see that the polynomials ™2B,, ;. satisfy the same
recurrence relation, displayed in (3.4), as the By, (¢, Y,Y, Z).

Remark. How to compare the MacMahon Verfahren and the insertion method?
Recurrence relations may be difficult to be truly verified. The first procedure has the
advantage of giving both a new identity on ordinary words (Theorem 2.1) and a closed
expression for the factorial generating function for the polynomials ™2B,, (¢, q, X,Y, Z)
(formula (1.8)).

6. Specializations

When a variable has been deleted in the following specializations of the polynomials
B, (t,q,X,Y,Z), this means that the variable has been given the value 1. For instance,
B,(q,X,Y,Z):=B,(1,q,X,Y, Z).

When s tends to infinity, then Hg(u) tends to Ho(u) given in (1.1). Hence, when
identity (3.1) is multiplied by (1 —t¢) and ¢ is replaced by 1, identity (3.1) specializes

into
\ (va({5 - 2v)?)
P e O ey

Now expand H..(u) by means of the g-binomial theorem [GaRa90, chap.1]|. We get:

Z+q vy
o) = 3 (qgiz ) | @) (S )

+X

> 71_(12

By identification

X)n,
q9(Z +q) 1—¢? *

q<1Z—+qZ _YZ), 2> <q(2+q)
1—¢q?

Bn(q,X,Y,Z)=<
+ X

which can also be written as
(62) Bn(q, X, Y, 2)=(X+qZ+@F+¢ 2+ +" 2+ YZ*

X (X4 Z+PHEZ+F+ YD) X+ 2+ P+ PYZ) (X +qY Z),
or, by induction,
(6.3) Bn(¢,. X, Y, 2)=(X+qZ+F+¢@Z+ -+ " *+YZ¢* B, _1(q,X,Y, 2)
forn>2and Bi(¢,X,Y,Z)=X+qYZ.
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In particular, the polynomial ™B, (¢, X,Y) defined in the introduction is equal
to

(64> Bn(Q7X7 Y) = (X-I-q+q2 -l-q3 4. +q2n—2 +Yq2n—1>
Finally, when X =Y = Z := 1, identity (6.4) reads

65) S0+ OButa) g = S ul :

n>0 (t2;q2)n+l 5>0 1—|—q—|—q2_|_..._|_qs)’

an identity derived by several authors (Adin et al. [ABRO1], Chow & Gessel [ChGe04],
Haglund et al. [HLRO04]|) with ad hoc methods. Also notice that for X =Y = Z =1
formula (6.2) yields B, (q) = (¢%¢*)n/(1 —q)™.

For Z =0 we get

frnajBn(t, . XY, 0) — Z (fdes wqfrnaj leowerpw,
wes,

since the monomials corresponding to signed permutations having negative letters
vanish. The summation is then over the ordinary permutations. Also notice that
fmajp (t,q,X,Y,0) = ™B, (t,q,X,0,0). Moreover, for each ordinary permutation w
we have: fdesw = 2desw and fmajw = 2majw. When Y = Z = 0 we also have

ug? i
(1 — q% + ug2(s+1)’ ¢ >s—|—1

(120D o)
1= ¢4 ug?ttD’ " Jsi

Hjy1(u) = Has(u) =

and

u’I’L

Z(1+t) fmajBn<t,q,X,0,0) T :Z<t28+t28+1)H25<U/).
n>0 (t 3 4 )n-l—l $>0

With A, (t,q, X) := 2B, (t1/2 ¢'/2,X,0,0) = > tdeswgmajw xlowerpw we ohtain the

identity weS,
()
n )
U 1—qg+ugstlt’ 7/ s+1
6.7 An t7Q7X N = i ’
67 2 At X0 =2 SR
- - 1—q+ugstt’ /st

apparently a new identity for the generating function for the symmetric groups &,, by
the three-variable statistic (des, maj,lowerp), as well as the following one obtained by
multiplying the identity by (1 — ¢) and letting ¢ go to infinity:

(+759)
o Y.

(6.8) ZAn(q,X)( = (u T ) .
q 00

= 4 q)n
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7. Lower Records and Flag-inversion Number

The purpose of this section is prove Theorem 1.2. We proceed as follows. For each
(ordinary) permutation o = 0103 ...0, of order n and for each i = 1,2,...,n let b;(0)
denote the number of letters o; to the left of o; such that o; < o;. On the other hand,
for each signed permutation w = z1x5 ...z, of order n let absw denote the (ordinary)
permutation |z1||xa] ... |x,|. It is straightforward to see that another expression for the
flag-inversion number (or the length function), finv w, of w is the following

(7.1) finvw = invabsw + Z (2b;(absw) + 1)x(z; < 0).
1<i<n

The generating polynomial i"VB,, (¢, X, Y") can be derived as follows. Let Lower o denote
the set of the (necessarily positive) records of the ordinary permutation o. By (7.1) we
have
ﬁann(q, X, Y, Z) :Z qﬁnv leowerp wylowern w neg w
weB,

— E : E qﬁnv leowerp wylowern w 7neg w

c€eS,, absw=0c

:Z qinva H (X_l_YZq%i(a)—l—l)H (1+Zq2bi(a)+1>

ceG, o;ELower o oiZLower o
=Y f(o),
ceG,

showing that i"VB,, (¢, X, Y, Z) is simply a generating polynomial for the group &,, itself.

But &,, can be generated from &,,_; by inserting the letter n into the possible n

slots of each permutation of order n — 1. Let o/ = 00} ...0] _; be such a permutation.

Then
f(O'iJé .. .U%_Qaé_ln) = f(O'/)(X + YZq2n_1>;
(010500 _ynoy, 1) = Flo)a(l + Zg™0);
f(Uinaé .. 'O-’:%—QU;’L—I) — f(o'/)qn_Q(l + Zq3)’
f(notoy...opn 05, _1) = f(o")q" (1 + Zq).

Hence, "B, (¢, X, Y, Z) = "B, 1(¢, X, Y, Z)(X +q+---+¢" " +¢"Z+ - +¢*" > Z +
@Y Z) (n>2). As B (¢, X,Y,Z) = X + qY Z, we get the expression displayed in

(1.9). ]

Comparing (6.2) with (1.9) we see that the two polynomials "B, (¢, Z) and
B, (q, Z) are different as soon as n > 2, while i"VB, (¢, X,Y) = B,(¢, X,Y) for all n.
This means that any bijection ¥ of the group B,, onto itself having the property that

fmajw = finv ¥(w)

does not leave the number of negative letters “neg” invariant. It was, in particular, the
case for the bijection constructed in our previous paper [FoHa05].
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Remark 1. Instead of considering lower records from right to left we can introduce
lower records from left to right. Let lowerp’ w and lowern’ w denote the numbers of such
records, positive and negative, respectively and introduce

/ ’
ﬁnVBn(Q7 X, Y, X,, Y,)Z: E :qﬁnv leowerp wylowern lelowerp wyl lowern w
weB,

Using the method developed in the proof of the previous theorem we can calculate this
polynomial in the form

ﬁann((LXa Y7X/7Y/>
:(X+q—|--~-+qn_2+qn_1X/—|—an/+qn+1+~-~+q2n_2+q2n_1Y)
X (X g+ X+ Y+ V)X 4 X + Y 4+ V) (XX +gYY).

Remark 2. The same method may be used for ordinary permutations. For each
permutation o let upper o denote the number of its upper records from right to left and

define:

in\%n(q,X, V) — Z qinv UXlowerpcrvuppera.
Then ceG,
A (@, X, V)= XV(X 4+ V(X +q+¢V)- - (X +q+F +-+¢" V),

an identity which can be put into the form

U
i u" XV XV (1—_(1 - Uﬂ?;Q)()O
72 lnvj4n ,X, V = 1 —_ + :

(7.2) nZ:O (¢ )(q;q)n X+V-1 X+V—1(UX+1uq ;q)

> “ia)
which specializes into

uq

(7.3) Zin% (¢, X) u" (1—q;q>oo

n>0 <Q7 Q)n (’LLX + - _q ;Q)

n S uV;
(7.4) S 4, (g, V) (qu _ (1 (— 4 ) q)oo

= S 4)n

Comparing (7.3) with (6.8) we then see that A, (g, X) = "4,,(q, X). In other words, the
generating polynomial for G,, by (maj, lowerp) is the same as the generating polynomial
by (inv,lowerp). A combinatorial proof of this result is due to Bjorner and Wachs
[BjW88], who have made use of the transformation constructed in [Fo68]. Finally, the
expression of ™A, (¢, X, V) for ¢ = 1 was derived by David and Barton ([DaBa62],
chap. 10).
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SIGNED WORDS AND PERMUTATIONS, III;
THE MACMAHON VERFAHREN

Dominique Foata and Guo-Niu Han

Glory to Viennot, No one can beat him.
Wizard of Bordeaux, Only verbatim
A prince in Physics, Can we follow him.

In Mathematics, He has admirers,
Combinatorics, Who have got down here.
Even in Graphics, They all celebrate

Sure, in Viennotics.  Such a happy fate.
He builds bijections, Sixty years have gone,
Top calculations. He still is our don.

Dedicated to Xavier.
Lucelle, April 2005.

Abstract. The MacMahon Verfahren is fully exploited to derive further
multivariable generating functions for the hyperoctahedral group B,
and for rearrangements of signed words. Using the properties of the
fundamental transformation the generating polynomial for B,, by the flag-
major and inverse flag-major indices can be derived, and also by the length
function, associated with the flag-descent number.

1. Introduction

To paraphrase Leo Carlitz [Cab6|, the present paper could have been
entitled “Expansions of certain products,” as we want to expand the
product

(1.1) Ko(u):= ]] !

P A
i>0,5>0 (1 - UZZJCHQQ)
in its infinite version, and

(1.2) Keow) =[] !

i
0<i<r,0<j<s (1 —uZijqiq3)

in its graded version, where
Z, if i and j are both odd;
Zii =< 1, if i and j are both even;
0, if ¢ and j have different parity.



DISTRIBUTIONS ON WORDS AND ¢-CALCULUS

The second pair under study, which depends on r variables uq, ... , u,,
reads . )
1.3 LOO ULy ooy Up) 1= s
- ( = e o

1<i<r

1 1
7“1”) = .
1§1:[§T (ui; qz)LS/2J+1 (uiqZ;q2)L(s+1)/2J

(1.4)  Ly(ui,...

In those expressions we have used the usual notations for the ¢-

ascending factorial .t 0
, if n=0;
(1.5)  (a;q)n:= (1—a)(l—aq)...(1—ag" ), ifn>1;

in its finite form and
(1.6) (@5 9) oo :=limy,(a;q)n = [] (1 —aq");

in its infinite form.

All those products will be the basic ingredients for deriving the distri-
butions of various statistics attached to signed permutations and words.
By signed word we understand a word w = x12s . ..x,,, whose letters are
integers, positive or negative. If m = (my, mo,...,m,) is a sequence of
nonnegative integers such that my +ms+---+m, = m, let By, be the set
of rearrangements w = x1xs...x,, of the sequence 17122 . . r™r with
the convention that some letters ¢ (1 < i < r) may be replaced by their
opposite values —i. For typographical reasons we shall use the notation
1 := —i in the sequel. When m; = mg = --- = m, = 1, the class B,
is simply the hyperoctahedral group B,, (see [Bo68], p. 252-253) of the
signed permutations of order m (m = r).

Using the y-notation that maps each statement A onto the value
X(A) = 1 or 0 depending on whether A is true or not, we recall that
the usual inversion number, inv w, of each signed word w = x1xs...x, is

defined by
invw := Z ZX(% > ).

1<j<n i<y
It also makes sense to introduce
invaw = Z Zx(fl > xj),
1<j<n i<j
and define the flag-inversion number of w by

finvw := invw 4+ inv w + neg w,

where negw := . x(x; < 0). As noted in our previous paper
1<j<n

[FoHa0bal, the flag-inversion number coincides with the traditional length

function ¢, when applied to each signed permutation.
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The flag-major index “fmaj” and the flag descent number “fdes”, which
were introduced by Adin and Roichman [ARO1] for signed permutations,
are also valid for signed words. They read

fmajw := 2majw + neg w;
fdesw := 2desw + x(z1 < 0);

where majw := ijx(a:j > x;41) denotes the usual major index of w
and desw the number of descents desw := ), x(zj > x;4+1). Finally, for
each signed permutation w let w™! denote the inverse of w and define
ifdesw := fdesw~! and ifmaj := fmajw~?'.

Notations. In the sequel B, (resp. By,) designates the hyperocta-
hedral group of order n (resp. the set of signed words of multiplicity
m = (my,ma,...,m;)), as defined above. Each generating polynomial
for B,, (resp. for By,) by some k-variable statistic will be denoted by
B, (t1,...,tx) (resp. Bm(t1,...,tx)). When the variable ¢; is missing in
the latter expression, it means that the variable ¢; is given the value 1.

The main two results of this paper corresponding to the two pairs of
products earlier introduced can be stated as follows.

Theorem 1.1. Let

(17) B, (tla ta, q1, q2’ Z tfdes wtlfdeswquaj wafrnaJ w negw
we By,

be the generating polynomial for the group B,, by the five-variable statistic
(fdes, ifdes, fmaj, ifmaj, neg). Then,

n

19 Y ma@

>0 1547 )n—l—l (t2§ Q§>n—|—1

(I1+t1)(1 +t2)Bn(ti,t2, 91,92, Z)

>t K, (u)

where K, s(u) is defined in (1.2). r20,820

Theorem 1.2. For each sequence m = (my,...,m;) let

(1‘9> Bm(t,q, Z) — Z tfdeswquajwznegw
WE Bm

be the generating polynomial for the class By, of signed words by the
three-variable statistic (fdes, fmaj, neg). Then
u71n1 M

(1.10) > (1 +t)Bum(t,q, Z)(tz—’" = tLy(u, ... up),

— Divml S

where l[m| :=mq + ---+m, and Ls(uy,...,u,) is defined in (1.4).
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It is worth noticing that Reiner [Re93a] has calculated the generating
polynomial for B,, by another 5-variable statistic involving each signed per-
mutation and its inverse. The bibasic series he has used are normalized by
products of the form (t1;q1)ni1(t2; q2)n instead of (t2;¢3)ns1(t3;3)nt1-

Using the properties of the fundamental transformation on signed
words described in our first paper [FoHa0ba] we obtain the following
specialization of Theorem 1.1. Let

(111) ﬁann(t,q> — Z tfdeswqﬁnvw
wEB,

be the generating polynomial for the group B, by the pair (fdes, finv).
Then, the ¢-factorial generating function for the polynomials "B, (¢, q)
(n > 0) has the following form:

n

(L12) Y (”7

s q2>nﬁn"Bn(t, q)
n=0 1t

T2+ (1 2)0)u
From identity (1.12) we deduce the generating function for the polynomials
dessp, (t,q) ==, B, desswfinve where “dess” is the traditional number

of descents for signed permutations defined by

(t+ (01— )g¢%)o0)-

dessw :=desw + x(z1 < 0) instead of fdesw :=2desw + x(x1 < 0)

and recover Reiner’s identity [Re93al

u” dess — 1t 1
(1.13) ;Om Bull0) = T = 0) (ol — DB

where e,(v(1 — t2)) = 1/(v(1 — t?);q) oo is the traditional g-exponential.
This is done in section 4.

As in our second paper [FoHa05b] we make use of the MacMahon Ver-
fahren technique to prove the two theorems, which consists of transferring
the topology of the signed permutations or words measured by the var-
ious statistics, “fdes”, “fmaj”, to a set of pairs of matrices with integral
entries in the case of Theorem 1.1 and a set of plain words in the case of
Theorem 1.2 for which the calculation of the associated statistic is easy.
Each time there is then a combinatorial bijection between signed permu-
tations (resp. words) and pairs of matrices (resp. plain words) that has the
adequate properties. This is the content of Theorem 3.1 and Theorem 4.1.

In all our results we have tried to include the variable Z that takes the
number “neg” of negative letters of each signed permutation or word into
account. This allows us to re-obtain the classical results on the symmetric
group and sets of words.
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In the next section we recall the MacMahon Verfahren technique, which
was developed in our previous paper [FoHa05b] for signed permutations.
Notice that Reiner [Re93a, Re93b, Re93c, Re95a, Re95b], extending
Stanley’s [St72] (P,w)-partition approach, has successfully developed a
(P, w)-partition theory for the combinatorial study of the hyperoctahedral
group, which could have been used in this paper. Section 3 contains the
proof of Theorem 1.1, whose specializations are given in Section 4. We end
the paper with the proof of Theorem 1.2 and its specializations. Noticeably,
the generating polynomial for the class By, of signed words by the two-
variable statistic (fdes,fmaj) is completely explicit, in the sense that we
derive the factorial generating function for those polynomials and also a
recurrence relation, while only the generating function given by (1.10) has
a simple form when the variable Z is kept.

2. The MacMahon Verfahren

Let N™ (resp. NIW(n)) be the set of words (resp. nonincreasing words)
of length n, whose letters are nonnegative integers. As done in [FoHa05b]
the MacMahon Verfahren consists of mapping each pair (b, w) € NIW(n) x
B,, onto a word ¢ € N" as follows. Write the signed permutation w as
the linear word w = x125...x,, where x; is the image of the integer k
(1 <k <mn). Foreach k = 1,2,...,n let z; be the number of descents
in the right factor zxxk+1...2, and € be equal to 0 or 1 depending on
whether zy, is positive or negative. Next, form the words z(w) := 2122 ... 2,
and e(w) := €163 ... €,.

Now, take a nonincreasing word b = b1by . ..b,, and define ay := by + 2%,
¢ = 2ar + € (1 < k < n), then a(b,w) := ajaz...a, and ¢'(b,w) :=

/ / /

. . g dy ... ¢
cicy...cl. Finally, form the two-row matrix L2 no). Its
bottom row is a permutation of 12 ... n; rearrange the columns in

such a way that the bottom row is precisely 12 ... n. Then the word
c(b,w) = ¢y1ca ... ¢, which corresponds to the pair (b, w) is defined to be
the top row in the resulting matrix.

Ezample. Start with the pair (b, w) below and calculate all the neces-
sary ingredients:

b =4221100
w =3516742
w) =2111100
ew) =0110010
alb,w) = 6 3 3 2200
dbyw)=127 7 4410
clbyw) =70121744

-47 -
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For each ¢ = ¢1...¢,, € N" and let totc := ¢; + -+ + ¢,, maxc :=
max{cy, ..., c,} and let odd ¢ denote the number of odd letters in ¢ . The
proof of the following theorem can be found in [FoHa05b, Theorem 4.1].

Theorem 2.1. For each nonnegative integer s the above mapping is a
bijection (b, w) — ¢(b,w) of the set of pairs
(b,w) = (biby ... by, x122...2,) € NIW(n) X B,

such that 2b; + fdesw = s onto the set of words ¢ = c1¢a .. .¢, € N™ such
that max ¢ = s. Moreover,
(2.1) 2b; + fdesw = maxc(b,w); 2totb+ fmajw = tot c(b, w);

neg w = odd ¢(b, w).

We end this section by quoting the following classical identity, where
by is the first letter of b.

(2‘2> ; _ Zus Z qtot b

w:
( 7Q>n+1 s>0  beENIW(n), b1<s

3. Proof of Theorem 1.1

We apply the MacMahon Verfahren just described to the two pairs
) and (8, w™1), where b and 3 are two nonincreasing words. The pair
,w) (resp. (3,w™1)) is mapped onto a word ¢ := c(b,w) = cicz...cy

(b,

(b

(resp. C :=c(B,w™ ) = C1Cs...C,,) of length n, with the properties
(

w

w
) 2b1 + fdesw = maxc; 2totb+ fmajw = tot c;

(3.2) 201 4+ ifdesw = max C; 2tot S+ ifmajw = tot C.

There remains to investigate the relation between the two words ¢ and C'
before pursuing the calculation. Form the two-row matrix

A\ (& & ... d
C ¢, Cy ... Cy)°
where ¢ = | c, ...c], designates the nonincreasing rearrangement of the

word c. The following two properties can be readily verified:

(i) for each i =1,2,...,n the letters ¢; and C; are of the same parity;
(i) if ¢; = ¢ 1is even (resp. is odd), then C; > Cii1 (resp. C; < Ciyr).
Conversely, the following property holds:

(iii) of (g) is a two-row matriz of length n having properties (i) and (ii),

there exists one and only one signed permutation w and two nonincreasing
words b, B satisfying (3.1) and (3.2).
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Ezxample. We take the same example for w as in the previous section,
but we also calculate C' = ¢(8,w™1).

b =4221100 I&; =3211000

w =3516742 wt =3716245
z(w) =2111100 z(w™1) =2210000
e(w) 0110010 e(w™1) =1001100
albw) =6332200 a(B,w! =5421000
= bw)=127T7 4410 C'=d(B,w ) =118 43100
ci=clbyw) = 70121744 C:=c(B,w™l) =41110038

\_/g

c 127 74410
C 41110038
Let (i1 < iy <--- <1;) (vesp. (j1 < j2 < --- < js)) be the increasing

sequence of the integers 7 (resp. the integers j) such that ¢ is even (resp.
cj is odd). Define (“e” for “even” and “o” for “odd”)

2f¢ o i
2d€ 11 12 (s .
<29 ) (Oil Ci Oir) ’
2f°+1 . .
2d0 + ]_ = = J1 J2 Js ’
(290 + 1) (Ca‘l Cj, Cj, )

so that the two two-row matrices

r= (1) = (Gl &l G,
o= ()= (670 @k o @)

/

may be regarded as another expression for the two-row matrix (‘é)
Define the integers iy.x and jmax by:

i (maxc—1)/2, if maxc is odd;
A maxe/2, if max ¢ is even;

. J(maxC —1)/2, if maxC is odd;
Jmax = max C/2, if max C' is even.

Then, to the pair d°, d° there corresponds a pair of unique finite matrices

= (dfj), D° = (d;’j) (0 <4 <imax,0 < j < Jmax) (and no other pair
of smaller dimensions), where df; (resp. d;) is equal to the number of the
two-letters in d¢ (resp. in d°) that are equal to (;)
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On the other hand, with |f| designating the length of the word f,

tot ¢ = tot 2f¢ + tot(2f° 4+ 1) = 2tot £ + 2tot f° + | f°]
:222d%+2 dej‘f’Zd%,
Z:J 7"] Z’J
tot C' = tot 2¢° + tot(2g° + 1) = 2tot g° + 2tot g° + |g°|

] ] ]

The following proposition follows from Theorem 2.1.

Proposition 3.1. For each pair of nonnegative integers (r,s) the map
(b, B,w) — (D¢, D°) is a bijection of the triples (b,3,w) such that
201 + fdesw <1, 201 + ifdesw < s onto the pairs of matrices D* = (d ),

D° = (dfj) (0<i<r0<j<s). Moreover,

(3.3) 2totb + fmajw = 2y i d§; + 23 i dY + Y- dYj;

(3.4) 2totﬂ+ifmajw:2§:jdfj+2§:jd%+§:d?j§
i,J i,] (2%

(3.5) negw = %:dfj

(3.6) ;dfj + iz;dfj = |w|.

Again work with the same example as above. To the two-row matrix

A\ (12774410
) \41110038
there corresponds the pair
e (6220 o (330
d _<2004>’ d _<051)'

As maxc = 12 is even (resp. maxC' = 11 is odd), we have ip.x =

Jmax = D and
01 2 3 4 5 01 2 3 4 5
0 1 0 1
11 . 1
2| 2 2
D=3 ;. D°=31]1 1
4 4
5 . 5
6 1 6

Also verify that 2totb+ fmajw =35=2x (24+24+6) +2 x (3+ 3) + 3;

2tot f+ifmajw =27=2x (24+4) +2 x (1 +5) + 3 and negw = 3.
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In the following summations b and 3 run over the set of nonincreasing
words of length n. By using identity (2.2) we have

n

2(2.2 u2

>0 11547 )n—l—l (t2§ Q%)n—i—l

=> w1+ t)(1+t2)Bultr,to, q1, 02, Z) Y 177137 ¢7 gy 7
n>0 150,850
b,3,b1<r’, 31 <s’

_ n (421’ 2r' +1 2s'+1
= E u"(t1" + 1 )( + [ )
n,r’,s’ . . .
[ fdes wifdes w fmajw—+2tot b ifmajw+2tot B —negw
X E S a0 2 Z"®

(14+t1)(1+t2)Br(t1,t2,q1, 62, 2)

weB,
b7ﬁ7b1 Srla ﬁl SSI

_ nyr’ s’ fdes wifdesw fmajw+2tot b ifmajw+2tot B negw
—E:Ut12§ ty Tty ‘0 o Z

n,r’,s’ we By,
b,3,2b1 <7, 281 <s’
_ NLT LS frnaJ w+2tot b ifrnaj w+2 tot ﬂ neg w
= E utyty E a4 P Z :
n,r,s weanbaﬁ

2b1 +fdes w<r, 201 +ifdes w<s

We can continue the calculation by using (3.3), (3.4), (3.5) the last
summation being over matrices D¢, D° of dimensions (r + 1) x (s + 1),
that is,

_ Z U/nt{ s Z qu idfj—l—ZE idfj—l—z df qZEjde +2E]d ) dZJ ZZ do
n,r,s De¢,De°
5 (20)dS, 3 (25)dS, o ¥ (2i+1)d}; T (2j+1)dS 0
_Ztrtzzuzd ng( gzuzqul ) 0@ i 7B ds
O

= Z”%ZH (ug?' )" 3 TNz g ™)™ (0<i<r,0<j<s)

De L) Do ]
:Zt’“tz 121+1 pera (0<i<r,0<j<s)
—ug?iqy’) [1(1 — uZq; )
.7 1)
1
= > it —. [
7>0,5>0 [T (1 —uZijqias)

0<i<r,0<j<s

4. Specializations and Flag-inversion number

First, when Z := 0 and t1, t2, q1, g2 are replaced by their square roots,
identity (1.8) becomes

un s
(4.1) Z An(t1,t2,q1,q2)= Z =

7>0 (t15q1)nt1(t2; @2)n41 130,50 (U3 1, G2)r 41,541

-51-



-52-

DISTRIBUTIONS ON WORDS AND ¢-CALCULUS

where A, (t1,t2,q1,q2) is the generating polynomial for the symmetric
group &,, by the quadruple (des, ides, maj,imaj), an identity first derived
by Garsia and Gessel [GaGeT78]. Other approaches can be found in [Ra79],
[DeFo85].

Remember that when a variable is missing in B, (t1,t2,q1,q2, Z) it
means that the variable has been given the value 1. Multiply both sides
of (1.8) by (1 — t3) and let t5 = 1. We get:

42 Y C “

= (8540 )nr1(a3; 63)n

n

(1 + tl)Bn(th q1, 42, Z)

1

- Zt; i.JY

r>0 I1 (1_UZijQ1Q2>
— 0<i<r,j>0

Again multiply both sides by (1 — ¢;) and let t; = 1:

u” 1
(43) Bn(leQ%Z): .
7;) (415 4?)n (a3 43)n 1 (1—uZiqid)
- 120,50

Also the (classical) generating function for the polynomials A,,(q,g2) can
be derived from identity (4.3) and reads:

u” 1
P S An(q, @) = .
= (q1:01)n (a2 42)n (5 q1, 2) 00,00

With ¢; = 1 the denominator of the fraction on the right side of identity
(4.2) becomes

{ (u; q§>((;/2)+1(uq2z; q%)z;éQ, if  is even;
(w543 (uga Z; g3) V%, if s odd.

Hence,

n

Z (1— t%)nlj—l(ql % (14 t1)Bn(t1, 92, 2)

n>0 29 QQ
_ Z 5 t%s—’_l : + Z 5 t%S . 12 ‘
S5 (05 63)o0 (U225 43)00 )" 5 (45 42) 00 (4275 03)00)* (U3 03) o0
1

= t + (U2 Z;¢3) o0 ) -
B (i B Zs ) 1 T (W05 2)ec)

Now replace u by v(1 — ¢2). This implies the following result stated as a
theorem.
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Theorem 4.1. Let B, (t1,q2,Z) be the generating polynomial for the
group B, by the triple (fdes,ifmaj, neg). Then,
,U’I’L
(4.4) Z 5 Bn(t1,q2, Z)
n>0 ( 29 q2)n
B = 1—1t
—1F + (V1 = 17); 83) oo (V(1 — 1§)q2Z3 63) o
Several consequences are drawn from Theorem 4.1. First, when Z =0
and when tq, ¢o are replaced by their square roots, we get

@5 N o Atie) = Loh

= (¢2:42)n —t1 4+ (v(1 —t1);q2)o0’

(tr 4+ (v(1=13)q2Z; 63)oc) -

where A, (t1, ¢2) is the generating polynomial for the group &,, by the pair
(des,imaj), but also by the pair (des,inv) (see [St76], [FoHa97]).

Let iw := w™! denote the inverse of the signed permutation w. At this
stage we have to remember that the bijection ¥ of B,, onto itself that we
have constructed in our first paper [FoHa0ba| preserves the inverse ligne
of route [FoHa0ba, Theorem 1.2], so that the chain

i v i

w — w1 e Wa — w3

fdes ifdes ifdes fdes
ifmaj fmayj finv finv

shows that the four pairs (fdes,ifmaj), (ifdes,fmaj), (ifdes,finv) and
(fdes, finv) are all equidistributed over B,,. Therefore,

Z tfdes wqifrnaj w_ Z 75ifdes wqfrnaj w_ Z 75ifdes wqﬁnv w_ Z 75fdes wqﬁnv w,

where w runs over B,. The rightmost generating polynomial was des-
ignated by "B, (t,q) in (1.11). Therefore we can derive a formula
for "B, (t,q) by using its (fdes,ifmaj) interpretation. We have then
fivp (t,q) = Ba(ti1,q2,Z) with t; = t, g = qand Z = 1. Let Z := 1
in (4.4); 25 (0(1 — £); @)oo (0(1 — )03 B)oe = (0(1 — £2); @2)oc, identity
(4.4) implies identity (1.12).

To recover Reiner’s identity (1.13) we make use of (1.12) by sorting the
signed permutations according to the parity of their flag descent numbers:
B,(t,q) =: B'(t?,q) + t B! (t?,q), so that 9B, (t2,q) = B! (t?q) +
t2 B”(#?, q). Hence

V" dess 2 _ (U(l - tz)q; qz)oo - t2 2 - (U(l - tz)Q; qz)OO

2 (4% ¢%)n Bu(%0)= —t2 + (v(1 = t2); ¢)oo —t2 + (v(1 = 12);q)oo
_ 1—¢?

24 (01— 12);9)os

n>0

(1 = )¢ ¢*)o-

-53-
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As 1/(v(1—1?); q) s can also be expressed as the g-exponential e, (v(1—t?)),
we then get identity (1.13).

5. The MacMahon Verfahren for signed words

Let w = z129...2,, be a signed word belonging to the class By,
where m = (mj,mo,...,m,) is a sequence of nonnegative integers such
that m1 + ms + -+ + m, = m. Remember that this means that w is a
rearrangement of 1122 ™ with the convention that some letters 7
(1 < 4 < r) may be replaced by their opposite values i. Again, let
€ := e(w) := €1€3...€, be the binary word defined by ¢, = 0 or 1,
depending on whether x; is positive or negative.

The MacMahon Verfahren bijection for signed words is constructed as
follows. First, compute the word z = z125...2,, where z; is equal to
the number of descents in the right factor xyxgi1 ...z, as well as the
word € = €1€5...€, mentioned above, so that, as in the case of signed
permutations,

(5.1) fmajw = 2tot z + tote.
Next, define ax := by + 2z, ¢ = 2ar + e (1 < k < m), then
a:= ajay...a, and ¢ = cjc...c . Finally, form the two-row matrix

c c, c
= Lo "2 77 "m ) Its bottom row is a rearrangement of
abs w |z1| |z2] ... |2

the word 1™12™2 pMr, / /
Make the convention that two biletters (|;’; |) and (|;ll |) commute if

and only if |zx| and |z;| are different and rearrange the biletters of that
biword in such a way that the bottom row is precisely 1712™2 . . r™r,

The top row in the resulting two-row matrix is then the juxtaposition
product of r nonincreasing words b(t) = bgl) .. .b%i, b(® = b§2) . .b,(fbg,

b0 = bgT) .. .b%l, of length mq, mo, ... , m,, respectively. Moreover,

tot b +tot b2 + ... 1 tot b = tot = 2tota + tote
= 2totb+ 2tot z + tot e
(5.2) = 2tot b+ fmajw.

On the other hand,

2by + fdesw = 2by + 221 + €1 = ¢}
(5.3) = max; bgi) (1<i<r).

As in the case of signed permutations, we can easily see that for each
nonnegative integer s the map (b, w) — (b, 63, ... (") is a bijection of
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the set of pairs (b, w) € NIW(m) x Ry, such that 2b;+ fdesw=s onto the
set of juxtaposition products bbb such that max; bgi) = s. The
reverse bijection is constructed in the same way as in the case of signed
permutations.

Ezample. Start with the pair (b, w), where w belongs to By, with
m=(2,2,2,2,22),r =6, m = 12, the negative elements being overlined.

Id =123 456 78 9101112
b 4 4 4 4 4 4 422111
w 15 2 23 31465 46
2 322211110000
¢ 01 1011101100
a 76 6 655 532111
¢ — 1413131211 11116 5 3 2 2
absw =15 2 2 3 3 1460546
b(l)...b(r):1411‘1312’1111’62‘133‘52
™ pmr =1 112 2|3 3| 44|55/ 66

We verify that 2 tot b+fmajw = 2 tot b+2tot z+tot e = 2x354+2x13+7 =
103 = totd® + -+ + totb® and 2by + fdesw = 2by + 22 + € =
2x4+2x3+40=14=c, = max; b{".

The combinatorial theorem for signed words that corresponds to The-
orem 2.1 is now stated.

Theorem 5.1. For each nonnegative integer s the above mapping is a
bijection of the set of pairs (b, w) = (b1bs . ..by, 1T ... xy) € NIW(m) x
B such that 2b; + fdesw = s onto the set of juxtaposition products
b . b(") € NIW (my) - - - x NIW (m,.) such that max; bgi) = s. Moreover,
(5.2) and (5.3) hold, together with

(5.4) negw = odd(b™® ... p(M)

Relation (5.4) is obvious, as the negative letters of w are in bijection
with the odd letters of the juxtaposition product. Now consider the
generating polynomial By, (t, ¢, Z), as defined in (1.9). Making use of (2.2)
and of the usual g-identities

1 N+n-1]
- [ Lu;

(U§Q>N ">0

N+n _ tot b,
|: n :|q_ Z q )

bENTW (N), by <n
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we have

1—|—t s s m—l—s'
719, o\ Bm(t7 q, Z) = Z <t2 + t2 +1) |i / } Bm<t7 Q)
q?

& D 5
[+ /2]
! [ L

s'/2]
Z q2 tot b Z tfdes wqfrnaj w neg w

0 beENIW(m), WEBm
2b, <s’

E E q2 tot b+fmajw znegw.
s>0 b

ENIW(m), wE Bm
2b1 +fdesw<s

V)

} Bm(t,q,2)
q2

’

V
o

S

I
(]
~+
E,J\

S/

Vv

But using (5.2), (5.3), (5.4) we can write

1+t mlt 45 gtot b 4---t0t b z0dd b 4---fodd b
@ @ 0
’ m+ 20 pM) p (7”)7
max; bM<
and t=
u . (1 (1)
1 i tot bPrrodd b
Z(1+t)Bm(t7Q7 Z)(tQ— - Zts H Z Zum ° Z° ’
m )14/m s>0  1<i<rm,>0 p()

using the notation: |m| :=mj +--- +m,.

There remains to evaluate ). >, umqtott Zoddb - where the second
sum is over all nonincreasing words b = by ...b,, of length m such that
by < s.Letl1 <ip < - <ipg <m(resp. 1 <j3 < -+ <j <m)
be the sequence of the integers i (resp. j) such that b; is even (resp. b;
is odd). Then, b is completely characterized by the pair (b¢,5b°), where
b := (biy/2) ... (b, /2) and b° := ((bj, —1)/2)...((bj, — 1)/2). Moreover,
totb = 2tot b® + 2 tot b° + |b°|. Hence,

Z Z umqtothoddb:Z wlbl ot Zoddb

mZOb,|b|:m,b1§s b,blgs
. b¢| 2tot b® b°| 2tot b°
=Y g > (ug2)""q
be, 2b5<s be,2b9<s—1

1 1
(u; ¢2) |s/2)+1 (WqZ; G2) | (s41) /2]

This achieves the proof of Theorem 1.3.
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6. Specializations

As has been seen in this paper a graded form such as (1.10) has an
infinite version (again obtained by multiplying the formula by (1 —¢) and
letting t := 1) given by

wtt ey 1 1
(6.1) Bm(4,2) 75— =
; (425 G%) m| 12 (135 ¢%) oo (4975 ¢*) 0
= H eq2(u;) eq2(uiqZ),
1<i<r

where e,2(u) denotes the usual g-exponential with basis ¢* ([GaRa90],

p. 9).
The polynomial By, (g, Z) is the generating polynomial for the class By,
by the pair (fmaj, neg), namely

(6.2) Bm(q,Z) =» ™" Z"8"Y  (w € Bp).

On the other hand, Let

(63) ﬁnVBm(Q7 Z) — Z qﬁnvwznegw

WE Bm

be the generating polynomial for the class By, by the pair (finv, neg). Using
a different approach (the derivation is not reproduced in the paper), we
can prove the identity

@ Q) mytetm
6.4 B, Z) = (=26 @)yt tm, ( . -
(6.4) (2.2)=( ket (@ Dmy - (G D,
my 4+ -+ my
= (=Z¢Dmerim ,
(=Z¢ Dmi+-+ { T L

using the traditional notation for the g-multinomial coefficient. In general,
Bm(q, Z) # B (q, Z). This can be shown by means of a combinatorial
argument.

Let Z :=1in (6.1) and make use of the g-binomial theorem (see [An76],
p. 17, or [GaRa90], chap. 1), on the one hand, and let Z := 1 in (6.4), on
the other hand. We get the evaluations

my -t my

(6.5) Bm(Q)Z(—Q9q>ml+"'+m’“[ mi,...,my

L — ().
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This shows that “fmaj” and “finv” are equidistributed over each class By,
a property proved “bijectively” in our first paper [FoHa05a).
Next, let ¢ := 1 in (6.4). We obtain

(6.6) ﬁnVBm(Z) = (1+ Z)ml—’_"'—’_mT (ml 4+t mr) (

mia,..., My
an identity which is equivalent to

(6.7) ZB 7umr = H exp(u;) exp(u;Z).

jm|! :
1<i<r

Thus, the g-analog of (6.6) yields (6.4) with a combinatorial interpretation
in terms of the flag-inversion number “finv,” while (6.1) may be interpreted
as ¢2-analog of (6.7) with an interpretation in terms of the flag-maj index
number “fmaj.”

Finally, for Z = 0, formula (1.10) yields the identity

ZA (t,q)d "Ur —ZtSH(

s>0  1<i<r Q)SH
where Ay, (¢, q) is the generating polynomial for the class of the rearrange-
ments of the word 17™12™2 . 7™ by (des,maj). As done by Rawlings
[Ra79], [Ra80], the polynomials Ay, (t,¢) can also be defined by a recur-
rence relation involving either the polynomials themselves, or their coeffi-
cients.

tQ1+|

7. The Signed-Word-Euler-Mahonian polynomials

We end the paper by showing that the polynomials By, (t,q) =
Bm(t,q,Z) |z=1 can be calculated not only by their factorial generating
function given by (1.10) for Z := 1, but also by a recurrence formula.

Definition. A sequence (Bm(t, q) =>_ thm,k(Q)) (m = (my,...,m;);
k>0
my > 0,...,m, > 0)) of polynomials in two variables t, ¢, is said to
be signed-word-Fuler-Mahonian, if one of the following four equivalent
conditions holds:

(1) The (2, ¢?)-factorial generating function for the polynomials
(7.1) Cm(t,q) := (1+1t)Bml(t, q)
is given by identity (1.10) when Z = 1, that is,

=y I

s>0  1<i<r q>3+1

(7.2) Zc t, q

u T
1—|—|
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(2) For each multiplicity m we have:

(7.3) o Cm 3 [ml +SL... {W: SL.

?)14im| $>0

Let m+ 1, := (mq,...,my—1,m, + 1).

(3) The recurrence relation

(74) (1=¢™ ") Bmy1,(t,q)
= (1 - £¢*T2™N) B (t,q) — ¢™ (1 — t)(1 + tq) Bm(tq, q),

holds with By, . ) (t,q) = 1.

(4) The following recurrence relation holds for the coefficients Bm 1 (q)

(75) (14+qg+-+¢")Bmt1,6(@) =1+ g+ +¢" ) Bmi(q)
+ qmr_'_kBm,k—l(Q) + (qmr-l-k + qmr-l-k—l—l 4o qzlmH_l)Bm,k—Z(Q),

while Bo,....0),0(q) = 1 and Bq,...0),x(q) = 0 for every k # 0.

Theorem 7.1. The conditions (1), (2), (3) and (4) in the previous
definition are equivalent.

Proof. The proofs of the equivalences [(1) < (2)] and [(3) & (4)]
are easy and therefore omitted. For proving the equivalence [(1) < (3)]
proceed as follows. Let C(t, q;uq,. .., u,) denote the right side of (7.2) and
form the g-difference C(t, q;uy, ..., u.) — C(t,q;u1, .. ., ur—1, urq) applied
to the sole variable u,.. We get

(7.6) C(t,q;u1,...,up) — C(t,q;ul,...,ur_l,urq)
ts
; s—|—1 (Ur§ q>s+1 é (u1§ Q>s+1 e (urq; Q)s—l—l
=Y i e ]
= (U153 Q)51 - - (Ur; @) s41 1 —upgstt
= u, & [1 gt LT ]
0 (ul; Q)s—l-l oo (’LLT; Q)s—l-l 1—- Urqs+1

= UT(C(t7q;u17 .- -7Ur) - qc(tQ:q;ula e 'aur—17UTQ))-

Now, let C(t, g ut,y ..., ur) == >, C(t, Qui™ - ul /(% q2)1+|m| and
express each term C(...) occurring in identity (7.6) as a factorial series in
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the u;’s. We obtain

S (1= ¢ o, (£0)

m

u™ .. .u;nﬁrl

(% ¢%) 24 |m|

2 242 up™ -t
= (1— 2¢O (t,q)

Ugnl . umr+1

ST 1 = ) C(tq, )
%:q (1—1*)Cm(tq,q) & Do

Taking the coefficients of u}" ... u, " u™ *1 yields

(1—¢™ ) Cmy1, (t, q) = (1—t2¢*T2mN) O (2, ¢) — g™ 1 (1~ %) Cim(tg, 9),

which in its turn is equivalent to (7.6) in view of (7.1). All the steps of the
argument are reversible. []

Remark 1. The fact that By, (¢, q) is the generating polynomial for the
class By, by the pair (fdes,fmaj) can also be proved by the insertion
technique using (7.5). The argument has been already developed in
[ClFo95a, § 6] for ordinary words. Again let m := |m| = my + -+ + m,..
With each word from By, 1~ associate (m, + 1) new words obtained by
marking one and only one letter equal to r or 7. Let By, . - denote the
class of all those marked signed words. If w* = z;...2} ... 2,41 is such
a word, where the i-th letter is marked (accordingly, equal to either r
or 7), let mark; be the number of letters equal to r or T in the right factor
Ti41%it2 ... Tme1 and define:

fmaj* w* := fmajw + mark; w*.

On the other hand, let

Bm,k(Q) — Z quajw‘

WE B, fdesw=k

Z qua-]* w* = (1 + q + t + qu)Bm"‘l'r‘:k(q).

w* EBI*nJrlr , fdes w=Ek

Clearly,

Now each word w from the class By, gives rise to 2(m+1) distinct marked
signed words of length (m + 1), when the marked letter r or 7 is inserted
between letters of w, as well as in the beginning of and at the end of the
word. As in the case of the signed permutations, we can verify that for
each 7 =0,1,...,2m+1 there is one and only one marked signed word w*
of length (m + 1) derived by insertion such that fmaj* w* = fmajw + j.

On the other hand, “fdes” is not modified if r is inserted to the right
of w, or if r or 7 is inserted into a descent x; > xz;11. Furthermore, “fdes”
increases by one, if 21 > 0 (resp. 21 < 0) and 7 (resp. r) is inserted to the
left of w. For all the other insertions “fdes” increases by 2.
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Hence, all the marked signed words w* from B, ., such that fdes w* =
k are derived by insertion from three sources:
(i) the set {w € By, : fdesw = k} and the contribution is:
(1+q+- 4™ ") Bmr(9);
(ii) the set {w € By, : fdesw = k — 1} and the contribution is:
¢ Ben,j—1(a);
(iii) the set {w € By, : fdesw = k — 2} and the contribution is:
(q" o+ ) By oo (q). [

Remark 2. Let m := 1" and B,(t,q) = Bm(t,q), so that B,(t,q)
is now the generating polynomial for the set of signed permutations of
order n. Then (7.3), (7.4) and (7.5) become

1+1)
(7.7) (é;’q Zt51+q+ 4"

(7.8) (1 —q)By,(t,q) = (1 — t2q2”)Bn_1(t, q) —q(1—t)(1+tq)B,-1(tq, q).

+¢"Bp-1-1(q) + (" + "+ + ") B k—2(q).

The last three relations have been derived by Brenti et al. [ABRO1], Chow
and Gessel [ChGe04], Haglund et al. [HLRO04].

Concluding remarks. The statistical study of the hyperoctahedral
group B, was initiated by Reiner ([Re93a], [Re93b], [Re93c|, [Re95a],
[Re95b]). It had been rejuvenated by Adin and Roichman [ARO01] with
their introduction of the flag-major index, which was shown [ABRO1] to
be equidistributed with the length function. See also their recent papers on
the subject [ABRO5], [ReRo05]. Another approach to Theorems 1.1 and 1.2
would be to make use of the Cauchy identity for the Schur functions, as
was done in [ClFo95b].
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SIGNED WORDS AND PERMUTATIONS, IV;
FIXED AND PIXED POINTS

Dominique Foata and Guo-Niu Han

Von Jacobs hat er die Statur,
Des Rechnens ernstes Flihren,
Von Lottarchen die Frohnatur
und Lust zu diskretieren.

To Volker Strehl, a dedication a la Goethe,
on the occasion of his sixtieth birthday.

Abstract

The flag-major index “fmaj” and the classical length function “¢” are used to
construct two g-analogs of the generating polynomial for the hyperoctahedral
group By by number of positive and negative fixed points (resp. pixed points).
Specializations of those g-analogs are also derived dealing with signed derange-
ments and desarrangements, as well as several classical results that were previ-
ously proved for the symmetric group.

1. Introduction

The statistical study of the hyperoctahedral group B, initiated by
Reiner ([Re93a], [Re93b], [Re93c|, [Re95al, [Re95Db]), has been rejuvenated
by Adin and Roichman [ARO1] with their introduction of the flag-major
indez, which was shown [ABRO1] to be equidistributed with the length
function. See also their recent papers on the subject [ABRO5], [ReRo05].
It then appeared natural to extend the numerous results obtained for the
symmetric group &,, to the groug B,,. Furthermore, flag-major index and
length function become the true g-analog makers needed for calculating
various multivariable distributions on B,,.

In the present paper we start with a generating polynomial for B,, by a
three-variable statistic involving the number of fixed points (see formula
(1.3)) and show that there are two ways of g-analogizing it, by using the
flag-major index on the one hand, and the length function on the other
hand. As will be indicated, the introduction of an extra variable Z makes
it possible to specialize all our results to the symmetric group. Let us first
give the necessary notations.

Let B, be the hyperoctahedral group of all signed permutations of
order n. The elements of B,, may be viewed as words w = z1x2 - Tn,

2000 Mathematics Subject Classification. Primary 05A15, 05A30, 05E15.

Key words and phrases. Hyperoctahedral group, length function, flag-major index,
signed permutations, fixed points, pixed points, derangements, desarrangements, pixed
factorization.
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where each z; belongs to {—n,...,—1,1,...,n} and |x1||z2| - |x,| is a
permutation of 12...n. The set (resp. the number) of negative letters
among the x;’s is denoted by Negw (resp. negw). A positive fized point
of the signed permutation w = x1xs- -z, is a (positive) integer i such
that x; = 4. It is convenient to write ¢ := —i for each integer i. Also,
when A is a set of integers, let A := {i : i € A}. If x; = i with 4 positive,
we say that i is a negative fized point of w. The set of all positive (resp.
negative) fixed points of w is denoted by Fix' w (resp. Fix~ w). Notice
that Fix~ w C Negw. Also let

(1.1) fixTw := # Fixt w; fix w:=#Fix~ w.

There are 2"n! signed permutations of order n. The symmetric group &,
may be considered as the subset of all w from B,, such that Negw = ().

The purpose of this paper is to provide two q-analogs for the polyno-
mials B, (Yp, Y1, Z) defined by the identity

- B . 1 o exp(u(YO + YIZ))
ZmBn(YO,YhZ) =(1-u(l+2) exp(u(l+ 2))

n>0

When Z = 0, the right-hand side becomes (1 — u)~!exp(uYp)/ exp(u),
which is the exponential generating function for the generating polyno-
mials for the groups &,, by number of fixed points (see [Ri58], chap. 4).
Also, by identification, B, (1,1,1) = 2"n! and it is easy to show (see The-
orem 1.1) that B, (Yp, Y1, Z) is in fact the generating polynomial for the
group B,, by the three-variable statistic (fix™, fix ", neg), that is,

(1.2)

(1.3 Ba(Yo Y1, 2) = 3 Y vy w g,
weB,

Recall the traditional notations for the g-ascending factorials

1, 1fn :O;
(1.4) (a;q)n = { 1—a)1—aq)---(1—ag""), ifn>1;

(@; @)oo == [J (1 —ag™™);

n>1

for the g-multinomial coefficients
(1.5) [ = &9) (my + - +mg =n);
and for the two g-exponentials (see [GaRa90, chap. 1))

ml,...,ka (& Dmi - (G D
umeMFZ( = )'%W=Z %zmmw

o @ Dn (450)eo = (@
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Our two g-analogs, denoted by ‘B, (q,Yy,Y1,Z) and B,(q, Yo, Y1, Z),
are respectively defined by the identities:

U’I’L
1.7 ‘Bn(q,Yo,Y1,Z
(L.7) n%:g (=Z¢;0)n (¢ 9)n (¢, Yo, 11, 2)

U\ —qYy 4)n (u¥o)"
:(1_1_q) X (0o (HZZ%( q(Y_OZZIQZ)nq()q;((J)fw >;

n

u
(1'8) ZWBn(%YO,Yl,Z)
= _(1_u1+q2>—1 (4;¢%) o0 (—uqY1Z;¢%)so

1—q? (uY0:¢%)o0 (—uGZ;¢%) o

Those two identities can be shown to yield (1.2) when ¢ = 1.

There is also a graded form of (1.8) in the sense that an extra
variable ¢ can be added to form a new polynomial B,,(t, q, Yy, Y1, Z) with
nonnegative integral coefficients that specializes into B, (q, Yo, Y7, Z) for
t = 1. Those polynomials are defined by the identity

n

u
1.9 1+8)B(t,q, Y0, Y1, 7)o
I L e

u ; 70 -1 ; 2 s - YZ: 2 s
:Zts(l—uquz)(( dd)) L (i )2L j2)+1 (—ughy §>L( +1)/2)
pae (uYo; @) s/2141 (—uqZ;56%) | (s41)/2)

s>0

where for each statement A we let x(A) = 1 or 0 depending on whether A
is true or not. The importance of identity (1.9) lies in its numerous
specializations, as can be seen in Fig. 1.

The two g-extensions ‘B,,(q, Yy, Y1, Z) and B, (t, q, Yo, Y1, Z) being now
defined, the program is to derive appropriate combinatorial interpretations
for them. Before doing so we need have a second combinatorial interpreta-
tion for the polynomial B, (Yo, Y1, Z) besides the one mentioned in (1.3).
Let w = x129 - - - x,, be a word, all letters of which are integers without any
repetitions. Say that w is a desarrangement if x1 > xo > -+ > w9 and
Top < Taog4+1 for some k > 1. By convention, z,,+1 = co. We could also say
that the leftmost trough of w occurs at an even position. This notion was
introduced by Désarménien [De84]| and elegantly used in a subsequent
paper [DeWa88|. Notice that there is no one-letter desarrangement. By
convention, the empty word e is also a desarrangement.

Now let w = x1x5 - - - ,, be a signed permutation. Unless w is increasing,
there is always a nonempty right factor of w which is a desarrangement.
It then makes sense to define w? as the longest such a right factor.
Hence, w admits a unique factorization w = w-wtw?, called its pized ™

(1) “Pix,” of course, must not be taken here for the abbreviated form of “pictures.”
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factorization, where w~ and w™ are both increasing, the letters of w™
being negative, those of wt positive and where w? is the longest right
factor of w which is a desarrangement.

For example, the pixed factorizations of the following signed permuta-
tions are materialized by vertical bars: w =52 | e |341;w=5|e|2314;
w=>532|14|e; w=53]1[42; w=53|e|412.

Let w = w-wTw? be the pixed factorization of w = z1z9-- - z,.
If w= = @y xp, wh = xpy1- TRy, define Pix~ w := {z1,..., 21},
Pixtw := {xpi1,..., 24}, Pix~ w := # Pix~ w, pixt w := # Pix" w.

Theorem 1.1. The polynomial B,,(Yy, Y1, Z) defined by (1.2) admits the
following two combinatorial interpretations:

Bn<Y07 Yl, Z) = Z YOﬁx+ w Ylﬁx_ w gmegw _ Z }/()pixJr w Ylpix7 w pnegw

Theorem 1.1 is proved in section 2. A bijection ¢ of B,, onto itself will be
constructed that satisfies (Fix™, Fix™, Neg) w = (Pix~, Pix", Neg) ¢(w).

Let “¢” be the length function of B,, (see [Bo68, p. 7], [Hu90, p. 12]
or the working definition given in (3.1)). As seen in Theorem 1.2,
“¢” is to be added to the three-variable statistic (pix™,pix~,neg) (and
not to (fix",fix~,neg)) for deriving the combinatorial interpretation of
‘B,.(q, Yy, Y1, Z). This theorem is proved in section 3.

Theorem 1.2. For each n > 0 let ‘B,(q,Yy,Y1,Z) be the polynomial
defined in (1.7). Then

(110) eBn(Q7 YO7 Y17 Z) — Z qE(w) 1/"0[)ix+ w YlpiX7 W negw .
weB,

The variables t and ¢ which are added to interpret our second extension
B,(t,q,Yp, Y1, Z) will carry the flag-descent number “fdes” and the flag-
major index “fmaj.” For each signed permutation w = xixs---x, the
usual number of descents “des” is defined by desw := Z?:_ll X(z; > Tip1),

the major index “maj” by majw := 2?:_11 ix(z; > xiy1), the flag descent
number “fdes” and the flag-major index “fmaj” by

(1.11)  fdesw :=2desw + x(z1 < 0); fmajw :=2majw + negw.

Theorem 1.3. For each n > 0 let B,(t,q, Yy, Y1,Z) be the polynomial
defined in (1.9). Then

1.12 Bn t, q, YO, Yl, 7) = tfdesw qfrnaj w Yﬁx+ w Yﬁx7 w negw
0 1

weB,
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Theorem 1.3 is proved in Section 5 after discussing the combinatorics
of the so-called weighted signed permutations in Section 4. Section 6
deals with numerous specializations of Theorem 1.2 and 1.3 obtained by
taking numerical values, essentially 0 or 1, for certain variables. Those
specializations are illustrated by the following diagram (Fig. 1). When
Z = 0, the statistic “neg” plays no role and the signed permutations
become plain permutations; the second column of the diagram is then
mapped on the third one that only involves generating polynomials for G,,
or subsets of that group.

pB Umaifixtoneg) BBy 7)™ Du(q) &M D,

fdes ldes

DE(t,q,Y1,2) % Du(t,q)

lﬁ,ﬁ lﬁ,ﬁ
Bu(t,q, Yo, Y1,2) ~—— An(t,q,Y0)

fdes

Bn(qay()aYlaZ) neg ATL(

|

q
Tfmaj Tmaj

(

(ﬁx+,ﬁx7 ,neg)

fxT
Bpn—— % Ba(Yo,Y1,Z) "2 A,(Yo) <& &,
(pix+ ,pix ™ ,neg) l l pix+
4 inv

neg

EBn(qa YO; Y17 Z) I invAn(Q; YO)

Tpix"' Tpix""

B_____ 5 ZKB Yi.7 ﬁ ian ‘inv K
n . n (q7 1, ) n (q) ) . n
(¢,pix ™ ,neg) ima

Fig. 1

The first (resp. fourth) column refers to specific subsets of B,, (resp.

of 6,):
) D, = {wEBn:FiX+w:Negw:®};

K, :={we€ B, : Pix" w = Negw = 0};
DE .= {w e B, : Fixtw = 0};
KT‘? = {w € B, : Pixtw = 0}.

(1.13)

The elements of D, are the classical derangements and provide the
most natural combinatorial interpretations of the derangement numbers
d,, = #D,, (see [Co70], p. 9-12). By analogy, the elements of D5 are called
signed derangements. They have been studied by Chow [ChO06] in a recent
note. The elements of K,, (resp. of K2) are called desarrangements (resp.
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signed desarrangements) of order n. When Yy = 0, the statistic fix™ (resp.
pix™) plays no role. We can then calculate generating functions for signed
and for plain derangements (resp. desarrangements), as shown in the first
two rows (resp. last row). The initial polynomial, together with its two
g-analogs are reproduced in boldface.

2. Proof of Theorem 1.1

As can be found in ([Co70], p. 9-12)), the generating function for the
derangement numbers d,, (n > 0) is given by

(0 _ -1 _—u
(2.1) Z%dnm—(l—u) e .

An easy calculation then shows that the polynomials B, (Yo, Y1, Z), intro-
duced in (1.2), can also be defined by the identity

n . . .
(22) Bn(Y0,Y1,2)= Y (Z - Z)Y(}Yf ZI e dey (n>0).
i—i-j—i-k—l—l:n 7]7 ’
For each signed permutation w = xix9---x, let A = Fix™ w, B =

Fix~ w, C := Negw \ Fix~w, D := [n]\ (AU BUC). Then (4, B,C, D)
is a sequence of disjoint subsets of integers, whose union is the interval
[n] := {1,2,...,n}. Also the mapping 7 defined by 7(j) = z; if j € C
and 7(j) = z; if j € D is a derangement of the set C' + D. Hence, w is
completely characterized by the sequence (A, B,C, D, 7). The generating
polynomial for B,, by the statistic (fix™, fix",neg) is then equal to the
right-hand side of (2.2). This proves the first identity of Theorem 1.1.

Each signed permutation w = zjx9---x, can be characterized, either
by the four-term sequence (Fix™ w, Fix~ w, Negw, 7), as just described, or
by (Pix™ w, Pix~ w, Neg w, w?), where w? is the desarrangement occurring
as the third factor in its pixed factorization. To construct a bijection ¢
of B, onto B, such that (fix™,fix",neg)w = (pix~,pix",neg)s(w)
and accordingly prove the second identity of Theorem 1.1, we only
need a bijection 7 +— f(7), that maps each derangement 7 onto a
desarrangement f(7) by rearranging the letters of 7. But such a bijection
already exists. It is due to Désarménien (op. cit.). We describe it by means
ofan example. (123456789

art with a derangement 7 = (. 4056y
product of its disjoint cycles: 7 = (19)(276)(34)(58). In each cycle,
write the minimum in the second position: 7 = (91)(627)(43)(85). Then,
reorder the cycles in such a way that the sequence of those minima, when
reading from left to right, is decreasing: T = (85)(43)(627)(91). The
desarrangement f(7) is derived from the latter expression by removing
the parentheses: f(7) =854362791.

and express it as a
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Let (Fix™ w,Fix~ w,Negw,7) be the sequence associated with the
signed permutation w and let v~ (resp. v™) be the increasing sequence
of the elements of Fix~ w (resp. of Fix" w). Then, v~ | v+ | f(7) is the
pixed factorization of v~ v™ f(7) and we may define ¢(w) by

(2.3) d(w) = v vt f(7).
This defines a bijection of B,, onto itself, which has the further property:
(2.4) (Fix~, Fix", Neg) w = (Pix ™, Pix", Neg) ¢(w).
For instance, with w = 12345?7%9 we have vt = 45, v= = 2,
136789 \328451967 o
T = (38T967) =(97)(8613) and f(7) = 978613. Hence, the pixed

factorization of ¢(w) reads 2 |45]978613 and ¢(w) =245978613.

3. Proof of Theorem 1.2

The length function “¢” for B,, is expressed in many ways. We shall use
the following expression derived by Brenti [Br94|. Let w = 125 -z, be
a signed permutation; its length ¢(w) is defined by

(3.1) U(w) = invw+ Y |a] x(z; < 0),
i
where “inv” designates the usual number of inversions for words:

invw = Z x(x; > xj).
1<i<j<n

The generating polynomial for K,, (as defined in (1.13)) by “inv” (resp.
for D,, by “maj”) is denoted by K, (q) := "V K,(q) (resp. D, (q)). As was
proved in [DeWa93| we have:

(3'2) Kn(Q) = Dn(Q)'
Also
(3.3) S = (1-72) o

as shown by Wachs [Wa90] in an equivalent form. Another expression
for D,,(q) will be derived in section 6, Proposition 6.2.

If A is a finite set of positive integers, let tot A denote the sum ) a
(a € A). For the proof of Theorem 1.2 we make use of the following

classical result, namely that ¢V(N+1)/2 [mq is equal to the sum Y g*ot4,

where the sum is over all subsets A of cardinality N of the set [n].
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Remember that each signed permutation w = z1xs...x, is charac-
terized by a sequence (A, B,C, D, ), where A = Pix™ w, B = Pix~ w,
C = Negw\ B, D = [n]\ (AUBUQC) and 7 is a desarrangement of
the set C + D. Let inv(B,(C) be the number of pairs of integers (i, )
such that i € B, j € C and i > j. As inv(B,C) = inv(C, B), we have
invw = inv(B,C) + inv(A, D) + #A x #C + inv 7. From (3.1) it follows

that

l(w) =invw + Z |z;| = invw + tot B + tot C
x; <0
=tot B + tot C + inv(C, B) +inv(A, D) + #A x #C + inv 7.

Denote the right-hand side of (1.10) by G, = Gi(q, Yo, Y1,2).
We will calculate G, (q,Yp,Y1,Z) by first summing over all sequences
(A,B,C, D, 1) such that #A =i, #B = j, #C =k, #D = [. Accordingly,

T is a desarrangement of a set of cardinality k£ + [. We may write:

Q. — tot B+tot C+inv(C,B)+inv(A,D)+i-k
n = q
i+j+k+l=n (A,B,C,D) XYOiylj'Zj—l—k Z qinVT
TEKL 11
_ Z Z Z Z qtot E+inv(C,B)+inv(A,D)+i-k
+p=n j+k=m, #E=m, C+B— ' ik
mAp=R jakom, #h=m. C+B=E, x Yo (Y1Z)’ Z" Dy 11(q)

itl=p F=[n]\E A4{D=F

= Y > Yi(Z2)(2q")*Disilq)

m~+p=n j+k=m, « tot inv(C,B)+inv(A,D)
i+l=p q q

#E=m,  C4B=E,
F=[r\E  A4+D=F

= Y > Yi(MZ2)(2q")*Diyilq)

m+p=n j;rfl::?: qu(m+1)/2|:n:| [m} [p} .
m], L, k], i1,
Thus
n bkt , ;
(3.4) G, = Z L - l] q(J 2 )Y(}(Y1Z)J(Zq2)ka+z(Q).
itjtktl=n y Jy oy q

Now form the factorial generating function

un

G(Q7YO7Y17 Z?“) = Z

Gn(q, Y0, Y1, Z).
=5 (26D (6 D)n (0 Yo, 4, 2)
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It follows from (3.4) that

Glg, Yo Y0, Ziu) =S ——— 34U (uYp)’ (uY12)’
R = CZadn G (©:90)i (6:9);
« =i Drr(@)(Zg)"
(kg Q)
But (‘5T = (3 + (j + 1)k + (§). Hence
- () (o)’ (uv12)!
G, Yo, Vi,Z:u) =y ——— q
(¢, Yo, Y1 ) ;0( Zq’ :Oz—i-;m ;Q)i (a:9);
un_m n—m k
e pat) X "] e,
(6 Dn—-m P B A
Now — )
(_qu—H;Q)n—m: Z [ bl :| (qu+1>kq(2);
k+l=n—m ) q
and
(~Z¢;0)n = (=26 ) m (= 2™ Q) nem
Hence
(U/Yo)l (H—l) (Ule)
G(Q7Y:Y7Z u q
v 1;)17;) Zq’ Zﬂzm (¢;9)i (¢:9)
un—m
X Dn—m
(¢;9) (@)
Ay u" u™
= (> ) (> —Dul0),
(nzo (_ZQ7 Q>n (Qa Q)n) (nzo ((L q>n )
with

— L_ZLYO(JU(QEZ)

n (i
o 7 Yy 'v12)iq()
Y | @izt
i+j=n q
= Y0n<_qY()—1YIZ; Q)n~
By taking (3.3) into account this shows that G(q, Yo, Y1, Z;u) is equal to
the right-hand side of (1.7) and then G, (¢, Yo, Y1, Z) = ‘B, (q, Yy, Y1, Z)
holds for every n > 0. The proof of Theorem 1.2 is completed. By (3.4)
we also conclude that the identity

n Jj+k+1 . .
(3.5) Bulg, Yo 0. 2) = 3 [Z " l] OV (i 2) (Z6) Desi(a)
itjthri=n LI g
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is equivalent to (1.7). As its right-hand side tends to the right-hand side
of (2.2) when ¢ — 1, we can then assert that (1.7) specializes into (1.2)
for g = 1.

4. Weighted signed permutations

We use the following notations: if ¢ = cyco---¢, is a word, whose
letters are nonnegative integers, let A(c) := n be the length of ¢, totc :=
c1 +ca + -+ + ¢, the sum of its letters and odde¢ the number of its
odd letters. Furthermore, NIW,, (resp. NIW,(s)) designates the set of all
nonincreasing words of length n, whose letters are nonnegative integers
(resp. nonnegative integers at most equal to s). Also let NIW¢ (s) (resp.
DW?(s)) be the subset of NIW,(s) of the nonincreasing (resp. strictly
decreasing) words all letters of which are even (resp. odd).

Next, each pair (C) is called a weighted signed permutation of order n

if the four propertieéu (wspl)—(wsp4) hold:
(wspl) ¢ is a word cics - - - ¢, from NIW,,;
(wsp2) w is a signed permutation z1xs - - -z, from By;
(wsp3) ¢k = k41 = T < Tpaq forall k=1,2,...,n—1;
(wsp4) xy, is positive (resp. negative) whenever ¢y is even (resp. odd).

When w has no fixed points, either negative or positive, we say that (5))

is a weighted signed derangement. The set of weighted signed permutations

(resp. derangements) (1‘;) = (51‘32 en ) of order n is denoted by WSP,, (resp.
1Z2 " Tn

by WSD,,). The subset of all those weighted signed permutations (resp.
derangements) such that ¢; < s is denoted by WSP,,(s) (resp. by WSD,,(s)).

For example, the following pair

1 213/456|(789|10[1112|13
¢\ _ (101097771444 3| 2 2|1
w 1 2|7/654|389(10(1213|11
is a weighted signed permutation of order 13. It has four positive fixed
points (1, 2, 8, 9) and two negative fixed points (5, 10).

Proposition 4.1. With each weighted signed permutation (5)) from the
set WSPy,(s) can be associated a unique sequence (i, j,k, (£,),v¢ v°) such
that

(1) i, j, k are nonnegative integers of sum n;

(2) (5;,) is a weighted signed derangement from the set WSD;(s);

(3) v© is a nonincreasing word with even letters from the set NIW$(s);

(4) v° is a decreasing word with odd letters from the set DW%(s);
having the following properties:

tot c = tot ¢ + tot v® + totv?; negw = negw’ + A(v°);

(4.1) fixtw = A\v°); fix w= \(v°).
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The bijection (5)) — ((;l,),ve,vo) is quite natural to define. Only its
reverse requires some attention. To get the latter three-term sequence from
(5}) proceed as follows:

(a) let I, ... , ly (resp. my, ... , mg) be the increasing sequence of the
integers [; (resp. m;) such that z;, (resp. z,,,) is a positive (resp. negative)
fixed point of w;

(b) define: v¢ := ¢, -+ - ¢, and V7 := Cpy - C

(c) remove all the columns (;ll), e (Cla) (le), e (Cma) from (C)
/ . . l1 T Tmq Tmg w
and let ¢’ be the nonincreasing word derived from ¢ after the removal,;
(d) once the letters x;,,...,2;,,m,, ..., Tm, have been removed from

the signed permutation w the remaining ones form a signed permutation
of a subset A of [n], of cardinality n — a — 3. Using the unique increasing
bijection ¢ of A onto the interval [n — o — f3] replace each remaining
letter x; by ¢(x;) if ©; > 0 or by —¢(—=x;) if x; < 0. Let w’ be the signed
derangement of order n — o — 3 thereby obtained.

For instance, with the above weighted signed permutation we have:
v¢ =10,10,4,4 and v° = 7, 3. After removing the fixed point columns we
obtain:

3[46|7]1112]13 1123[4|56]7
9177|4| 2 2| 1| andthen (¢ _ [9|77]4|22]1
7T164(3|1213 |11 w’ 4/32(1|67|5

There is no difficulty verifying that the properties listed in (4.1)
hold. For reconstructing (5)) from the sequence ((;/,),ve, v°) consider the
nonincreasing rearrangement of the juxtaposition product v°v? in the form
b’f1~-~b2{", where by > -+ > by, and h; > 1 (resp. h; = 1) if b; is even
(resp. odd). The pair (5;,) being decomposed into matrix blocks, as shown
in the example, each letter b; indicates where the h; fixed point columns
are to be inserted. We do not give more details and simply illustrate the

construction with the running example.

With the previous example b . bPm = 102742 3. First, implement

102:
1 2 1(3|45|6|78]9

10 10 77141221 ];
1 2 54(3|89|7

o ©

then 7:
911
2

—_
)
—
)

~ © W

O N o~

il g Ot

= O

7
4
3

© DN 0o

[—
ool — O

0

notice that because of condition (wsp3) the letter 7 is to be inserted in
second position in the third block;
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then insert 42:

1 213/456|789(1011]12
10109 |777|444| 2 2| 1

1 2|7/654|1389(1112/(10

The implementation of 3 gives back the original weighted signed permu-
tation (;)

5. Proof of Theorem 1.3

It is g-routine (see, e.g., [An76, chap. 3]) to prove the following identi-
ties, where vy is the first letter of v:

1 B N+n-1 n. N+n B tot .
<u;q>N—Z{ o [N e

n>0 vENIW,, (N)
1
_ Z u™ Z qtotv _ Z qtot vuvl;
(w; )N+ n>0  veNIW, (N) 1—u vENIW,,
(5'1) (— _ Z u Z tht ’Ue;
JLs/2)41 n>0  veeNIWE (s)

(5.2) (—uq; @) ((ss1yy2) = D_u" Y g

n>0 v°€DW? (s)

The last two formulas and Proposition 4.1 are now used to calculate
the generating function for the weighted signed permutations. The symbols
NIW€(s), DW°(s), WSP(s), WSD(s) designate the unions for n > 0 of the
corresponding symbols with an n-subscript.

Proposition 5.2. The following identity holds:

Z u™ Z qtot cYOﬁxJr wYIﬁx7 w neg w
nz0  (£)EWSP,(s)

) 2 s - YZv s
S ey e
0597)|s/2]+1 975 ¢* L(s+1)/2] n>0 ()EWSP"(S)
Proof. First, summing over (w® w° (J)) € NIW®(s) x DW°(s) x
WSP(s), we have

Z u)\(we)qtot w® « (UZ))\(wo)qtot w? « u)\(c)qtot cY'OﬁxJr wYIﬁx7 w negw
we,wo,(:f))

— Z s
(5.4) _ (—uqZ;q )L( +0/2) Zux(c) totcyﬁx wylﬁx w negw
(43 G%) 1s/2)+1 B

w
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by (5.1) and (5.2). Now, Proposition 4.1 implies that the initial expression
can also be summed over five-term sequences ((;,),ve,vo,we,wo) from

WSD(s) X NIW®(s) x DW?(s) X NIW¢(s) x DW?(s) in the form

Z uA(c’)qtot c zmeg w'’ % (uYO)A(ve)qtot v o (UYIZ)A(vo)qtot v°

(,j//),ve,v“,we,wo x u)\(we)qtotwe « (UZ))\(wo)qtotwo
_ Z (UYO)A(UE)qtot v° > (UYIZ>A(v0)qtot v°

> Z u)\(c')qtot c'Zneg w’ « u)\(we)qtot w® > (UZ))\(wo)qtot wo‘
(;’/>7we7fwo

The first summation can be evaluated by (5.1) and (5.2), while by

Proposition 4.1 again the second sum can be expressed as a sum over

weighted signed permutations () € WsP(s). Therefore, the initial sum is

also equal to

—uqVi Z;¢%) (s
(55> ( uqriz;q )l_( +1)/2] x Z u)\(c)qtothnegw‘

Y- 2
(wY0; 4%) [s/2)+1 (2)eWsP(s)

Identity (5.3) follows by equating (5.4) with (5.5). []
Proposition 5.3. The following identity holds:

(56) Z u" Z qtot cymegw _ (1 . uiqizx(i odd)>—1.
1=0

n20  (¢)eWSP,(s)

Proof. For proving the equivalent identity

(57> Z qtot cpmegw _ (ZS: qux(z Odd))n (n > O)

(2)EWSP,(s) i=0

it suffices to construct a bijection () — d of WSP,(s) onto {0,1,...,s}"
such that tot ¢ = tot d and neg w = odd d. This bijection is one of the main
ingredients of the MacMahon Verfahren for signed permutations that has
been fully described in [FoHa05, § 4]. We simply recall the construction of
the bijection by means of an example.

Start with (5}) = (1097442211). Then, form the two-matrix

143256897
(1097442211

1 43256897)’ where the negative integers on the bottom row have
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been replaced by their opposite values. Next, rearrange its columns in such
a way that the bottom row is precisely 12 ... n. The word d is defined
. . . d 1047942121
to be the top row in the resulting matrix. Here (Id):(l 9345678 9).
As d is a rearrangement of ¢, we have tot ¢ = tot d and negw = odd d. For
reconstructing the pair (5)) from d = dyds - - - d,, simply make a full use of
condition (wsp3).
Using the properties of this bijection we have:

Z qtothnegw _ Z qtotdZOddd _ Z ﬁqdizx(di odd)

(£)EWSP,(s) de{0,1,...,s}m de{0,1,...,s}mi=1
- ) 5 ® i i odd)\ "
_ H Z % Zx(di 0dd) _ (Zq X )). 0
t=1d;€{0,1,...,s} i=0

Proposition 5.4. Let G,,:= G, (t,q, Yo, Y1, Z) denote the right-hand side
of (1.12) in the statement of Theorem 1.3. Then

1+t S otc X w ne w
(5.8) (7527 =3t 37 gty it vy fixTw gmes
Jnt1 520 (£)eWSP,(s)

Proof. A very similar calculation has been made in the proof of
Theorem 4.1 in [FoHa05]. We also make use of the identities on the g-
ascending factorials that were recalled in the beginning of this section.
First,

1+t _ Z(t2,r/ +t2,r/+1>|in+7“/:|
2

r/

T LT

r>0 r>0  bENIW, (|r/2])
Then,
(t21+t E t" E 2tot b E : tfdesw fmajwyﬁx wyﬁx w neg w
1 q r>0  bENIW,, w€EB,
2b1<r

— § : 5 2 : q2 tot b+fmaj wYOﬁx+ wYIﬁx_ w negw .

s>0  bENIW,,,weEB,
2b1 +fdes w<s

As proved in [FoHa05, §4] to each (&) = (Cl'”c’;) € WSP,(s) there

X1

corresponds a unique b = by - - - b, € NIW,, such that 2b; + fdesw = ¢; and
2tot b+ fmajw = tot c. Moreover, the mapping (5)) — (b, w) is a bijection
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of WSP,,(s) onto the set of all pairs (b, w) such that b = by ---b, € NIW,,
and w € B,, with the property that 2b; + fdesw < s.

The word b is determined as follows: write the signed permutation w
as a linear word w = x125 ...z, and for each k =1,2,...,n let z; be the
number of descents (x; > x;41) in the right factor xxxgy1 - - - 2, and let
be equal to 0 or 1 depending on whether xj is positive or negative. Also
for each k =1,2,...,n define ay := (cx — €x)/2, by := (ar — zx) and form
the word b = by - - - b,.

For example,

Id=12345678 9 10
c=977444221 1
w=4321568910 7
z=111111110 0
e =111000001 1
a =433222110 0
b=322111000 O

Pursuing the above calculation we get (5.8). []

We can complete the proof of Theorem 1.3:

un

(]' + t>Gn(t7 q, YO: Y17 Z>7
s n otc xtw X w rynegw
= Zt Zu Z gieteyfixt wyfix— w zmeg [by (5.8)]
520 n20 (°)eWSP,(s)
_ Zts (u; q2>Ls/2J+1 (—ug¥1 Z; q2)\_(s—|—1)/2j
= (uY0;4%)1s/2)41 (—uqZ56%)|(s+1)/2)

x Y ut > gtezmE by (5.3)]

n20 (5)EWSP,(s)

= ZtS (1 — uiinX(i Odd)>_1
i=0

s>0

(w3 ¢%) |s/2)41  (—uqY1Z;6%) | (s41) /2]
(uY0;6%) 1s/2)41 (—uaZ;4?) | (s41) /2]

[by (5.6)].

Hence, G, (t,q,Yy,Y1,Z) = By(t,q, Yo, Y1, Z) for allm > 0. []

6. Specializations

For deriving the specializations of the polynomials ‘B, (q, Yo, Y1, Z)
and B, (t,q,Yo,Y1,Z) with their combinatorial interpretations we refer
to the diagram displayed in Fig. 1. Those two polynomials are now re-
garded as generating polynomials for B, by the multivariable statistics
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(¢, pixt, pix~, neg) and (fdes, fmaj, fix", fix ", neg), their factorial generat-
ing functions being given by (1.7) and (1.9), respectively.

First, identity (1.8) is deduced from (1.9) by the traditional token that
consists of multiplying (1.9) by (1 — ¢) and making ¢t = 1. Accordingly,
B.(q,Y0,Y1,Z) occurring in (1.8) is the generating polynomial for the
group B,, by the statistic (fmaj, fix", fix ", neg).

Now, let

un

(6.1) B<Q7Y07Y17Z;u) = Z

Bn(Q7YO7Y17Z)'
2. 42
= (@%4%)n

The involution of B,, defined by w = x1x9-- 2, — W := T1T2 T, has
the following properties:

(6.2) fmajw + fmaj@w = n?; negw + negW = n;

(6.3) fix"w = fix”w; fix w=fix"w.

Consequently, the duality between positive and negative fixed points must
be reflected in the expression of B(q, Yy, Y1, Z;u) itself, as shown next.

Proposition 6.1. We have:
(6.4) B(q,Y0,Y1,Z;u) = B(q~ ', Y1,Y0, Z7 Y —uq™ ' Z).

Proof. The combinatorial proof consists of using the relations written
in (6.2), (6.3) and easily derive the identity

(65) Bn(Q7Y07Y17Z) :qn2zn Bn(q_17Y17YO7Z_1)'

With this new expression for the generating polynomial identity (6.1)
becomes

—uq )"
B, Yo, V1, Ziu) = 3 2"

B, (¢ Y1,Yy,Z27h)
—2. -2 ) ) ) I
= (@207 %)

which implies (6.4).
The analytical proof consists of showing that the right-hand side of
identity (1.8) is invariant under the transformation

(¢,Yo,Y1,Z,u) v (¢, Y1, Y0, 271, —uq™ ' 2).

The factor 1 — u(1 + ¢Z)/(1 — ¢?) is clearly invariant. As for the other
two factors it suffices to expand them by means of the g-binomial theorem
(|[GaRa90], p. 7) and observe that they are simply permuted when the
transformation is applied. []
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The polynomial DJ (t,q,Y1, Z) := By(t,q,0,Y1,Z) (resp. DF(q, Y1, Z)
:= B,(q,0,Y1,7)) is the generating polynomial for the set DZ of
the signed derangements by the statistic (fdes,fmaj, fix ™, neg) (resp.
(fmaj, fix ", neg)). Their factorial generating functions are obtained by let-
ting Yo = 0 in (1.9) and (1.8), respectively.

Let Yo = 0, Y1 = 1 in (1.8). We then obtain the factorial generating
function for the polynomials D2(q, Z) := Y ¢maiwzneew (y € DP) in
the form

n

6.6) (2“72

=5 (4% ¢%)n

1+qZ)—

B _ .2
Dn(Q7Z)_(1_u1_q2 X(”vQ)oo

It is worth writing the equivalent forms of that identity:

(%5 ¢°)n ~[n .
67 (e =3 1] Rw2) 20

(6.8) DB(q, Z):i m(—mqu(k—”%(w qZ)" " (n=>0);

o Ll g2 e
(6.9) DF(¢,Z)=1, andforn>0
2n—+2
—q n n(n
Dy (g, Z) = (1+ qZ)ﬁDf(q, Z)+ (1) Hgrinth,
(6.10) D (q,Z) =1, DP(q,Z)=Zq, andforn > 1
B 1_q2n 1_q2n—|—2 B
Dn+1(q7Z) = ( 1 _q2 +q21_7q2>Dn <Q7Z)
2n
+(1+42)q™ —— 5 Di"1 (0, 2).

Note that (6.8) is derived from (6.6) by taking the coefficients of u™ on
both sides. Next, multiply both sides of (6.6) by the second ¢?-exponential
E2(—u) and look for the coefficients of u™ on both sides. This yields (6.7).
Now, write (6.6) in the form

611)  Bp(-u)=(1- i‘f}z) Z B(q. Z)

and take the coefficients of u™ on both sides. This yields (6.9). Finally,
(6.10) is a simple consequence of (6.9).

When Z = 1, formulas (6.6), (6.8), (6.9) have been proved by Chow
[Ch06] with DZ(q) =Y, ¢™*% (w € DB).
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Now the polynomial K2(q,Y1,Z) := ‘B,(q,0,Y1, Z) is the generating
polynomial for the set KB of the signed desarrangements by the statistic
(¢, pix,neg). From (1.7) we get

un

©12) 3 Zgon @, Y

n>0
> w - (") u)"
= (1 1 q> 1 X (U5 q)oo <nzzo (q—Zq; q()il(Zq; zl)n)

When the variable Z is given the zero value, the polynomials in the
second column of Fig. 1 are mapped on generating polynomials for the
symmetric group, listed in the third column. Also the variable Y7 vanishes.

Let A, (t,q,Ys) := Bn(t'/2,¢"/%,Y;,0,0). Then

(6.13) An(t g, Yp) = Y t957¢maioy e (fix .= fix").
occ6,

Identity (1.9) specializes into

(6.14) ZAn(t,q,YO Zt5<1—uz >_ #

n>0 n—|—1 s—l—l

an identity derived by Gessel and Reutenauer ([GeRe93], Theorem 8.4)
by means of a quasi-symmetric function technique. Note that they wrote
their formula for “1 4 des” and not for “des.”

Multiply (6.14) by (1—t) and let ¢ := 1, or let Z := 0 and ¢* be replaced
by ¢ in (1.8). Also, let A, (q,Yp) := ., ¢™¥°Y 7 (5 € &,,); we get

S S b

=5 (@ D)n

an identity derived by Gessel and Reutenauer [GeRe93] and also by Clarke
et al. [ClHaZe97] by means of a g-Seidel matrix approach.
We do not write the specialization of (6.14) when Y, := 0 to obtain

the generating function for the polynomials D, (t,q) := > tdesogmaio,
ceD,
As for the polynomial D, (q) := Y ¢™® 7 it has several analytical
ceD,
expressions, which can all be derived from (6.7)—(6.10) by letting Z := 0
and ¢? being replaced by q. We only write the identity which corresponds

o (6.7)

(6.16) Do(q) =1 and % = kz_o Bj qu(q) forn > 1,

which is then equivalent to the identity

(6.17) eq<u)Z(LDn(q):(1— u )_1.

— (¢ @)n 1—¢q
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The specialization of (6.8) for Z := 0 and ¢? replaced by ¢ was originally
proved by Wachs [Wa98] and again recently by Chen and Xu [ChXu06].
Those two authors make use of the now classical MacMahon Verfahren,
that has been exploited in several papers and further extended to the case
of signed permutation, as described in our previous paper [FoHa05].

In the next proposition we show that D, (q) can be expressed as a
polynomial in g with positive integral coefficients. In the same manner,
the usual derangement number d,, is an explicit sum of positive integers.
To the best of the authors’ knowledge those formulas have not appeared
elsewhere. In (6.19) we make use of the traditional notation for the
ascending factorial: (a), =1ifn =0 and (a), =ala+1)---(a+n—1)
if n>1.

Proposition 6.2. The following expressions hold:

1= ¢ (" Qnok1 (20 |
(6:18) Dula) = 3 S—_ (<1-q>2_25511q<2>+q<z>x<neven>,
2<2k<n-—1

(6.19)  dn= > (2k)(2k+2)n_2k-1 + x(n even).

2<2k<n—1

Proof. When ¢ = 1, then (6.18) is transformed into (6.19). As for
(6.18), an easy g¢-calculation shows that its right-hand side satisfies (6.9)
when Z = 0 and ¢ replaced by ¢*/2. As shown by Fu [Fu06], identity (6.18)
can also be directly derived from (6.17) by a simple g-calculation. []

Now, let ™A, (¢, Ys) := ‘Bn(q, Yp,0,0). Then
(6.20) "AL (g, Yo) = Y @™ IYPTT (pix = pix™).
ceS,
Formula (1.7) specializes into

N - v\ (4q)e0
An(g,Yo) = (1 1—q) (uY0; @)oo’

n

(6.21) > ——

= (@ a)n

In view of (6.15) we conclude that
(622) An<Q7 YO) = invAn(Qa YO)

For each permutation o = o(1)---o(n) let the ligne of route of o be
defined by Ligneo := {i : 0(i) > o(i + 1)} and the inverse ligne of route
by lligneo := Ligneo~'. Notice that majo = Y ,ix(i € Ligneo); we
also let imajo := Y, ix(i € lligneo). Furthermore, let i : 0 — o'
If @ designates the second fundamental transformation described in [Fo68],
[FoSc78], it is known that the bijection ¥ :=i®1i of &,, onto itself has the
following property: (Ligne,imaj) o = (Ligne, inv) ¥(o). Hence

(6.23) (pix, imaj) o = (pix, inv) V(o)
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and then A, (g, Yp) has the other interpretation:

(6.24) An(q,Yo) = > gmadoype,
ceG,

Finally, let K,,(¢) := Y. ¢™°. Then, with Y; := 0 in (6.22) we have:
oceEKy,

(6'25> Kn(Q) = invAn(Q70) = An(QvO> = Dn(Q)

However, it can be shown directly that K, (q) is equal to the right-hand
side of (6.18), because the sum occurring in (6.18) reflects the geometry
of the desarrangements. The running term is nothing but the generating
polynomial for the desarrangements of order n whose leftmost trough is
at position 2k by the number of inversions “inv.”

The bijection ¥ also sends K,, onto itself, so that

(6.26) Z ¢nv e = Z PULES

ceK, ceK,

a result obtained in this way by Désarménien and Wachs [DeWa90, 93],
who also proved that for every subset E C [n — 1] we have

(6.27) #{o € D,, : Ligneo = E} = #{o € K,, : lligneo = E}.
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SIGNED WORDS AND PERMUTATIONS, V;
A SEXTUPLE DISTRIBUTION

Dominique Foata and Guo-Niu Han

Abstract

We calculate the distribution of the sextuple statistic over the hyperoctahedral
group B, that involves the flag-excedance and flag-descent numbers “fexc”
and “fdes,” the flag-major index “fmaj,” the positive and negative fixed point
numbers “fixt”? and “fix™” and the negative letter number “neg.” Several
specializations are considered. In particular, the joint distribution for the pair
(fexc, fdes) is explicitly derived.

1. Introduction

As has been shown in our series of four papers ([FoHa07], [FoHa05],
[FoHa06|, [FoHa07al), the length function “¢” (see [Bo68]|, p. 7, or [Hu90],
p. 12) and the flag major index “fmaj” introduced by Adin and Roichman
[ARO1] have become the true g-analog makers for the calculation of
various multivariable distributions on the hyperoctahedral group B, of
the signed permutations. The elements of B, may be viewed as words
w = T1%o - Ty, where each x; belongs to the set {—n,...,—1,1,...,n}
and |x1||za| - - - |2, | is a permutation of 12...n. The set (resp. the number)
of negative letters among the z;’s is denoted by Negw (resp. negw).
A positive fixed point of the signed permutation w = z1xo---x, is a
(positive) integer i such that z; = 4. It is convenient to write i := —i
for each integer i. If x; = ¢ with ¢ positive, we say that 7 is a negative
fized point of w. The set of all positive (resp. negative) fixed points of w is
denoted by Fix' w (resp. Fix~ w). Notice that Fix~ w C Negw. Also let

(1.1) fixtw:=#FixTw; fix w:=#Fix w.

There are 2™n! signed permutations of order n. The symmetric group &,,
may be considered as the subset of all w from B,, such that Negw = ().
When w is an (ordinary) permutation from &,,, then Fix™ w = (), so that
we define Fixw := Fix" w and fix w = # Fix w.

2000 Mathematics Subject Classification. Primary 05A15, 05A30, 05E15, 33D15.

Key words and phrases. Hyperoctahedral group, length function, flag-major index,
flag-excedance number, flag-descent number, signed permutations, fixed points, Lyndon
factorization, decreases, even decreases, g-series telescoping.
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Now, for each statement A let x(A) = 1 or 0 depending on whether A is
true or not. Besides the integer-valued statistics “fix*t,” “fix”” and “neg”
the now classical flag-descent number “fdes”, flag-major index “fmaj” and
flag-excedance number “fexc” are also needed in the following study. They
are defined for each signed permutation w = x5 - - -z, by

fdesw := 2desw + x(z1 < 0);
fmajw := 2majw + negw;
fexcw := 2 excw + neg w;

where “des” is the number of descents desw := Z?:_ll X(x; > xiy1), “maj”
the major index majw := Zg:llix(xi > x,41) and “exc” the number of
n—1 .
excedances excw =y ., x(x; > 1).
Our intention is to calculate the distribution of the sextuple statistic
(fexc, fdes, fmaj, fix ", fix~, neg) on the group B,,. This means that for each
n > 0 the generating polynomial

(1'2) Bn(S, t,q,Yo, Y1, Z) — Zsfexc wyfdes w quaj w YOﬁXJr w Ylﬁx* w negw
weB,

can be considered and, with a suitable normalization, the generating
function for those polynomials be summed. Furthermore, the summation
is to yield an appropriate closed form. Finally, the calculation must be
compatible with the symmetric group &,, in the sense that when the
variable Z is given the zero value, earlier results derived for that group are
to be recovered. As is shown below, this goal will be achieved by working
in the algebra of g-series.

Our derivation has been motivated by the following recent statis-
tical studies on B, and &,. In [FoHaO7a] and [FoHa07b] we have
respectively calculated the generating functions for the polynomials
B,(1,t,q,Y0,Y1,Z) and A, (s,t,q,Yp), where

(1.3) An(s,t,q,Y) = Z gexeopdeso majoy fixo

oceS,
and shown that by giving certain variables specific values the former
statistical results on &,, and B,, could be reobtained. Note that, using the
previous definitions of “fexc,” “fdes” and “fmaj,” the latter polynomial is
nothing but B, (s'/2,t/2,¢'/2,Y,0,0).

In the diagram of Fig. 1 the polynomials on the top (resp. bot-
tom) level are specializations of the polynomial B, (s,t,q, Yy, Y1, Z) (resp.
An(s,t,q,Y)). Each vertical arrow is given a (Z = 0)-label. This means
that when Z is given the 0-value, each polynomial B,,(---) is transformed
into the corresponding polynomial A, (---). The other arrows labelled s,
t and Z indicate that each target polynomial is mapped onto the source
polynomial when s (resp. ¢, resp. Z) is given the 1-value.
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t
Bn(S, 17q7Y07Y13 1) - Bn(sat7qa Y07Y17 1)
Z //é
t
Bn(S, 17 q, Y07 Y17Z) - Bn(s7taqa Y07Y13 Z)
S S
Z=0

Bn(lalaQ7YO7Y1>Z) Bn(17t7q7 OaYIaZ)

n(Svlquy) A’ﬂ(svtquy)
Z=0 / t /
s Z=0
s
An(1,1,4,Y) An(1,t,q,Y)

Fig. 1

The polynomials appearing on the top are all generating polynomials
for the group B,,. Four of them are reproduced in boldface. Their factorial
generating polynomials are derived in the present paper. The generating
functions for the other six polynomials have been explicitly determined in
earlier papers: A, (1,1,q,Y) and A, (1,¢,q,Y) by Gessel and Reutenauer
[GeRe03], then A, (s,1,q,Y) by Shareshian and Wachs [ShWa06], fur-
thermore A, (s,t,q,Y) in [FoHa07b|, finally B,(1,1,q,Yp,Y1,Z) and
B, (1,t,q,Y0,Y1,Z) in [FoHa07a).

The classical notation on g¢-series will be used. First, the g-ascending

factorials .
(a5 q)r = 1, if n =0;
@4 (1—a)(1—aq)---(1—ag" ), ifn>1.
(a; @)oo = [ (1 = ag™™");
n>1
then, the two g-exponentials (see [GaRaQO chap. 1])

eq<u>=2(?” S =340

= (@ ODn (@) =

(—’LL; Q)oo

The main purpose of this paper is to prove the following theorem.

Theorem 1.1. For each n > 0 let By, (s,t,q, Yy, Y1,Z) be the generating
polynomial for the hyperoctahedral group B,, by the six-variable statistic
(fexc, fdes, fmaj, fix ™, fix ", neg) as defined in (1.2). Then, the factorial
generating function for the polynomials B, (s,t,q, Yo, Y1, Z) is given by:

1.4 1+t)Bn(s,t,q, Y0, Y1, 2) oo
(L) 30+ 0B S EBT

u’I’L

. —usqY17Z:;q%)|(r
Ztr L/2J+1 CustnZ O\es)/2) (g4, 2),
UYO, \_T/2J+1 (—usqZ;q )L(r+1)/2J
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where
(1.5)  F.(u;s,q, Z)
B (us?0% 0%) rj2) (1 = 5%¢%) (W @) ((rr1)/2) (W 0°) 112
(U;q2)Lr/2J+1<(U;q )r+1y/2) (W5 62) 1 j2) — 5202 (us4?562) |1 /2))

+ 597 (u; ¢%) | y2) (W5 ¢°) (1) /2) — (s’ qz)L(r+1)/2J)>'

The factorial generating functions for the other polynomials writ-
ten in boldface in the diagram of Fig. 1 are shown to be specializa-
tions of the factorial generating function for the six-variable polynomials
B, (s,t,q,Y0,Y1,Z), as stated in the next three Corollaries.

Corollary 1.2. The factorial generating function for the polynomials
B, (s,1,q,Yy,Y1, Z) is given by

u” eq2(uYy) B2 (usqYr1Z)
BTL 8717q7Y7Y7Z = E !
nz>o ( e rera Eg2(usqZ)
(1—s%¢%)

X

eq2(us?q?) — s2q2ep2 (u) + sqZ(eq2 (usq?) — eg2(u))

Corollary 1.3. The factorial generating function for the polynomials
Bn(87 l,q, Y07 Y17 1) is ngeH by

un

1.7 1+t)B,(s,t,q,Yy, Y1,1)—5—5—
(7). Qe OBnlo o X025 Vi

s Y ™
Ztr L/ml (Cusati )iy F.(u;s,q,1),
’LLY(),

Jr/2)+1 (—usq; ¢2) | (r+1)/2)
where F(u; s, q, 1) is given by
(us?q®; %) |7 2]
(U§q2>Lr/2J+1
(1= 59) (45 ) | (r+1) 2] (USG5 G%) (72
(u; )| (r+1)/2) (USG5 G%) |rj2) — 54 (uSG; @2) | (r+1) /2] (U52G%5G%) (v j2)

(1.8)  Fr(u;s,¢,1) =

X

Corollary 1.4. The factorial generating function for the polynomials
Bn(87 17 q, Y07 Y17 1) is given by

un

ZBn<5717Q7Y07Y171) 2. .2
= (4% ¢*)n
eqz (UY()) Eq2 (US(]Yl) (1 - Sq)
Ep (usq) €42 (us?q?) — sq €q2 (u)
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The proof of Theorem 1.1 requires several steps. First, the factorial
generating function for the polynomials B,,(s,t,q, Yo, Y1, Z), as it appears
on the left-hand side of (1.4), is shown to be equal to a series Y. t"a,,
where each a, is the product of the rational function r20

(w;¢%) rj2)41 (—usqY1Z;¢%) | (r11) /2]
(uY0;¢2) 1ry2)41 (—uSqZ;G%) | (r41)/2)

by the generating series Y uvsfexcwgtote znegw for the set WSP(r) of the
so-called weighted signed permutations by a certain four-variable statistic
(A, tot, fexc, neg) (see Theorem 4.2). The combinatorics of the weighted
signed permutations was introduced in our previous paper [FoHa07a], but
this time the extra variable “s” is to be added to make the calculation. All
this derivation is developed in Sections 2 and 3. Noticeably, the variables Y|
and Y7 that carry the information on fixed points occur only in the above
fraction, but not in the latter generating series. Also, the positive fixed
point counter Y, occurs in the denominator of that fraction, while the
negative fixed point counter Y7 only in the numerator.

The next step is to show that this generating series for weighted
signed permutations is also equal to the generating series for words,
whose letters belong to the interval [0, 7|, by another four-variable statistic
(A, tot v, evdec + odd, odd). This is achieved by means of the construction
of a bijection of the set of weighted signed permutations onto the set of
those words having the adequate properties (see Theorem 5.1).

The crucial calculation is to evaluate the latter generating function and
show that it is equal to the expression Fy.(u;s,q,Z) displayed in (1.5).
Two proofs are given, the first one using a V-word decomposition theorem
(see Theorem 6.1) derived in [FoHa07b] together with the traditional g¢-
series telescoping technique, the second one taking advantage of a word
factorization, which consists of cutting each word after every odd letter
(see Section 8).

Formula (1.6) (resp. (1.9)) is deduced from (1.4) (resp. from (1.7))
by the traditional token that consists of multiplying the latter one by
(1 —t) and letting r tend to +oo, so that Corollaries 1.2 and 1.4 are easy
consequences of Theorem 1.1 and Corollary 1.3.

We prove Corollary 1.3 in two different ways: first, as a specialization
of Theorem 1.1 by an evaluation of the fraction F,.(u;s,q,Z) for Z =1
(this requires some manipulations on g-series), second, by showing directly
that F,.(u;s,q, 1) is the generating function for words by the two-variable
statistic (tot, 2 evdec + odd), using a bijection constructed in our previous
paper [FoHa07b]. We end the paper by deriving several specializations of
Theorem 1.1, in particular, the joint distribution of the pair (fexc, fdes)
over the group B,,.

-89-
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2. Weighted signed permutations

This section will appear to be an updated version of Section 4 of our
previous paper [FoHa07a|, where the notion of weighted signed permutation
was introduced. With the addition of “fexc” it was essential to ascertain
how that statistic behaved in the underlying combinatorial construction.

We use the following notations: if ¢ = cjco---¢, is a word, whose
letters are nonnegative integers, let A(c) := n be the length of ¢, totc :=
c1+co+- - -+c,, the sum of its letters and odd ¢ the number of its odd letters.
Furthermore, NIW,, (resp. NIW,,(r)) designates the set of all nonincreasing
monotonic words of length n, whose letters are nonnegative integers (resp.
nonnegative integers at most equal to 7). Also let NIWS, (r) (resp. DW2 (7))
be the subset of NIW,, () of the monotonic nonincreasing (resp. strictly
decreasing) words all letters of which are even (resp. odd).

Next, each pair (5)) is called a weighted signed permutation of order n
if the four properties (wspl)—(wsp4) hold:

(wspl) c is a word cicy - - - ¢, from NIW,,;

(wsp2) w is a signed permutation z1xs - - -z, from By;

(wsp3) ¢k = cky1 = T < Tp4q forall k=1,2,... . n—1;

(wsp4) xy, is positive (resp. negative) whenever ¢y is even (resp. odd).

When w has no fixed points, either negative or positive, we say that (5))
is a weighted signed derangement. The set of weighted signed permutations
(resp. derangements) (1‘;) = (;11;2‘;2) of order n is denoted by WSP,, (resp.
by WSD,,). The subset of all those weighted signed permutations (resp.

derangements) such that ¢; < r is denoted by WSP,,(r) (resp. by WSD,,(r)).

For example, the following pair

is a weighted signed permutation of order 13. It has four positive fixed
points (1,2,8,9), two negative fixed points (5, 10) and two excedances
(12,13).

Proposition 2.1. With each weighted signed permutation (i) from the
set WSP,,(r) can be associated a unique sequence (i, j, k, (5},), v¢,v°) such
that

i, J, k are nonnegative integers of sum n;

(¢,) is a weighted signed derangement from the set WSD;(r);

v is a nonincreasing word with even letters from the set NIW$(r);
v° is a decreasing word with odd letters from the set DW$(r);
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having the following properties:
tot ¢ = tot ¢ + tot v® + totv?; negw = negw’ + A(v°);

(2.1) _
fixTw = A(v%); fix w=A0°); fexcw =fexcw’ + A(v°).

Cl/
reverse requires some atten‘éuion. To get the latter three-term sequence from
(;) proceed as follows:

(a) let lq, ... , ly (resp. my, ... , mg) be the increasing sequence of the
integers l; (resp. m;) such that z;, (resp. z,,,) is a positive (resp. negative)
fixed point of w;

(b) define: v® := ¢y, -+ - ¢, and v° := cpyy -+ Cng

The bijection (5}) — (( ),ve,vo) is quite natural to define. Only its

(¢) remove all the columns (£1), ..., (Se), (Sm1), ..., (Ss) from (©)
, . . i1 N Tmq m?nﬁ w
and let ¢ be the nonincreasing word derived from ¢ after the removal;
(d) once the letters x;,,...,21,,Tm,, ..., Tm, have been removed from

the signed permutation w the remaining ones form a signed permutation
of a subset A of [n], of cardinality n — a — 3. Using the unique increasing
bijection ¢ of A onto the interval [n — a — (] replace each remaining
letter z; by ¢(x;) if ; > 0 or by —¢(—=x;) if ; < 0. Let w’ be the signed
derangement of order n — o — (3 thereby obtained. There is no difficulty
verifying that the properties listed in (2.1) hold.

For instance, with the above weighted signed permutation we have:
v¢ =10,10,4,4 and v° = 7, 3. After removing the fixed point columns we
obtain:

31467111213 112314567
9774 2 2| 1| and then (¢ _ | 9|7714]22]1
71643121311 w’ 4132(1|67|5

The signed permutation w (resp. w’) has two excedances 12, 13 (resp. 6,7)
and six (resp. four) negative letters. Furthermore, v = 7,3 is of length 2.
Hence fexcw = 2excw +negw =2 x24+6 =10=2x2+4+2 =
fexcw’ + A(v0).

For reconstructing (5)) from the sequence ((s,),ve,vo) consider the
nonincreasing rearrangement of the juxtaposition product v¢v° in the form
b;” -o-blm where by > --- > b, and h; > 1 (resp. h; = 1) if b; is even
(resp. odd). The pair (5;,) being decomposed into matrix blocks, as shown
in the example, each letter b; indicates where the h; fixed point columns
are to be inserted. We do not give more details and simply illustrate the

construction with the running example.

With the previous example b’fl -o-blm = 102742 3. First, implement

10°: 1 2(3/45]6|78]9
1010|9|77[4|22]1 |;
1 216|/54[3|89|7

-1 -
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then 7:
1 213(456[7[8 9110
1010977742 2| 1];
1 2|7/654(3(910] 8

notice that because of condition (wsp3) the letter 7 is to be inserted in
second position in the third block; then insert 42:

1 213/456|(789|1011]12
1010)19|777(444| 22| 1
1 2|7/654|389|1112|10
The implementation of 3 gives back the original weighted signed permu-
tation (5))
3. A summation on weighted signed permutations

(¢ @)n

o (@GR (GDnr
coefficient. It is g-routine (see, e.g., [An76, chap. 3]) to prove the following
identities, where v is the first letter of v:

1 _ Z |:N +:— 1:| un’ [N;—n} _ Z qtotv;
q q

For 0 < k < n let [Z] be the usual g-binomial

"
(us q)n n>0 vENIW,, (N)
1
tot tot .
7—2 U E qov:m E qovuvl,
q9)N+1 n>0  weENIW,(N) vENIW,,

(3.1) (— — Z“ Z gtot v

Jlr/21+1 n>0  eeNIWE (r)

(3.2) (—UQ;QQ)L(T—IJ)/?J — Z u” Z qtotv”'

n>0 v°€DW? (r)

The last two formulas and Proposition 2.1 are now used to calculate
the generating function for the weighted signed permutations. The symbols
NIW®(r), DW°(r), WSP(r), WSD(r) designate the unions for n > 0 of the
corresponding symbols with an n-subscript.

Proposition 3.1. The following identity holds:
Z u™ Z qtot chexc wYOﬁxJr wylﬁx7 w 7negw
n20 (2)eWSP,(r)

_ (w4 rj2)+1 (—usqY1Z;¢%) ((r11) /2] X3 un 3 grotegtercw gnes
(uY0;6%) |rj2)41 (—uSqZ; %) | (r41)/2)

nz0 (¢)eWSP, (r)



A SEXTUPLE DISTRIBUTION

Proof. First, summing over (w®, w®, (£)) € NIW®(r) x DW°(r) x WSP(r),
we have

Zu)\(we)qtot wex (USZ))\(wO)qtot wox u)\(c) qtot csfexcwy*oﬁxJr wYIﬁx7 w neg w

we,wo,(:f))
_ 7 2 , B
(34) _ ( u(suq q;)q )\_( +1)/2] > Zuk(c)qtotcsfexcwyoﬁx+ wYIﬁx w neg w
) lr/2]+1
()

w

by (3.1) and (3.2). As fexcw = fexcw’ + A(v°), Proposition 2.1 implies
that the initial expression can also be summed over five-term sequences
((5}/,) , 0%, 0%, we w?) from WSD(r) X NIW®(r) X DW?(r) x NIW®(r) x DW°(r)
in the form

Z u)\(c’)qtot c’Sfexc w’Zneg w’ > (UYO)A(UE)qtot v « (USY12>A(va)qtot v°

</ e g0 e o
(w/),’U V7, W=,w

> u)\(we)qtotwe > (USZ))\(wO)qtotwo

_ Z (UYO>)\(v“")qtotvE > (USY12>A(v°)qtot v°
> Z u)\(c')qtot c'Sfexc w'Zneg w’ > u)\(we)qtot w® « (USZ))\(wo)qtot wo‘
(;’/>7we7fwo
The first summation can be evaluated by (3.1) and (3.2), while by
Proposition 2.1 again the second sum can be expressed as a sum over
weighted signed permutations (5)) € WSP(r). Therefore, the initial sum is
also equal to

(—usqY1Z;¢°) | (r+1)/2) N
3.5 « u () ,tot chexc w negw.
(3:5) (uY0; 42) |r/2) 41 2 1

(2)EWSP(s)
Identity (3.3) follows by equating (3.4) with (3.5). []

4. A further evaluation

Proposition 4.1. Let B,(s,t,q,Yy, Y1, Z) denote the generating poly-
nomial for the group B, by the statistic (fexc, fdes, maj, fix*, fix", neg).
Then

1+¢

(4.1) TN

Bn(S,t,q,Y(),Yl, Z)

— 2 : " 2 : qtot csfexc wYOﬁx+ wYIﬁx7 w negw .
720 (5)EWSP,(r)

-03-
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Proof. A very similar calculation has been made in the proof of
Theorem 4.1 in [FoHa05]. We also make use of the identities on the g-
ascending factorials that were recalled in the previous section. First,

1 t / / /
N
(t yq )n—l—l >0 r’ q2

S TS

r>0 r>0  bENIW, (|7/2])
Then,
141t
T B(sitq,Ye Y1, Z
(7] 00T D)
_ Ztr Zthotb Z Sfexcwtfdeswquajwyoﬁx"' wYIﬁx_wZnegw
r>0 bENIW,,, weEB,
2b1§7"

_ E : " E : Sfexc wq2 tot b+fmayj u}YvOﬁXJr wylﬁx7 w negw .

r>0 bENIW,,weB,
2b1 +fdes w<r

As proved in [FoHa05, §4] to each (¢) = (;iz’;) € WSP,(s) there
corresponds a unique b = by - - - b,, € NIW,, such that 2b; +fdesw = ¢; and
2 tot b+ fmaj w = tot c. Moreover, the mapping () — (b, w) is a bijection
of WSP,,(r) onto the set of all pairs (b, w) such that b = by --- b, € NIW,,
and w € B,, with the property that 2b; + fdesw < r.

The word b is determined as follows: write the signed permutation w
as a linear word w = x125 ...z, and for each k =1,2,...,n let z; be the
number of descents (z; > z;4+1) in the right factor x4 - - -z, and let ¢
be equal to 0 or 1 depending on whether xj is positive or negative. Also
for each k = 1,2,...,n define a, := (cx — €x)/2, b := (ar — 2zx) and form
the word b = by - - - b,,.

For example,

Id=12345678 9 10
c=977444221 1
w=4321568910 7
z=111111110 0
e =111000001 1
a=433222110 0

0

b =322111000
Pursuing the above calculation we get (4.1). []

The next theorem is then a consequence of Propositions 3.1 and 4.1.
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Theorem 4.2. The following identity holds:

n

u
12 14 )By (5,1, q, Yo, V1, Z)—
g
_ Z I_T/QJ+1 (_uquIZ;q )\_(r—l—l)/ZJ Z Aw totc fexchnegw

uY, . —usq/z; r

0 L/2J+1 ( q4;q )L( +1)/2] (c )EWSP( )
In view of the statements of Theorems 1.1 and 4.2 we see that the former

theorem will be proved if we can show that the following identity holds:

(43) Z qtotc fexchnegw _ Fr(u; s, q, Z),
(;)GWSP(T)

with F,.(u;s,q,Z) given by (1.5). In our paper [FoHa0O6a| the sum
Sogtotezmee ((°) € WsP,(r)) has been calculated, by setting up a
bijection of WSP,,(r) onto the set [0,r]™ of the words of length n, whose
letters are taken from the interval [0,r]. Because of the presence of the
new statistic “fexc” another bijection is to be constructed. If v is the im-
age of (;) under the new bijection, then the statistic “fexc” on signed
permutations must have a counterpart on words. This role is played by
the so-called number of even decreases, as shown in the next section.

5. Even decreases on words

Say that a letter y; of a word v = y1ys - - -y, from [0,7]|™ is a decrease
invifl<i<n-—1landy; > yi41 > -->y; > yj41 for some j such that
i < j<mn-—1.Let decv (resp. evdecwv) denote the number of decreases
(resp. of even decreases) in v. Notice that decv > desv (the number of
descents in v) and decv = desv whenever v is a permutation (without
repetitions). Also, let odd v be the number of odd letters in v.

Recall that a nonempty word v = y1ys - - - ¥, is a Lyndon word, if either
n =1, or n > 2 and, with respect to the lexicographic order, the inequality
YiY2 * Yn > YilYi+1 - Yn¥Y1 - - - Yi—1 holds for every i such that 2 <i < n.
Let v, v" be two nonempty primitive words (none of them can be written
as v§ for @ > 2 and some word vg). We write v =< ¢" if and only if
v® < v'* with respect to the lexicographic order for an integer a large
enough. As shown for instance in [Lo83, Theorem 5.1.5] (also see [Ch58],
[Sch65]) each nonempty word v can be written uniquely as a product
l1ls - - - g, called its Lyndon factorization, where each [; is a Lyndon word
and 7 < ly =X --- < [. In the example below the Lyndon factorization
of v has been materialized by vertical bars. The essential property of the
Lyndon factorization needed in the sequel is the following;:

decv = decly +decly + - - - + decly.

-05-
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Now, start with the Lyndon factorization l1l5---Il; of a word v from
[0, 7]™. With such a v we associate a permutation o from &,, by means of
a procedure developed by Gessel-Reutenauer [GeRe93]: each letter y; of v
belongs to a Lyndon word factor 1, so that I, = v'y;v”. Then, form the
infinite word A(y;) := y;v"v'y;0"v" -+ If y; and y;» are two letters of v,
say that y; precedes y; if A(y;) > A(y;s) for the lexicographic order, or if
A(y;) = A(yy) and y; is to the right of y;s in the word v. This precedence
determines a total order on the n letters of v. The letter that precedes
all the other ones is given label 1, the next one label 2, and so on. When
each letter y; of v is replaced by its label, say, lab(y;), each Lyndon word
factor [; becomes a new word 7;. The essential property is that each 7;
starts with its minimum element and those minimum elements read from
left to right are in decreasing order. We can then interpret each 7; as the
cycle of a permutation and the (juxtaposition) product 775 - - - 7% as the
(functional) product of disjoint cycles. This product, said to be written in
canonical form, defines a unique permutation o from &,, ([Lo83], § 10.2).

For example,

v=12]3211]3|5|6421 323|663 1662]6
c=16]12182221|10|7|48172011159 2513193614 |1

The labels on the second row are obtained as follows: read the letters
equal to 6 (the maximal letter) from left to right and form their as-
sociated infinite words: 64213236421 - - -, 66316626631 - - -, 6316621131 - - -,
662663166 - - -, 62663166 - - -, 66666 - - - Those letters 6 read from left to
right will be given the labels 4, 2, 5, 3, 6, 1. We continue the labellings by
reading the letters equal to 5, then 4, ... in the above word v.

No decrease y; in v can be the rightmost letter of a Lyndon word
factor l;,. We have then I}, = ---vyyiv1 - Yjyj+1--- with y; > v >
-+ > yj > yj41. Consequently, A(y;) > A(yi4+1) and lab(y;) < lab(yit1).
Conversely, if lab(y;) < lab(y;+1) and ¥y;, y;+1 belong to the same Lyndon
factor, then y; is a decrease in v. To each decrease y; in v there corresponds
a unique cycle 7, of o and a pair lab(y;) lab(y;+1) of successive letters of 7,
such that lab(y;) < lab(y;+1) and lab(y;1+1) = o(lab(y;)).

Consider the monotonic nonincreasing rearrangement ¢ = cico---Cp
of v and form the three-row matrix

1 2 ... n
Ci C2 -+ Cp
o(l) o(2) -+ o(n)
Then, if y; is a decrease in v, the lab(y;)-th column of the previous matrix
is of the form lab(y;)
Yi with lab(y;) < lab(yit1).
lab(yi11)
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At this stage we have decv = exco. We then have to transform o
into a signed permutation w in such a way that only the excedances
corresponding to the even decreases of v are preserved. We proceed as

follows. The word ¢ can be expressed as ay"' a3 ---a;* where a; > ag >
o >ap>0and my > 1, me >1, ..., mp > 1. We then define

1)+ o(my), if ay is even;
my)---o(1), if ay is odd,;

my+1)---o(my +my), if as is even;
my +mg)---a(my + 1), if as is odd;

T e — o(mi+---+mg_1+1)---0(n), if ai is even;
matet et LI T ) g (my - 4 mp 1), i @y, is odd.

The word w := x1x9 - - - ,, is then a signed permutation. When going from
o to w, the excedances lab(y;) < lab(y;11) of ¢ such that y; is odd have
vanished. The other ones have been preserved. Hence, 2 evdecv +oddv =
2 excw + neg w = fexcw. Finally, as o(i) > o(i + 1) = ¢; > ¢;11, the pair
(i) is a weighted signed permutation. We then have the desired bijection
[0,7]" — (£).

Theorem 5.1. The mapping v — (5}) is a bijection of [0,7]™ onto
WSP,,(r) having the following properties:

tot c = totwv; fexcw = 2evdecv + oddv; negw = oddwv.

With the running example we have

I[d=1234 5 6|7/ 8|9 10111213[14 1516 17 18|19 20 21 22
c=66666 6|5/4(3 3333[2222 2|1111
c=15681314|7|17|4 10151819]2 9 1620 22| 3 11 12 21

The signed permutation w has eight excedances (reproduced in boldface)
and ten negative letters. Therefore, fexcw = 2 x 8 4+ 10 = 26. There
are eight even decreases of the word v: 2 — 1, 6 — 4, 4 — 2,
2 —-1,6 — 6,6 — 3,6 — 6, 6 — 2. Moreover, oddv = 10. Hence
2evdecv 4+ odd v = 26 = fexcw and of course negw = odd v = 10.

In view of (4.3) and Theorem 5.1 the proof of Theorem 1.1 will be
completed if the identy

(51) Z u)\vqtotv82evdecv—|—0ddvzoddv _ FT(U; s, q, Z)
ve([o,r]*

holds, the sum being over all words whose letters are in [0, r].
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6. The calculation of the latter sum

As introduced in our previous paper [FoHa07b] a word w = z1x3 ... 2,
of length n > 2 is said to be a V-word, if for some integer i such that
1<i<n—1wehave x1 > 290 > -+ > x; > x;41 and 2,41 < x40 <
-+ < x, < x; whenever i + 1 < n. The pair (x;, z;+1) is called the critical
biletter of w. The V-word decomposition for permutations was introduced
by Kim and Zeng [KiZe01]. The following theorem is a simple consequence
of Theorem 3.4 proved in our previous paper [FoHa07b].

Theorem 6.1 (V-word decomposition). To each word v = y1ys -+ Yn
whose letters are nonnegative integers there corresponds a unique sequence
(vo,v1,v2,...,V), where vy is a monotonic nondecreasing word and vy,
va, ... , Vg are V-words with the further property that vovivs - -- vk IS a
rearrangement of v and

(6.1) evdecv = evdec vy + evdecwvy + - - - 4+ evdec vg.
Let Xo, X1, ..., X, be (r+1) commuting variables. The even weight,

evweight v, of each word v = y1¥ys ...y, is defined to be

evweight v := Xy1 Xy2 . Xyn 2evdecv

Now, consider the infinite series:
Ul)y:= [[ @=s>VUemx;)=t (1<i<r);
I<j<r
Mk = J[ a-x)~" (0<k<l).
k<j<l-1

Then, the generating function for V-words, whose critical biletter is (I, k)
(0<k<l<r), by “evweight” is equal to:

U(l) s2xeven) X, X M (k,1).
The following theorem is then a consequence of Theorem 6.1.
Theorem 6.2. We have the identity:

M(0,r+1)

1— S U(@l) s2xUeven) X, X, M(k, 1)’
0<k<I<r

Z evweight v =
v

where the sum is over all words whose letters belong to the interval [0, r].

Consider the homomorphism ¢ generated by:
G(Xk) = ug®(sZ2)XF 9D (0 <k <)

If v = YiY2 - Yn, then gb(evweight U) — uAvqtot v82 evdec v+odd ’UZOdd’U‘
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Also
d(U(1)) = H (1 — ugl s2XU even) (g 7)x(J odd)y—1,
I<j<r
oMk 1) = ] (1 —ug/(szUedD)~
k<j<i—1
Now define
1, if k= 0;
(W)}, = [T (1—ug(s2)XUedd)  if g > 1;
0<j<k—1
1, if | = 0;
()i =19 I (1—ugis?xevem)(gz)xGodd)y  if > 1,
1<j<!
(u)]_ )
Then ¢(U(1)) = (u’),} (1<10); o(M(k1) = (<u))’f 0 <k <.

!
Now, take the image of the identity of Theorem 6.2 under ¢:

1
Z u)xw tot w (Qevdec—l—odd)wZoddw _ Z ¢(6VW€ight U)) _ /
wE[O ’I“] we[oﬂn]* (u)r+1
where
_ (w4 s2x(l even) x (1 0dd) x(k odd) \W) k. (u)},
S=1- Z W uq'(sZ2) uq®(sZ) )
0<k<I<r r l

As —ugP(sZ)x(kodd) ()1 = ()1 — (u)}, we have:

even o 1
§=1+ Z l Pt e mug (52X () 1),
1<I<r l

Now, —ug's?x(teven) (s Z)x(odd) (o) = (u)!' — (u)]"_,. Hence,

"
S — 1 1 (U)l—l uql82X(l even) (SZ)X(Z odd)'

(u)y’ (Wi

(W V22w

(6.2)
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We can also write:

(W) = (u; ¢%) ((r41)/2) (USAZ547) (/2]
(w)y = (usqZ; ) (r+1) 2] (WS G5 6%) v )2)5
so that

(6.3)

(y _ (s’ q) Wil (w86 0
W (w5 W T (wed) '
U)piq u; q°)|r/2]+1 u)y s q47) | (141) /2]

Identity (6.2) may be rewritten as

(us?q*; ¢%) |r/2) (-

6.4)
( (U§q2>Lr/2J+1

T)_l = FT(U’ S?Q: Z)7

2.2, 2
T .— Z (US q 72q >|_(l_1)/2J uql82x(l even)(SZ>X(l odd)
1<i<r (us q )L(l+1)/2J

= Z Muq”qu—i— Z Muqzlszqz
. 2 . 2 .
0<i<|(r—1)/2] <U7q )H—l 0<i<|r/2]—1 (U,q )H—l

We can then introduce

2.2, .2
G(m) = Z ('U/S q 7q )luq2l

.2
and try to sum it. As

(us®q® @)1 (us@®1¢%) _ (us?qz;qz)zuqzz(l _ 24,

(w; ¢2)i1 (u; )1 (5 42141
we get
G(m) = 1 ((U82q2;q2)m+1 _ 1),
1—=s2¢* \ (u;¢%)m41
so that

T =sqZG([(r—1)/2]) + s°¢* G([r/2] — 1)
_ 1 (S Z(USQQQ; )12
1 — s2¢? (45 %) | (r+1) /2
L 2F (s’ )12y 2)‘
(u; q2>Lr/2J

sq/

By reporting this value of T into (6.4) we exactly find the expression of
F,(u;s,q, Z) displayed in (1.5). []
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7. Second proof of (5.1)

When Z =0 in B,(s,t,q, Yy, Y1, Z), then Y7 is also null. Furthermore,
each polynomial B, (s,t,q, Y, 0,0) is a polynomial in s2, 2, ¢, Y. The
summation on the right-hand side of (1.6) only involves even powers of t.
We then have

(7.1) For(u; s, q,0) = (us?q?;¢?), (1 — 52¢?) (u; ¢°),
19y Yy (U, q2)r+l ((U, q2)r _ 32(]2 (u32q2; q2>7")
and
(72) Z Bn(S, t? q, YO7 O 0 Z 2T 'U, q T—l—l FQT(U/; 5,4, O)

t27 %) n+1 (uY0;¢2)ry1

n>0 r>0

But B, (s'/2,t1/2,¢'/2,Y,0,0) is the generating polynomial A, (s,t,q,Y)
for the symmetric group &,, by the statistic (exc, des, maj, fix) and it was
proved in our previous paper [FoHa06b] that

ZA s,t,q,Y ZtT (4 @)rt1 (usq; q)r (1 — sq) (u; q)yr

= "t o (W5 0)rin (5 9)ria ((u5.0)r — sq(usgig)r)

TL

Accordingly, (1.4) holds when Z = 0 and consequently (5.1) holds when r
is even and Z null. To show that identity (5.1), which we shall rewrite as

(7.3) > EBV(v) = Fo(u;s,q,2),

v€e[0,r]*

is true for all values of 7 and when Z is not necessarily 0 we proceed as
follows.

Cut each word v € [0, 7] in the (5.1) summation after every occurrence
of an odd letter. This defines a unique factorization:

(7.4) U = PoloP1?1 * * * PkikPk+1
of v having the following properties
(C1) k>0,
(C2) po, P1s -+ » Dk, Prt1 all from P¥ with P.:={0,2,4,...,2[r/2]},

(C3) i, i1, .- ., i all from I, with I, :={1,3,5,...,2[(r+1)/2] — 1}.

The following properties of this factorization are easy to verify:
(P1) totv = tot(poig) + tot(p1i1) + - - - + tot(prix) + tot(pr+1),
(P2) evdec v—evdec(pozo)—|—evdec(p111)—i— +evdec(pyix)+evdec(pgi1),
(P3) odd v = odd(poig) + odd(plzl) + -+ -+ odd(pgir) + odd(pr+1),
(P4) Av = A(poio) + A(prin) + -+ + )‘(pkik) + A(Pr+1),
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(P5) EV(poiop1i1- - -PrirPr+1)=EV(poio) EV(p1i1)- - “EV(prix) EV(Dr+1),
(P6) EV(pi) = sqZEV(p(i — 1)) for p € P¥ and i € I,

T

(P7) EV(p(2k)) = ug®* EV(p) for p € Pj,.

Hence
-1
> o-(i- ¥ w) Tn
vel0,r]* pEP;iel, pEP
1
(7.5) EV(v) = , EV(p).
ve%]* 1 - EpEP:,iEIT EV(pi) pezp:

On the other hand,
Z EV(pi) = sqZ Z EV(p(i — 1)) = sqZ Z EV(pj).

peEPX i€l pEP) i€, pEPF,jEP. 1

If r=2k+1, then P. = P._; = Py, so that

> BV = ). EV(p) = Far(u;s,q,0) — 1,

pEPX jEP-_1 PEP;, ,A(p)>1
because (7.3) holds for r even and Z = 0. It follows from (7.5) that

_ F2k<u;57Q70)
1 — sqZ (Far(u;s,q,0) — 1)

(7.6) > EV(v)

ve[0,2k+1]*

If r = 2k, then P, = Py, and P._1 = Ps,_o, so that

> BV = Y, EV(p)

pEP} jEP, 1 PEPS, jE€EPak—2
= Y mV(p) - > EV(p(2k))
PEP; A(p)>1 PEP,

= (For(u; 8, 4,0) — 1) — ug®* Foy,(u; s, ¢, 0)
= (1 — ug®*) For(u; 5,q,0) — 1.
Hence (7.5) implies
Fop(u; s,4¢,0)

(7.7) EV(v) = '
ve[OZ;k]* 1—sqZ((1 — ug®*)For(u; s,q,0) — 1)

We can then report the value of Fyy(u;s,q,0) obtained in (7.1) in both
expressions (7.6) and (7.7). By combining them in a single formula we
exactly get the formula displayed in (1.5) for F,(u;s,q, 7). []
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8. Two proofs of Corollary 1.3

For the first proof we proceed as follows. Let Z =1 in (1.5) and write
the formula as:

(us?q®; ¢*) 1r2) (1 — 52¢%) (w5 ¢%) | (r41) 2]
(u; %) 7 /2)+1Fr(u;5,¢,1)

2
) 2 o (U G%) | (rr1)/2)
= (u; ¢°)|(r — 54
(U5 ¢7) | (r+1) /2] (w5 ) /2]

+ 5q (u; qz) [(r4+1)/2] — SQ(U32q2; q2)L(T+1)/2J-

(us®a®; 4%) |2

We have
2 (43 6°) [(r+1)/2)
(u; G%) |r/2
= 5q(us®q®; ¢%) |ry2) (sq(1 —ug” " V/2) 41 —us?g?lrm1/2042)

(us?q?; ¢%) v 2] + 50(us*q®; %) [(r11) 2]

= sq(us’q*; %) | j2) (1 + 5q)(1 — usg®Lr—H/2+)

(USQ; q2) (r+1)/2]
(usq; %) v 2]

= sq(us®q*;¢%) rj2) (1 + sq)
so that
(us?q®; ¢*) 1r2) (1 — 52¢%) (w5 ¢%) | (r41) 2]
(u5¢%) 7 /2)+1Fr(u; 5,9, 1)

(usq; q2) L(r+1)/2] ‘

= (1+ 5¢) ((w @) (r+1)/2) — 50(us’a*;¢%)
( 6y = sal /2 (usg; ¢) |r/2)
By dividing both sides by (1 + sq) we recover (1.8). []

For the second proof we again use the notations introduced in Section 7,
namely,

1, if 1 =0
() = [T (1—ug(sz)xXUedd)) if p >1;
0<j<r—1
= (u;¢%) [(r+1)/2) (USAZ;4%) |1 /2)

and directly prove the identity

2 : qtotv82evdecv+oddv — FT(U; s, q, 1))
velo,r]™

where F,.(u; s,q, 1) is given by (1.8), an identity that may be rewritten as:

(81) Z qtot 1182 evdecv+oddv __ 1 % (1 - sq) (u)’r(u(gq)’T '

vel0,r]n a (Wit (u);. — sq(usq);
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For each » > 0 let D(r) be the set of all pairs (w,i) such that
w € NIW(r—1),1 <i < Aw—1, Aw > 2. In our previous paper ([FoHa07b],
Theorem 2.1) we have constructed a bijection mapping each word v onto
a sequence

(wo, (U)l, il), (’wg, ig), ey (wk, Zk)),
such that wy € NIW(r) and each pair (w;,4;) € D(r) (1 <1 < k) and
wowy - - - wy is a rearrangement of v. Furthermore, the bijection has the
following property:

(8.2) 2evdecv+oddv =iy +ig+-- i +oddwy+oddwy +- - -+ odd wy.

Hence7 Z qtot v82 evdecv+oddv _ i’ Where A — Z qtot wsodd quw
ve([0,r]™ 1-B wENIW (r)
and B = Z (Sq)iththOddwU,Aw, But A — : and
(w.i)€D(r) (W)rs1
B = Z (Sq)iqtot wsodd quw
(w,3)€D(r)
n—1
— Z Z(Sq)z Z qtotwsoddwUAw
n>2 i=1 WENIW ,, (r—1)
— Sq — (Sq)n totw _odd w, , Aw
- Z 1—sq Z q S U
n>2 WENIW, (r—1)

= - iqsq Z Z gtotw godd wy dw

n>2 weNIW,, (r—1)

1
+ — - Z Z qtotwsoddw(usq))\w

n>2 weNIW,, (r—1)
o )1 (e )
= — (1 — (1
T sg \(a)] (1+cu))+ =g \(usq)] (1+ cusq)
[where c¢ is the coefficient of u in 1/(u)’]

= 1—1$q<<ff>]; B <us1q>;>'

Finally, Z qtot vg2evdecvtoddv _ A . 1 (1 — Sq) (u);(usq);

= = X
vel0,r]™ 1-B (U’);"—l—l (u);. — sq(usq);,

which is the expression written in (8.1). []

Remark. The method used in the latter proof cannot be applied when
Z # 1. Although identity (8.2) always holds, we do not have

oddv = oddwg + odd wy + - - - + odd wy

in general.
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9. Specializations

In Section 7 we have seen that the generating function for the poly-
nomials A,(s,t,q,Y) can be derived from (1.6) by letting Z = 0 and
replace the triplet (s, t,q,Yy) by (s'/2,t/2,¢*/2,Y). We just comment the
specializations s =1 and Yy =Y, =27 = 1.

9.1. Case s =1. We have
FT' (u; 17 q? Z)

z (ug® %) 1ry2) (1 — %) (w3 62) [(r1y 2] (05 G°) | y2)

(5 42) |r/2) 41 ((U; a%) (r+1)/2) (6 @) [r/2] — ¢ (ug?; %) [ /2))

+qZ (4 ¢) 2y (05 62) ((r41)/2) — (ug®; q2)\_(r+1)/2j)>7
so that we can divide both numerator and denominator by the product
(u; QZ)L(T+1)/2J (u; q2)Lr/2J~ We then get

1 — 2 1 — uqg?lr/2] 1 — ug?lr+1)/2]\ -1
Fo(uil,q,2) = — (1—612L+q2—q2 = )
—u 1- 1—u
(1 1— q2\_r/2j—|—2 B Zl _ q2L(r—|—1)/2J —
- u 1— g2 ugq 1—q2
_ <1 —u Z qizx(z odd)) !
0<i<r
We then recover identity (1.9) from our paper [FoHa07a] in the form:
un
9.1 14+ 8B, (1,t,q, Yo, Y1, Z) e
oy nz>o< JEnllit Yo )(tQQQQ)rH-l
. Z \_7"/2]—1—1 (—qu1Z; q2)L(r+1)/2J (1 _ uzr: inx(z‘ odd))_l
uYo, Jr/2i+1 (—uqZ;4%) |[(r41)/2)

9.2. Case Yy =Y, = Z =1. Identity (1.7) simply becomes

(9.2) > (L+t)By(s,t,q,1,1 1) =3 t"F(u;s,q,1

n>0 Jn+1 >0
where F,.(u;s,q,1) is given by (1.8). Note that B,(s,t,q,1,1,1) is the
generating polynomial for the group B,, by (fexc, fdes, fmaj). Write B, (s, t)
for B, (s,t,1,1,1,1). From (9.2) we deduce
un

- (1—s)(1—t)>r
(9.3) Z Bn(s,t)m = ;0((1 —u) (1 —us?) " — s(1— )

n>0

(1—s)(1—t)t?rtt

T S 0 —us?) 7 — (1= us)>'
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To obtain the marginal distribution B, (s,1) = Y. s*¢% it is convenient
to specialize formula (1.9). We obtain weBy

u” 1-s
(94) Z Bu(s, UF T s+exp(u(s®—1))

As for B, (1,t) = Y tides® we specialize (9.1) and find:

weB,,
u” s 1—1
(9.5) T;Bn(l,t)m = got e
Hence, B, (1,t)/(1 —t*)" = (1 —¢t) > t"(r +1)" and
r>0
u” 1—-t
(9:6) Z Ba(1, t>ﬁ T t+expu(Z—1))

n>0

It follows from (9.4) and (9.6) that B, (s, 1) = B,(1,s), so that “fexc”
and “fdes” are equally distributed on the group B,,. For k,n > 0 let B,, j
be the number of signed permutations w from B,, such that fdesw = k. In
our paper [FoHa06] we have derived the recurrence formula for the B, ’s
in a more general context. The recurrence reads as follows

BO,O = 1, BO,k =0 for all £ 7é 0;
Bl,O = 1, Bl,l = 1, Bl,kz =0 for all k£ % 0, 1;

Bnr=(k+1)By_1k+ Bn-1k-1+ 2n—k)B,_1 k—2;
formn>2and 0 <k <2n— 1. Let B;L’k = #{w € B,, : fexcw = k}. The
coefficients B;L, i S satisfy the same recurrence as the B, ;’s. The induction

is easy, so that we can fabricate a bijection 1 of B,, onto itself such that
fexcw = fdes ¥ (w).

10. Concluding remarks

The statistical study of the group B, and some other Weyl groups
has been initiated by Reiner ([Re93a], [Re93b], [Re93c], [Re95a], [Re95b])
and continued by the Roman school ([Br94], [Bi03], [BiCa04]). It has
been rejuvenated by Adin, Roichman [ARO1] with their definition of
the flag major index for signed permutations and the first proof of
the fact that length function and flag-major index were equidistributed
over B,, ([ABRO1], [ABRO5], [ABRO6]). In our series “Signed words and
permutations; I-V” we have tried to work out analytical expressions for the
multivariable distributions on the group B,, that were natural extensions of
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the expressions already derived for the symmetric group &,,. Other works
along those lines are due to Gessel and his school ([ChGe07], [Ch03]).
Further algebraic extensions have recently been done by the Minnesota
school [BRS07].

We should like to thank Christian Krattenthaler [Kr07] who urged us to
use the telescoping technique to shorten our g-calculations (see Section 6).
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Fix-Mahonian Calculus, I: two transformations

Dominique Foata and Guo-Niu Han

Tu es Petrus, et super hanc petram,
aedificavisti Lacim Uqgam tuam.

To Pierre Leroux, Montreal, Sept. 2006,
on the occasion of the LerouxFest.

ABSTRACT. We construct two bijections of the symmetric group &,
onto itself that enable us to show that three new three-variable statistics
are equidistributed with classical statistics involving the number of fixed
points. The first one is equidistributed with the triplet (fix,des, maj),
the last two with (fix, exc, maj), where “fix,” “des,” “exc” and “maj”
denote the number of fixed points, the number of descents, the number of
excedances and the major index, respectively.

1. Introduction

In this paper Fiz-Mahonian Calculus is understood to mean the study
of multivariable statistics on the symmetric group &,,, which involve the
number of fixed points “fix” as a marginal component. As for the two
transformations mentioned in the title, they make it possible to show that
the new statistics defined below are equidistributed with the classical ones.

The descent set, DESw, and rise set, RISEw, of a word w = x1x9 -+ - Xy,
whose letters are nonnegative integers, are respectively defined as being
the subsets:

DESw:={i:1<i<n—1,2; > z;41};
(1.2) RISEw := {Z 1 <i<n,x; < $i+1}.

By convention, g = z,41 = 4+00. If 0 = o(1)0(2)---0(n) is a permu-
tation of 12---n, we can then consider RISE o, but also a new statistic
RIZE o, which is simply the rise set of the word w derived from o by re-
placing each fized point o(i) = i by 0. For instance, with 0 = 3254 1 hav-
ing the two fixed points 2, 4, we get w = 30501, so that RISEc = {2,5}
and RIZEo = RISEw = {2,4,5}. It is quite unexpected to notice that the
two set-theoretic statistics “RISE” and “RIZE” are equidistributed on each
symmetric group &,,. Such an equidistribution property, which is a conse-
quence of our Theorem 1.4, has become a powerful tool, as it has enabled
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Xin and the second author [HaXi07] to give an immediate proof of a con-
jecture of Stanley [St06] on alternating permutations. More importantly,
the equidistribution properties are proved by means of new transforma-
tions of the symmetric group, the bijections ® and F3 introduced in the
sequel, whose properties will be fully exploited in our next paper [FoHa07].
Those transformations will be described not directly on &,,, but on classes
of shuffles, as now introduced.

Let 0 < m < n and let v be a nonempty word of length m, whose letters
are positive integers (with possible repetitions). Designate by Sh(0"~ ")
the set of all shuffles of the words 0"~ and v, that is, the set of
all rearrangements of the juxtaposition product 0"~ ™wv, whose longest

subword of positive letters is v. Let w = z129---x, be a word from
Sh(0"~™wv). It is convenient to write: Posw := v, Zerow = {i : 1 <
i <mn,x; =0}, zerow := #Zerow (= n —m), so that w is completely

characterized by the pair (Zerow, Posw).
The major index of w is defined by

(1.3) majw := Zz (i € DESw),
i>1
and a new integral-valued statistic “mafz” by

Zero w

(1.4) mafz w := Z i— Z i + maj Posw.

i€Zero w =1

Note that the first three definitions are also valid for each arbitrary
word with nonnegative letters. The link of “mafz” with the statistic “maf”
introduced in [CHZ97] for permutations will be further mentioned.

We shall also be interested in shuffle classes Sh(0™~™v) when the word v
is a derangement of the set [m] := {1,2,...,m}, that is, when the word
v = Y1Y2 - Ym IS a permutation of 12---m and y; # i for all i. For
short, v is a derangement of order m. Let w = x122 - - - x, a be word from
the shuffle class Sh(0"~™v). Then v = y1y2 - ym = x;, 24, - - - xj,, for a
certain sequence 1 < j; < ja < -+ < Jp, < n. Let “red” be the increasing
bijection of {j1, jo, ..., Jm} onto [m]. Say that each positive letter z; of w
is excedent (resp. subexcedent) if and only if xy, > red k (resp. z < red k).
Another kind of rise set, denoted by RISE® w, can then be introduced as
follows.

Say that ¢ € RISE® w if and only if 1 <4 < n and if one of the following
conditions holds (assuming that x,+1 = +00):

(1) 0<a < Tit1;

(2) x; = xip1 = 05

(3) x; = 0 and x;41 is excedent;

(4) z; is subexcedent and x;+1 = 0.
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Note that if z; = 0 and z;41 is subexcedent, then ¢ € RISEw \ RISE® w,
while if z; is subexcedent and x; 11 = 0, then ¢ € RISE® w \ RISE w.

Example. Let v=512364 be a derangement of order 6. Its excedent
letters are 5, 6. Let w = 501200364 € Sh(03v). Then, RISEw =
{2,3,5,6,7,9} and RISE®* w = {3,4,5,7,9}. Also mafzw = (2+ 5+ 6) —
(1+2+3)+maj(512364) =7+ 6 = 13.

Theorem 1.1. For each derangement v of order m and each integer
n > m the transformation ® constructed in Section 2 is a bijection of
Sh(0™~™v) onto itself having the property that

(1.5) RISE w = RISE® ®(w)

holds for every w € Sh(0"~™v).

Theorem 1.2. For each arbitrary word v of length m with positive letters
and each integer n > m the transformation F3 constructed in Section 4 is
a bijection of Sh(0™~™wv) onto itself having the property that

(1.6)
(1.7)

majw = mafz F3(w);
Lw = LF3(w) (“L” for “last” or rightmost letter);

hold for every w € Sh(0"~™v).

We emphasize the fact that Theorem 1.1 is restricted to the case where v
is a derangement, while Theorem 1.2 holds for an arbitrary word v with
possible repetitions. In Fig. 1 we can see that “RISE” and “RISE®” (resp.
“maj” and “mafz”) are equidistributed on the shuffle class Sh(02312) (resp.
Sh(02121)).

RISEw w ®(w) |RISE*®(w) majw w F3(w) | mafz F3(w)

1,2,4,5/00312]00312] 1,2,4,5 2 [12001]00121 2
1,3,4,5/03012]03120] 1,3,4,5 3 [o01201]01021 3
1,4,5 [03102][03012 1,4,5 4 |0o0121[10021 4

1,3,5 [03120[03102 1,3,5 10201[01201
2,3,4,5[30012[31200| 2,3,4,5 5 [10021|10201 5

2,4,5 [30102[30012 2,4,5 1210001210
31200[31020 6 [01021][12001 6

2,3,5 [30120[30102 2,3,5 12010[10210
3,4,5 [31002[30120 3,4,5 7 [o1210[12010 7
3,5 [31020[31002 3,5 8 [10210][12100 8

Sh(02312) Sh(02121)

Fig. 1

Those two transformations are fully exploited once we know how to
map those shuffle classes onto the symmetric groups. The permutations
from the symmetric group &,, will be regarded as linear words o =
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o(1)o(2)---o(n). If o is such a permutation, let FIXo denote the set
of its fixed points, ie., FIXo = {i : 1 < i < n,o0(i) = i} and let
fixo := #FiXo. Let (j1,J2,...,7m) be the increasing sequence of the
integers k such that 1 < k < n and o(k) # k and “red” be the increasing
bijection of {ji,j2,...,jm} onto [m]. The word w = xyz9- -z, derived
from 0 = o(1)0(2)---0o(n) by replacing each fixed point by 0 and each
other letter o(jx) by red o(ji) will be denoted by ZDer(c). Also let

(1.8) Dero :=redo(j1) redo(j2) -+ - red o(jm),

so that Der o is the word derived from ZDer(o) by deleting all the zeros.
Accordingly, Der o = Pos ZDer(o).

It is important to notice that Der o is a derangement of order m. Also
o(ji) is excedent in o (i.e. o(jr) > ji) if and only red o(ji) is excedent in
Dero (i.e. red o(jx) > red ji)

Recall that the statistics “DES,” “RISE” and “maj” are also valid for
permutations ¢ = o(1)o(2) - --o(n) and that the statistics “des” (number
of descents) and “exc” (number of excedances) are defined by

(1.9) deso := # DES0;

(1.10) exco:=#{i:1<i<n-—1,0(i) > i}.
We further define:

(1.11) DEZ o := DES ZDer(0);

(1.12) RIZE 0 := RISE ZDer(0);

(1.13) dez o := # DEZ o = des ZDer(o);
(1.14) maz o := maj ZDer(o);

(1.15) maf o := mafz ZDer (o).

As the zeros of ZDer(o) correspond to the fixed points of o, we also have

fixo

(1.16) mafo := Z i— Zi—i— maj Der o.

1€FIX o =1

Ezample. Let 0 = 821356497; then DESo = {1,2,6,8}, deso = 4,
majo = 17, exco = 2. Furthermore, ZDer(c) = w = 501200364 and
Posw = Dero =512364 is a derangement of order 6. We have FIX o =
{2,5,6}, fixoc = 3, DEZo = {1,4,8}, RIZEw = {2,3,5,6,7,9}, dez = 3,
mazo = 13 and maf o = (24+5+46)—(14+2+3)+maj(512364) = 746 = 13.

For each n > 0let D,, be the set of all derangements of order n and 65 er
be the union: &P := |J Sh(0®™v) (0 <m <n,v € D,,).

)
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Proposition 1.3. The map ZDer is a bijection of &,, onto 65” having
the following properties:

(1.17) RIZEo = RISE ZDer(c) and RISEo = RISE® ZDer(o).

Proof. 1t is evident to verify that ZDer is bijective and to define
its inverse ZDer . On the other hand, we have RIZE = RISE ZDer by
definition. Finally, let w = xyxs - - - x,, = ZDer(o) and o(i) < o(i 4+ 1) for
1 <i¢<n-—1. Four cases are to be considered:

(1) both ¢ and ¢ 4+ 1 are not fixed by o and 0 < z; < ;41;

(2) both ¢ and i + 1 are fixed points and x; = ;41 = 0;

(3) 0(i) = i and o(i + 1) is excedent; then z; = 0 and z;4; is also
excedent;

(4) (i) <i<i+1=0(i+1); then z; is subexcedent and x;41 = 0.
We recover the four cases considered in the definition of RISE®. The case
i = n is banal to study. []

We next form the two chains:

ZDer $ , ZDer !

(1.18) Q0= w—w T o
(1.19) Fi:o 25w o et 1,

The next theorem is then a consequence of Theorems 1.1 and 1.2 and
Propositions 1.3.

Theorem 1.4. The mappings ®, F3 defined by (1.18) and (1.19) are
bijections of G,, onto itself and have the following properties

(1.20) (fix, RIZE, Der) o = (fix, RISE, Der) ®(0);
(1.21) (fix, maz, Der) o = (fix, maf, Der) F3(o);
(1.22) (fix, maj, Der) o = (fix, maf, Der) F3 0 ! (0);

for every o from G,,.

It is evident that if Deroc = Der7 holds for a pair of permutations
o, 7 of order n, then exco = excr. Since DESo = [n] \ RISEc and
DEZo = [n] \ RIZE o it follows from (1.20) that

(1.23) (fix, DEZ, exc) o = (fix, DES, exc) ®(0);
(1.24) (fix, dez, maz, exc) o = (fix, des, maj, exc) ®(o).

On the other hand, (1.21) implies that
(1.25) (fix, maz, exc) o = (fix, maf, exc) F3(o).

As a consequence we obtain the following Corollary.
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Corollary 1.5. The two triplets (fix,dez, maz) and (fix,des, maj) are
equidistributed over &,. Moreover, the three triplets (fix,exc, maz),
(fix, exc, maj) and (fix, exc, maf) are also equidistributed over &,,.

The distributions of (fix, des, maj) and (fix, exc, maj) have been calcu-
lated by Gessel-Reutenauer ([GeRe93], Theorem 8.4) and by Shareshian
and Wachs [ShWa06], respectively, using the algebra of the g-series (see,
e.g., Gasper and Rahman ([GaRa90], chap. 1). Let

An(s,t,q,Y) — Z Sexcatdesaqmaj ayﬁxa (n > 0)
O‘EGn
Then, they respectively derived the identities:

~Se(-e ) g

(1.26) Y An(1,t,q,Y)

n>0 t q n+tl
1- Y
(1.27) D An(s,1,q,Y — (1= sq)ey “> .
= ( ;q)n eq(squ) — sqeq(u)

In our third paper [FoHa07a] we have shown that the factorial generating
function for the four-variable polynomials A,, (s, t, g, Y) could be evaluated
under the form

(1 —sq) (u; Q) (usq; q),
1.28 A, (s, t,q,Y t" :
12 ngo ( Dnt1 ;) (u;q)r — sq(usq; )7 ) (UY'; @)1

the two identities (1.26) and (1.27) becoming simple specializations.
We then know the distributions over &,, of the triplets (fix,dez, maz),
(fix, exc, maz) and (fix, exc, maf) and also the distribution of the quadru-
plet (fix, dez, maz, exc). Note that the statistic “maf’ was introduced by
Clarke et al. [CHZ97]. Although it was not explicitly stated, their bijection
“CHZ” of &,, onto itself satisfies identity (1.22) when F3 o ®~! is replaced
by “CHZ.”

As is shown in Section 2, the transformation ® is described as a
composition product of bijections ¢;. The image ¢;(w) of each word w
from a shuffle class Sh(0™~"™wv) is obtained by moving its [-th zero, to the
right or to the left, depending on its preceding and following letters. The
description of the inverse bijection ¥ of ® follows an analogous pattern.
The verification of identity (1.5) requires some attention and is made in
Section 3. The construction of the transformation F'3 is given in Section 4.
Recall that F3 maps each shuffle class Sh(0"~™wv) onto itself, the word v
being an arbitrary word with nonnegative letters. Very much like the
second fundamental transformation (see, e.g., [Lo83], p. 201, Algorithm
10.6.1) the construction of F3 is defined by induction on the length of the
words and preserves the rightmost letter.
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2. The bijection ¢

Let v be a derangement of order m and w = x129 - - - x,, be a word from
the shuffle class Sh(0"""v) (0 < n < m), so that v = zj,x;, - -z,
for 1 < j1 < jo < -+ < Jm < n. Let “red” (“reduction”) be the
increasing bijection of {ji,j2,...,jm} onto the interval [m]. Remember
that a positive letter xj of w is said to be excedent (resp. subexcedent)
if and only if x > red k (resp. xp < red k). Accordingly, a letter is non-
subexcedent if it is either equal to 0 or excedent.

We define n bijections ¢; (1 <1 < n) of Sh(0" ™wv) onto itself in the
following manner: for each [ such that n —m +1 <1 < n let ¢;(w) := w.
When 1 <1 <n—m, let z; denote the [-th letter of w, equal to 0, when w
is read from left to right. Three cases are next considered (by convention,
Ty = Tpt1 = +00):

(1) xj—1, 41 both non-subexcedent;

(2) x;—1 non-subexcedent, x;i; subexcedent; or x;_i, ;11 both
subexcedent with x;_1 > x;41;

(3) z,;_1 subexcedent, x;y; non-subexcedent; or x;_i, ;11 both
subexcedent with z;_; < x,41.

When case (1) holds, let ¢;(w) := w.
When case (2) holds, determine the greatest integer k > j+ 1 such that

Tir1 < Tjq2 < - < T < red(k:),

so that
w:xl..xj_loxj_i_l.xkxk_i_l.:L'n

and define:

(bl(w) =Ty 'xj—l 33]_,_1 Tk O xk—i—l R T
When case (3) holds, determine the smallest integer i < j — 1 such that

red(i) > x; > Tipq1 > -0 > xj_q,

so that
w:xl---xi_l xi.‘.xj—loxj—i—l‘.‘xn

and define:

(bl(w) =1 Ti—1 O.’Ei~-~xj_1 xj-'—l"'xn'

It is important to note that ¢; has no action on the 0’s other than
the [-th one. Then the mapping ® in Theorem 1.1 is defined to be the
composition product

P = ¢1¢2 o '¢n—1¢n-
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Ezample. The following word w has four zeros, so that ®(w) can be
reached in four steps:

Id =1234567891011

w =5012003607 4 j=9 apply ¢4,case (1);
5012003607 4 j=6,apply ¢s3,case (2), k=T,
501203060 7 4 j=5 apply ¢o,case (3), 1 =4;
5010230607 4 j=2apply ¢1,case (2), k=3;

Sw)=510023060 7 4.

We have: RISEw = RISE® ®(w) = {2,3,5,6,7,9,11}, as desired.

To verify that ® is bijective, we introduce a class of bijections 1;, whose
definitions are parallel to the definitions of the ¢;’s. Let w = x122 - - x,, €
Sh(0™™v) (0 < m < n). For each [ such that n —m +1 <1 < n let
Yi(w) :=w. When 1 <[ <n—m, let z; denote the [-th letter of w, equal
to 0, when w is read from left to right. Consider the following three cases
(remember that zy = x,41 = +00 by convention):

(1) = (1) xj_1, x;j+1 both non-subexcedent;

(2") xj_1 subexcedent, zj;; non-subexcedent; or z;_i1, xj4+1 both
subexcedent with x;_1 > x;41;

(3') z;—1 non-subexcedent, x;;1 subexcedent; or x;_1, z;11 both
subexcedent with z;_; < x;41.

When case (1) holds, let ¢;(w) := w.
When case (2') holds, determine the smallest integer ¢ < j—1 such that

Ty < Tig1 <0< Tj1 < red(j - 1):
so that

W =221 Tj_1 xi...xj_l(]xj_'_l...xn
and define:

When case (3') holds, determine the greatest integer k > j+1 such that

I‘ed(j—l—l) >Jjj+1 >{’C]+2 >...>xk,
so that

w:xl...ajj_lOxj_i_l...xkxk_i_l...xn
and define:

?,[Jl(ﬂ)) =T Ty—1 $j+1"'1'k033k+1'--:13n.
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We now observe that when case (2) (resp. (3)) holds for w, then case (2)
(resp. (3')) holds for ¢;(w). Also, when case (2") (resp. (3')) holds for w,
then case (2) (resp. (3)) holds for v;(w). Therefore

o1 = ¢y = Identity map
and the product W := ¢4, 1 - -1P2th1 is the inverse bijection of .

3. Verification of RISE w = RISE® ®(w)

Let us introduce an alternate definition for ®. Let w belong to
Sh(0™ ™wv) and w’ be a nonempty left factor of w, of length n’. Let w’
have p’ letters equal to 0. If p’ > 1, write

/ h
w :[L’l...xj_l 0 x]+hx]+h+1..xn,,

where 1 < h <p', z;_1 # 0 and where the right factor z;4p,T;1p41 - Tpr
contains no 0. By convention x;y, = 4oo if j+h = n' + 1. If
Zj4p is subexcedent let k& be the greatest integer £ > j + h such that
Tjrn < Tjpne1 < -+ < xp < red(k). If z;_1 is subexcedent let i be the
smallest integer ¢ < j — 1 such that red(:) > z; > 241 > -+ > 1.
Examine four cases:

(1) if ;1 and x5 are both excedent, let

._ I nh
ui=x1-Tj—1, U :=0"TjpTjini1 Tor
and define
O(u') :='.
(2) if x;_1 is excedent and x4 subexcedent, or if z;_1, ;45 are both

subexcedent with x;_1 > x4, let

o I nh
wi=xy- o1, U i=0"Tjpn Tp Thpr Ty
and define
AN h
O(u') :=xjpn - Tk 0" Tppr - Ty

(3) if 1, x4, are both subexcedent with z;_1 < x4, let

— [ h
U=XT1 " T4j-1, u = l‘i"'l’j_lo Tjth Tk Tr41 - Tp!
and define

O(u') =0z Tj1Tj4n Tk 0" Y appr - xp
(4) if x;_ is subexcedent and x;j excedent, let

. I h
U=y Ti—1, W i=xi T 10T, Ty
and define

0(’&/) = 0.’131 R | Oh_l Tjt+h " Tn'-
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By construction w’ = uu’. Call it the canonical factorization of w’. In the
four cases we evidently have:

(3.1) RISEu' = RISE® §(u).
Define ©(w’) to be the three-term sequence:
(3.2) O(w') := (u,u,0(u")).

Let ¢ be the length of w. Then ¢ = 7 —1 in cases (1) and (2) and ¢ =7 —1
in cases (3) and (4).

Lemma 3.1. We have

3.3 RISE z,u’ = RISE® z,0(u’),
q q

3.4 RISE z,u’ = RISE® 00(u/), if z, is subexcedent.
q q

Proof. Let « (resp. () be the leftmost letter of u’ (resp. of (u')).
Because of (3.1) we only have to prove that RISExz,a = RISE® z,0 for
(3.3) and RISEx & = RISE® 0 when z, is subexcedent for (3.4). Let us
prove identity (3.3). There is nothing to do in case (1). In case (2) we have
to verify RISEx;_10 = RISE® z;_1215. When z;_; is excedent and x4,
subexcedent, then 1 € RISEx;_10 and 1 € RISE® z;_1xj4+,. When x;_1,
xjyp are both subexcedent with x;_; > x4, then 1 ¢ RISEx;_10 and
1 ¢ RISE® Tj—1Tj+h-

In cases (3) and (4) we have to verify RISEz;_jx; = RISE® x;_10. If
xi—1 = 0 (resp. excedent), then 1 € RISEx;_1x; (resp. 1 € RISEx;_1x;)
and 1 € RISE® ;10 (resp. 1 & RISE® x;_10). When z;_; is subexcedent,
then x;_1 < x; by definition of 7. Hence 1 € RISEx; 1x; and 1 €
RISE® x;_10.

We next prove identity (3.4). In case (1) z, is always excedent, so
that identity (3.4) need not be considered. In case (2) we have to verify
RISEx;_10 = RISE® Oz ;. But if x;_; is subexcedent, then z;,, is also
subexcedent, so that the above two sets are empty. In cases (3) and (4) we
have to verify RISE z;_12; = RISE®* 00 = {1}. But if x;_; is subexcedent,
then x;_; < x; by definition of 7, so that 1 € RISEx;_1z;. []

Now, if w has p letters equal to 0 with p > 1, it may be expressed as
the juxtaposition product

w = w; oM Wo oh2 ... Wy ohr Wy,
where hy > 1, ho > 1, ... , h, > 1 and where the factors wq, wo, ... , w,,
wy41 contain no 0 and wa, ... , w, are nonempty. We may define: ©(w) :=

/

' is the canonical factorization of w. As w,

(ur,ul.,6(ul)), where w = u,u
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is a left factor of w, we next define O(u,) := (uy—1,u,._q,60(ul._;)), where
Up = Up—_qu,_; is the canonical factorization of w,, and successively
O(tur—1) = (Up—2,ul._o,0(ul._5)) wWith up_1 = up_oul._o, ... , Oug) :=
(u1, v, 0(u))) with ug = uyuf, so that w = wjujul---ul,. and ®(w) =
uy O(uy)0(us) - 0(u.).

It can be verified that u, 8(u,.) = ¢p_pn, 11 Pp—10p(W),
ur—16(uy_1)0(uz) = p—n,—h, 141 Pp—1Pp(w), ete.

With identities (3.1), (3.3) and (3.4) the proof of (1.5) is now completed.

Again, consider the word w of the preceding example
w=50120036074,

sothat r =3, hy =1, hg =2, hg =1, w; =5, wy = 12 and wg = 36,
wyq = 74. We have

O(w) = (ug, u3,0(u3)) = (50120036; 074; 074); case (1)

O(uz) = (ug,ub, 0(us)) = (501; 20036; 02306); case (3)

O(uz) = (ug,ul,0(uy)) = (5; 01; 10); case (2)
)

®(w) = uy O(u})0(uy)f(us) =5]10[02306|074.

4. The transformation F;

The bijection F3 we are now defining maps each shuffle class Sh(0" ")
with v an arbitrary word of length m (0 < m < n) onto itself. When
n = 1 the unique element of the shuffle class is sent onto itself. Also let
F3(w) = w when des(w) = 0. Let n > 2 and assume that Fz(w’) has been
defined for all words w’ with nonnegative letters, of length n’ < n — 1.
Further assume that (1.6) and (1.7) hold for all those words. Let w be a
word of length n such that des(w) > 1. We may write

w = w'a0"b,
where a > 1, b > 0 and r» > 0. Three cases are considered:
(Da<b; 2)a>b,r>1; (3)a>b,r=0.

In case (1) define: F3(w) = F3(w'a0"b) := (F3(w’'a0"))b.
In case (2) we may write F3(w'a0") = w”0 by Property (1.7). We then
define

yF3(w'al") := 0w
F3(w) = F3(w'a0"d) := (vF (w'aOT))b = 0w”'b.

-119-



- 120 -

DISTRIBUTIONS ON WORDS AND ¢-CALCULUS
In short, add one letter “0” to the left of Fs(w’a0"), then delete the

rightmost letter “0” and add b to the right.
In case (3) remember that r = 0. Write

F3(w'a) = 0™ 21010™ 2005 - - - 0% 20,

where m; > 0, mo, ..., my are all positive, then z1, xo, ... , x} are positive
letters and vy, va, ... , v are words with positive letters, possibly empty.
Then define:

dFs(w'a) == 210™ v1220™2vox3 - - - 20" R vy
F3(w) = F3(w'ab) := (6 F3(w'a))b.

In short, move each positive letter occurring just after a O-factor of Fg(w'a)
to the beginning of that O-factor and add b to the right.

Ezample. w=00031220013
F5(0003)=0003 no descent
F4(00031)=46(0003)1=30001 case (3)
F3(0003122)=3000122 case (1)
F3(00031220)=5(3000122)0=31000220 case (3)
F4(000312200)=+(31000220)0=031000220  case (2)
F3(0003122001)=~(031000220)1=0031000221 case (2)

F3(00031220013)=00310002213.

We have: majw = maj(00031220013) =4+ 7 =11 and mafz F3(w) =
mafz(00310002213) = (1+245-+6+7)— (14+2+3+4+5)+(1+4) = 11.

By construction the rightmost letter is preserved by Fg3. To prove
(1.6) proceed by induction. Assume that mafzw’a0” = mafz F3(w'a0")
holds. In case (1) “maj” and “mafz” remain invariant when b is jux-
taposed at the end. In case (2) we have majw = maj(w'a0"b) =
maj(w'a0”), but mafzyFs(w'a0") = mafzFs(w'a0”) — |w'a0"|>; and
mafz (7 Fs(w'a0"))b = mafzy Fs(w'a0") + |w'a0"|>1, where |w'a0"|>; de-
notes the number of positive letters in w’a0". Hence (1.6) holds. In case (3)
remember 7 = 0. We have maj(w’ab) = maj(w’a) + |w'al, where |w’a| de-
notes the length of the word w’a. But mafz §F3(w'a) = mafz Fz(w'a) +
zero(w’a) and mafz(dF3(w'a))b = mafz 0F3(w’'a) 4+ |w'a|>1. The equality
holds for b =0 and b > 1, as easily verified. As zero(w'a)+|w'a|>1 = |w'al,
we have mafzF3(w) = mafz (0F3(w'a))b = mafzFz(w'a) + |w'a] =
majw’ab = majw. Thus (1.6) holds in the three cases.
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To define the inverse bijection Fj 1 of Fy5 we first need the in-
verses 7~ 1(w) and 6 1(w) for each word w. Let w = Ow’ be a word,
whose first letter is 0. Define v~!(w) to be the word derived from w by
deleting the first letter 0 and adding one letter “0” to the right of w.
Clearly, v~y = vy~ ! is the identity map.

Next, let w be a word, whose first letter is positive. Define §—!(w) to
be the word derived from w by moving each positive letter occurring just
before a O-factor of w to the end of that O-factor. Again §='6 = 56! is
the identity map.

We may write

w = cw’'a0"b,

where a > 1, b >0, ¢ > 0 and r» > 0. Three cases are considered:
(D)a<b; (2)a>b,c=0; (3)a>b,c>1.
In case (1) define: F3'(w):= (F5'(cw'ad"))b.
In case (2) define: F3'(w) := (v H(F3 ' (cw'ad™)))b.
In case (3) define: Fz'(w):= (6~ (F5'(cw'al")))b.

We end this section by proving a property of the transformation Fs,
which will be used in our next paper [FoHaO7].

Proposition 4.1. Let w, w” be two words with nonnegative letters, of
the same length. If Zerow = Zerow” and DESPosw = DESPosw”, then
ZeroF3(w) = Zero F3(w").

Proof. To derive F3(w) (resp. F3(w”)) from w (resp. w”) we have to
consider one of the three cases (1), (2) or (3), described above, at each
step. Because of the two conditions Zerow = Zerow” and DESPosw =
DES Posw”, case (i) (i = 1,2,3) is used at the j-th step in the calculation
of F3(w), if and only if the same case is used at that j-th step for the
calculation of F3(w"). Consequently the letters equal to 0 are in the same
places in both words F3(w) and Fz(w”). []

—1
By the very definition of ® : o P B w B o', given in (1.18)

1
and of Fy : 0 25" w2 w” S o7, given in (1.19) we have ®(o) = o

and F3(o) = o if 0 is a derangement. In the next two tables we have
calculated ®(0) = ¢’ and F3(o) = o¢” for the fifteen non-derangement
permutations o of order 4.
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Fix-Mahonian Calculus, II: further statistics

Dominique Foata and Guo-Niu Han

ABSTRACT. Using classical transformations on the symmetric group
and two transformations constructed in Fix-Mahonian Calculus I, we show
that several multivariable statistics are equidistributed either with the
triplet (fix,des,maj), or the pair (fix,maj), where “fix,” “des” and “maj”
denote the number of fixed points, the number of descents and the major
index, respectively.

1. Introduction

First, recall the traditional notations for the g-ascending factorials

(a5 ) = 1, ifn=20
@G d)n = (1—a)(l—aq) - (1 —aq™™t), ifn>1;
(a5 @)oo := [[(1 = ag™1);
n>1
and the g-exponential (see [GaRa90, chap. 1])

eq(u) = Z ( Q,Ln = ,1

5 (@6Dn (4d)e

Furthermore, let (A4,,(Y,%,q)) and (A,(Y,q)) (n > 0) be the sequences of
polynomials respectively defined by the factorial generating functions

() YA, m——zﬁ( Z )_%

n>0

u 71 (U Q)
(1.2) > A, Yq ) <1_1—q> (uY;q)oo

n>0

Of course, (1.2) can be derived from (1.1) by letting the variable t
tend to 1, so that A,(Y,q) = A,(Y,1,q). The classical combinatorial
interpretation for those classes of polynomials has been found by Gessel
and Reutenauer [GeRe93] (see Theorem 1.1 below). For each permutation
oc=0(1)o(2)---o(n) from the symmetric group &,, let io := o~ denote
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the inverse of o; then let its set of fized points, FIX o, descent set, DES o,
idescent set, IDES o, be defined as the subsets:

FIXo:={i:1<i<m,o(i)=1i};
DESo:={i:1<i<n—-1,0()>0c(i+1)};
IDES 0 := DESo .

Note that IDES o is also the set of all 7 such that ¢ + 1 is on the left of ¢ in
the linear representation o(1)o(2)---o(n) of 0. Also let fixo := #FIXo
(the number of fized points), deso := # DESo (the number of descents),
majo := ) i (i € DESo) (the major index), imajo := ) . i (i € IDES0)
(the inverse major index).

Theorem 1.1 (Gessel, Reutenauer). For each n > 0 the generating
polynomial for &,, by (fix,des,maj) (resp. by (fix,maj)) is equal to
A, (Y, t,q) (resp. to A, (Y, q)). Accordingly,

(13) An(Y’ t, q) — Z Yﬁxatdes gqmaj g;
oS,

(1'4) An(Y, q) = Z Yﬁxdqmaja‘
e,

The purpose of this paper is to show that there are several other three-
variable (resp. two-variable) statistics on &,,, whose distribution is given
by the generating polynomial A, (Y,t,q) (resp. A4, (Y, q)). For proving that
those statistics are equidistributed with (fix, des, maj) (resp. (fix, maj)) we
make use the properties of the classical bijections F¥¢, F), CHZ, DW8°,
DW!°¢, plus two transformations F3, ®, constructed in our previous paper
[FoHa07], finally a new transformation F4 described in Section 3.

All those bijections appear as arrows in the diagram of Fig. 1. The
nodes of the diagram are pairs or triplets of statistics, whose definitions
have been, or will be, given in the paper. The integral-valued statistics are
written in lower case, such as “fix” or “maj”, while the set-valued ones
appear in capital letters, such as “FIX” or “DES”. We also introduce two
mappings “Der” and “Desar” of G,, into &,,, with m < n.

Each arrow goes from one node to another node with the following
meaning that we shall explain by means of an example: the vertical
arrow (fix, maz, Der) SR IN (fix, maf, Der) (here rewritten horizontally for
typographical reasons!) indicates that the bijection F3 maps &,, onto itself
and has the property: (fix, maz, Der)oc = (fix, maf, Der) F3(o) for all o.
The remaining statistics are now introduced together with the main two
decompositions of permutations: the fized and pired decompositions.
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loc
(FIX, maf) SEELLLASRN (PIX, mag) (pix, mag, Desar)

(fix, maf, Der)
F120c
CHZ
(fix, maj, Der) (PIX, inv) »
Fs (fix, DES) (pix, inv) ’
(Fy)~*
@
pwele
(fix, maz, Der) (pix,imaj) (pix,imaj, Desar)
(fix, DEZ) (pix, IDES)

loc
(FIX,DEZ) — 2%, (PIX,IDES)

Fig. 1

1.1. The fized decomposition. Let o = o(1)o(2)---0(n) be a permu-
tation and let (i1,42,...,0,—m) (resp. (j1,J2,---,Jm)) be the increasing
sequence of the integers k (resp. k') such that 1 < k < n and o(k) = k
(resp. 1 < k' < n and o(k") # k). Also let “red” denote the increasing
bijection of {ji,j2,...,4m} onto [m]. Let ZDer(o) = z1x2---x, be the
word derived from o = o(1)o(2)---0(n) by replacing each fixed point
o(ix) by 0 and each other letter o(jx) by red o(ji/). As “DES,” “des” and
“maj” can also be defined for arbitrary words with nonnegative letters,
we further introduce:

(1.5) DEZ o := DES ZDer(o);
1.6) dezo := des ZDer(o), mazo := maj ZDer(o);
(1.7) Dero :=redo(j1) redo(jz) - - red o(jm);
(1.8) maf o 1= Z (ix, — k) + majoDero.
k=1

The subword Der o of ZDer (o) can be regarded as a permutation from &,
(with the above notations). It is important to note that FIX Der o = (), so
that Der o is a derangement of order m. Also note that o is fully charac-
terized by the pair (FIX o, Der o), which is called the fized decomposition
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of ¢. Finally, we can rewrite maf o as

fixo

(1.9) maf o 1= Z i—Zi-}—majODera.
i€FIXo  i=1

. 123456789 134789
Ezxample. With o = (821356497) we have red = (123456)’

ZDer(o) = 501200364, DEZo = {1,4,8}, dezo = 3, mazo = 13,
Deroc = 512364, FiIXxo = {2,5,6} and mafoc = (2—-1)+ (6 —2) +
(6 —3)+maj(512364) =7+ 6 = 13.

1.2. The pixed decomposition. Let w = y1y2-- -y, be a word having
no repetitions, without necessarily being a permutation of 12---n. Say
that w is a desarrangement if y1 > yo > -+ > yor and yor < Yor+1
for some k > 1. By convention, y,+1 = co. We could also say that the
leftmost trough of w occurs at an even position. This notion was introduced
by Désarménien [De84] and elegantly used in a subsequent paper [DW88].
A further refinement is due to Gessel [Ge91].

Let 0 = o(1)0(2)---0(n) be a permutation. Unless o is increasing,
there is always a nonempty right factor of ¢ which is a desarrangement. It
then makes sense to define 0@ as the longest such a right factor. Hence, o
admits a unique factorization ¢ = oPc?, called the pized factorization,
where o? is increasing and o? is the longest right factor of o which is a
desarrangement. The set (resp. number) of the letters in o? is denoted by
PIX o (resp. pix o).

If 0% =o(n—m+1)o(n—m+2)---0(n) and if “red” is the increasing
bijection mapping the set {o(n — m + 1),0(n — m + 2),...,0(n)} onto
{1,2,...,m}, define

(1.10) Desaroc :=redo(n—m+1) redo(n—m+2) ... redo(n);

(1.11) mago := Z i— Z i + imaj o Desar o.
i€ePIXo  i=1

Note that Desar o is a desarrangement and belongs to &,,,, for short, a
desarrangement of order m. Also note that o is fully characterized by the
pair (PIX o, Desar ), which will called the pized decomposition of o. Form
the inverse (Desar o)™ = 4192 - - - Y of Desar o and define ZDesar(o) to
be the unique shuffle z1x5-- -z, of 0"~ and y1ys - - - Y, Where x; = 0 if
and only if 7 € PIX 0.

Example. With ¢ = 357428196, then o? = 357, 0 = 428196,
PIXo = {3,5,7}, pixoc = 3. Also, Desaroc = 325164, imajo Desaro =
1+2+4 =17, (Desarog)™! = 421635, ZDesaroc = 420106035 and
mago = (34+5+7)—(1+2+3)+7=16.
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Referring to the diagram in Fig. 1 the purpose of this paper is to prove
the next two theorems.

Theorem 1.2. In each of the following four groups the pairs of statistics
are equidistributed on &,,:

(1) (fix, maj), (fix, maf), (fix, maz), (pix, mag), (pix,inv), (pix,imaj);

(2) (FIX, maf), (PIX, mag), (PIX,inv);

( (
(

2) (
3) (fix, DEZ), (fix, DES), (pix, IDES);
4) (FIX,DEZ), (PIX, IDES).
Theorem 1.3. In each of the following two groups the triplets of statistics
are equidistributed on &,,:
(1) (fix, maf, Der) and (fix, maz, Der);
(2) (pix, mag, Desar) and (pix,imaj, Desar).
Furthermore, the following diagram, involving the bijections DW'¢, F3
and FY% is commutative.

Der dw Desar
G, — 6,

AN

GDesar
n ZDesar

2. The bijections

2.1. The transformations ® and “CHZ”. In our preceding paper
[FoHa07] we have given the constructions of two bijections ®, F3 of &,
onto itself. The latter one will be re-studied and used in Section 3. As
was shown in our previous paper [FoHa07], the first one has the following

property:
(2.1) (fix, DEZ, Der) 0 = (fix, DES, Der) ®(0) (0 € S,,).

This shows that over &,, the pairs (fix, maz) and (fix, maj) are equidis-
tributed over G,,, their generating polynomial being given by the poly-
nomial A4, (Y, q) introduced in (1.2). Also the triplets (fix, dez, maz) and
(fix, des, maj) are equidistributed, with generating polynomial A, (Y,t,q)
introduced in (1.1).
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In [CHZ97] the authors have constructed a bijection, here called “CHZ”,
satisfying

(2.2) (fix, maf, Der) o = (fix, maj, Der) CHZ(0) (0 € G,,).

2.2. The Désarménien- Wachs bijection. For each n > 0 let D,, denote
the set of permutations o from &,, such that FIXoc = (). The elements
of D,, are referred to as the derangements of order n. Let K,, be the set of
permutations o from &,, such that PIX 0 = (). The class K,, was introduced
by Désarménien [De84], who called its elements desarrangements of
order n. He also set up a one-to-one correspondence between D,, and K,.
Later, by means of a symmetric function argument Désarménien and
Wachs [DW88] proved that for every subset J C [n — 1] the equality

(2.3) #{oc €D, :DESo = J} =#{oc € K,, : IDESc = J}

holds. In a subsequent paper [DW93] they constructed a bijection DW :
D,, — K, having the expected property, that is,

(2.4) IDES oDW(0) = DES 0.

Although their bijection is based on an inclusion-exclusion argument,
leaving the door open to the discovery of an explicit correspondence, we
use it as such in the sequel. For the very definition of “DW” we refer the
reader to their original paper [DW93].

We now make a full use of the fixed and pixed decompositions intro-
duced in §§ 1.1 and 1.2. Let 7 € &,, and consider the chain

(2.5) T +— (FIX 7, Der7) — (FIX 7,DW o Der 7) — o,
where o is the permutation defined by

(2.6) (PIX 0, Desar ) := (FIX 7, DW o Der 7).
Then, the mapping DW'°® defined by

(2.7) DW!¢(7) := o,

is a bijection of &,, onto itself satisfying FIX 7 = PIX ¢ and DESo Der 7 =
IDES o Desar ¢. In particular, fix 7 = pix . Taking the definitions of “maf”
and “mag” given in (1.9) and (1.11) into account we have:

fix T
maf 7 = Z i—Zi—i—majoDerT
1€EFIXT =1 pix o
= Z i—Zi-}—imajODesarU:maga.
i€PIXo i=1

We have then proved the following proposition.
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Proposition 2.1. Let o := DW'°°(7). Then
(2.8) FIXT =PIX0o, DESoDerr =IDESoDesaro, maf7 = mago.

Corollary 2.2. The pairs (FIX, maf) and (PIX, mag) are equidistributed
over 6,,.

FExample. Assume that the bijection “DW” maps the derangement
512364 onto the desarrangement 623145. On the other hand, the fixed
decomposition of 7 = 182453697 is equal to ({1,4,5},512364) and
({1,4,5},623145) is the pixed decomposition of the permutation o =
145936278. Hence DW!'°¢(182453697) = 145936278.

We verify that DESo Der T = DES(512364) = {1,5} = IDES(623145) =
IDES 0 Desar 0. Also maf 7 = (1+4+5)—(1+2+43)+(1+5) = 10 = mago.

Proposition 2.3. Let o := DW!°°(7). Then

(2.9) (FIX, DEZ) T = (PIX, IDES) 0;
(2.10) (fix, maz) 7 = (pix, imaj) o.

Proof. 1t suffices to prove (2.9) and in fact only DEZT = IDESo. Let
oPo? be the pixed factorization of o. Then oP is the increasing sequence
of the elements of PIX ¢ = FIX 7. We have i € DEZ 7 if and only if 7(i) # i
and one of the following conditions holds:

(1) 7(4) >7(i+1) and 7(i + 1) # i + 1;

2) r(i+1) =i+ L
In case (1) the letters red 7(7) and red 7(i+ 1) are adjacent letters in Der 7
and red (i) > red7(i + 1). As DESoDer7T = IDESo Desar o, the letter
red(i + 1) is to the left of the letter red(i) in Desar o and then (i + 1) is
to the left of 7 is o, so that ¢ € IDESo.

In case (2) we have (i+1) € FIX T = PIX 0 and red i is a letter of Desar o.
Again i € IDESo. []

Corollary 2.4. The pairs (FIX,DEZ) and (PIX,IDES) are equidistributed
over 6,,.

Using the same example as above we have: 7 = 182453697, FIX T =
{1,4,5}, ZDert = 082003697, so that DEZT = {2,3,8}. Moreover,
o = DW!°¢(182453697) = 145 | 936278. Hence 2,8 € IDESo (case (1))
and 3 € IDESo (case (2)).

2.3. The second fundamental transformation. As described in [Lo83,
p. 201, Algorithm 10.6.1] by means of an algorithm, the second fundamen-
tal transformation, further denoted by F5, can be defined on permutations
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as well as on words. Here we need only consider the case of permutations.
As usual, the number of inversions of a permutation o = o(1)o(2) ---o(n)
is defined by invo := #{(i,7) | 1 <i < j <n,o(i) > o(j)}. Its construc-
tion was given in [Fo68]. Further properties have been proved in [FS78],
[Bjw88]. Here we need the following result.

Theorem 2.5 [FS78]. The transformation Fo defined on the symmetric
group &,, is bijective and the following identities hold for every permuta-
tion o € G,,: invFy(0) =majo; IDESFy(0) =IDESo.

Using the composition product F,, :=ioFs oi we therefore have:
(2.11) invF,(0) =imajo; DESF4(0) = DESo

for every o € &,,.

As the descent set “DES” is preserved under the transformation FY, each
desarrangement is mapped onto another desarrangement. It then makes
sense to consider the chain:

o +— (PIX 0, Desar o) — (PIX 0, F, 0o Desar o) — p,

where (PIX p, Desar p) := (PIX 0, Fj o Desar o). The mapping F¥¢ : o +— p
is a bijection of &,, onto itself. Moreover, PIX ¢ = PIX p, imaj o Desaro =
inv o Desar p and DES o Desar 0 = DES o Desar p. Hence,

pixo
mago = E 71— E 1+ imaj o Desar o
i€PIX o i=1
pix p
= E 1 — g ¢ + inv o Desar p
i€PIX p i=1

=#{(i,7) : 1 <i<pixp<j<mn, p(i) > p(j)}
+ #{(6,4) s pixp < i < j <n, p(i) > p(j)}
= inv p.
We have then proved the following proposition.
Proposition 2.6. Let p := FX°(c). Then
(2.12) (PIX, mag) o = (PIX, inv) p.

Corollary 2.7. The pairs (PIX,mag) and (PIX,inv) are equidistributed
over G,,.

Finally, go back to Properties (2.11) and let & := F5(p). Also let £P¢?
and pPp? be the pixed factorizations of £ and p, respectively. We do not
have &P = pP necessarily, but as p and & have the same descent set, the
factors £P and pP have the same length, i.e., pix ¢ = pix p. Let us state this
result in the next proposition.
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Proposition 2.8. Let £ := F,(p). Then

(2.13) (pix, inv) £ = (pix, imaj) p.

Corollary 2.9. The pairs (pix,inv) and (pix,imaj) are equidistributed
over G,,.

Finally, DW8° attached to the unique oblique arrow in Fig. 1 refers
to the global bijection constructed by Désarménien and Wachs ([DW93],
§5). It has the property: (fix, DES)DW®°(¢) = (pix,IDES)co for all o
in &,,. The big challenge is to find two explicit bijections f and g,
replacing DW&'® and DW!°°, such that (fix, DES) g(c) = (pix, IDES) o and
(PIX,IDES) f(0) = (FIX,DEZ) o, which would make the bottom triangle
commutative, that is, ® = g o f.

3. The bijections F3 and F%

Let 0 < m < n and let v be a nonempty word of length m, whose letters
are positive integers (with possible repetitions). Designate by Sh(0™~™v)
the set of all shuffles of the words 0"~ and v, that is, the set of
all rearrangements of the juxtaposition product 0”~™wv, whose longest

subword of positive letters is v. Let w = z129---x, be a word from
Sh(0™~"™v). It is convenient to write: Posw := v, Zerow = {i : 1 <
i <mn,x; =0}, zerow := #Zerow (= n —m), so that w is completely

characterized by the pair (Zerow, Posw). Besides the statistic “maj” we
will need the statistic “mafz” that associates the number

zero w

(3.1) mafz w = Z i— Z i + maj Posw.

i€Zero w =1

with each word from Sh(0"~™wv). In ([FoHa07], §4) we gave the construc-
tion of a bijection Fg of Sh(0"~"v) onto itself having the following prop-
erty:

(3.2) majw = mafzFg(w) (w € Sh(0" "v)).

The bijection F3 is now applied to each shuffle class Sh(0”~™v), when
v is a derangement, or the inverse of a desarrangement. Let

Gher .= U Sh(0"™™v) (0<m <n,v € Dy);

Ggesar — U Sh(on—mv> (0 <m <n, U_l € Km)
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As already seen in § 1.1, the mapping ZDer is a bijection of &,, onto 65“
satisfying
FIX 0 = Zero ZDer(o); Dero = Pos ZDer(o);

(3.3)
maf o = mafz ZDer(0); DEZo = DES ZDer(o).

Ezample 3.2. Let 0 = 1735264. Then w := ZDer(c) =0403102.
We have FIXo = Zerow = {1,3,6}; Deroc = Posw = 4312; mafo =
mafzw = (14+3+6)— (1+2+3)+(1+2+3) = 10, DEZ o = DESw = {2, 4, 5}.

Now define the bijection F3 of &,, onto itself by the chain

ZDer F ZDer !
(3.4) F3:0— widw " o

Then, by (3.2),

(fix, maz, Der) 0 = (zero, maj, Pos) w

(zero, mafz, Pos) w’
(fix, maf, Der) o,
(

(3.5) (fix, maz, Der) o = (fix, maf, Der) F3(o).

The map “Desar” has been defined in (1.10) and it was noticed that
each permutation o was fully characterized by the pair (PIX o, Desar o).
Another way of deriving ZDesar (o) introduced in §1.2 is to form the inverse
ol =0"11)o7(2)---071(n) of 0. As 071(i) > pixo + 1 if and only if
i € [n]\ PIXo, we see that ZDesar(co) is also the word w = x12z2 - -y,
where

0, if 1 € PIX 05
Y7 o71(i) — pixo, ifi€[n]\PIXo.

The word o~! contains the subword 12 --- pixo. We then have: i €
IDESo < i € DESo ! & o71(i) > pixoc+1and o71(i) > 071 (i+ 1) &
x; > 1 and z; > z;41 < ¢ € DESw, so that IDESo = DESw.

On the other hand, as PIXo = Zerow and (Desaro)™! = Posw, we
also have, by (1.11)

pix o

mago = g T — E t + imaj o Desar o
i€PIX o i=1
zZero w
= g 71— E 1 + majo Posw = mafz w.
1€Zerow =1

As a summary,

PIX 0 = Zero ZDesar(c); Desar o = Pos ZDesar(o);
mag o = mafz ZDesar(c); IDESo = DES ZDesar (o).

(3.6)
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Example 3.3. Let 0 = 1365472. Then o~ ! = 1725436; w :=
ZDesar(c) = 0402103, PIXo = Zerow = {1,3,6}; Desaroc = 3241,
(Desaro)™! = Posw = 4213; mago = mafzw = (1 +3+6) — (1 + 2+
3)+(14+2)=7,IDESc = DESw = {2,4,5}.

Next define the bijection F} of &,, onto itself by the chain

ZDesar F ZDesar '
(3.7) Fo:o"="wissw T o

Then, by (3.2),

(pix, imaj, Desar) zero, maj, Pos) w

o=
= (zero, mafz, Pos) w’
= (pix, mag, Desar) o,

(3.8) (pix, imaj, Desar) ¢ = (pix, mag, Desar) F5(o).
With (3.5) and (3.8) the first part of Theorem 1.3 is proved.

The second part of Theorem 1.3 is proved as follows. Remember that,
if zerow = n —m, the pair (Zerow, Pos w) uniquely determines the shuffle
of (n —m) letters equal to 0 into the letters of Posw. The bijection “dw”
defined by dw := ZDesar o DW'°® 0 ZDer ! can also be derived by the chain

(3.9) dw : w +— (Zerow, Posw)
— (Zerow, (DWoPosw) ™) = (Zerow', Posw') — w’,

where DW denotes the Désarménien-Wachs bijection. It maps GEer onto
GPesar I particular,

Posodww = (DWoPosw)™*;  Zeroodw(w) = Zerow.

Because of (2.4) we also have DES o Posw = DES o Posw’. As shown in our
previous paper ([FoHa07], Proposition 4.1), the latter property implies
that

Zero oF3(w) = Zero oF3(w’).

Furthermore,
PosoF3(w) = Posw, PosoF3(w’) = Posw’,

since F3 maps each shuffle class onto itself. Hence,

Zero o dw oF3(w) = Zero oF3(w);

= (DWo Pos F3(w)) ™! = (DWo Posw)™';
ZerooF3 o dw(w) = Zero oF3(w);

(w)
Pos o dw oF3(w)
(w)
(w) = Posodw(w) = (DW o Posw) ™.

PosoF3 o dw(w
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The word dw oF3(w) is characterized by the pair

(Zeroodw oF3(w), Posodw oF3(w)),
which is equal to the pair
(Zero oF3 o dw(w), Pos oF3 o dw(w)),

which corresponds itself to the word Fs(w) o dw(w). Hence,
(3.10) dwoF3 =Fzodw.
This shows that the top square in Fig. 2 is a commutative diagram, so is
the bottom one. []

Ezample 3.4. Noting that DW(4312) = 3241 we have the commuta-
tive diagram

loc
7431562 —2YV" | 3564271

DWloc

1735264 ——— 1365472
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FIX-MAHONIAN CALCULUS III;
A QUADRUPLE DISTRIBUTION

Dominique Foata and Guo-Niu Han

Abstract

A four-variable distribution on permutations is derived, with two dual combi-
natorial interpretations. The first one includes the number of fixed points “fix”,
the second the so-called “pix” statistic. This shows that the duality between de-
rangements and desarrangements can be extended to the case of multivariable
statistics. Several specializations are obtained, including the joint distribution
of (des, exc), where “des” and “exc” stand for the number of descents and ex-
cedances, respectively.

1. Introduction

Let

1, if n = 0;
(a;Q)n ::{(1_a)(1_aq)...(1—aq”_l), if n>1;
(a; @)oc = [ [ (1 = ag™),

n>0

be the traditional notation for the g-ascending factorial. For each » > 0
form the rational fraction

(1= sq) (u; q)r (usq; q)r
((u; q@)r — 5q(usqg; q)r)(uY; q)rs1

(1.1) C(riu,s,q,Y) =

in four variables u, s, ¢, Y and expand it as a formal power series in u:

(1.2) C(riu,s,q,Y) = u"Cp(r;s,q,Y).

n>0

It can be verified that each coefficient C,,(r; s, q,Y) is actually a polyno-
mial in three variables with nonnegative integral coefficients. For r,n > 0
consider the set W,,(r) = [0, 7]™ of all finite words of length n, whose letters

2000 Mathematics Subject Classification. Primary 05A15, 05A30, 05E15.

Key words and phrases. major index, excedance number, descent number, permuta-
tions, fixed points, pixed points, derangements, desarrangements, Lyndon factorization,
H-factorization, V-decomposition, decreases.
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are taken from the alphabet [0,7] = {0,1,...,r}. The first purpose of this
paper is to show that C,,(r; s, q,Y) is the generating polynomial for W, (r)
by two three-variable statistics (dec, tot, single) and (wlec, tot, wpix), re-
spectively, defined by means of two classical word factorizations, the Lyn-
don factorization and the H-factorization. See Theorems 2.1 and 2.3 there-
after and their corollaries.

The second purpose of this paper is to consider the formal power series

r 1 _'SQ)(U;Q) (USQ7 de:
(1.3) Zt @0 Zt (r;u,s,q,Y)

= — sq(usq; q)r )(uY Dr41
= Z t" Z u"Cp(r;s,q,Y),

r>0 n>0

expand it as a formal power series in u, but normalized by denominators
of the form (¢; q)pn+1, that is,

. 1—SQ) (u; @) (usq; q) u"
(1.4) Zt T ZA (s,t,q,Y

=0 - SQ<US(L ) )(UY q r+1 130 (t Q)n—H

and show that each A, (s,t,q,Y) is actually the generating polynomial for
the symmetric group &,, by two four-variable statistics (exc, des, maj, fix)
and (lec,ides, imaj, pix), respectively. The first (resp. second) statistic
involves the number of fixed points “fix” (resp. the variable “pix”) and is
referred to as the fiz-version (resp. the piz-version). Several specializations
of the polynomials A,,(s,t,q,Y) are then derived with their combinatorial
interpretations. In particular, the joint distribution of the two classical
Eulerian statistics “des” and “exc” is explicitly calculated.

The fiz-version statistic on &,,, denoted by (exc, des, maj, fix), contains
the following classical integral-valued statistics: the number of excedances
“exc,” the number of descents “des,” the major index “maj,” the number
of fized points “fix,” defined for each permutation o = o(1)0(2)---0o(n)
from &,, by

exco:=#{i:1<i<n-—-1,0(i)>i};
deso:=#{i:1<i<n—-1,0()>0c(i+1)};
maja::Zi 1<i<n-1,0()>0c(i+1));
fixo:=#{i:1<i<mn,o(i)=1i}.
As was introduced by Désarménien [5], a desarrangement is defined to

be a word w = x12x2---x,, whose letters are distinct positive integers
such that the inequalities 1 > w2 > --- > wxg; and xg; < x2;41 hold
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for some j with 1 < j < n/2 (by convention: x,, 11 = +00). There is no
desarrangement of length 1. Each desarrangement w = x1x5 - - - x,, is called
a hook, if x1 > xo and either n =2, orn >3 and 1o < 23 < --- < T,. As
proved by Gessel [12], each permutation ¢ = o(1)0(2)---0(n) admits a
unique factorization, called its hook factorization, pri7o - - - T, where p is
an increasing word and each factor 71, 79, ... , 7% is a hook. To derive the
hook factorization of a permutation, it suffices to start from the right and
at each step determine the right factor which is a hook, or equivalently,
the shortest right factor which is a desarrangement.

The piz-version statistic is denoted by (lec, ides, imaj, pix). The second
and third components are classical: if ¢~' denotes the inverse of the
permutation o, they are simply defined by

ideso := deso~1;

imajo :=majo .

The first and fourth components refer to the hook factorization pri7s - - - 7%
of o. For each i let inv 7; denote the number of inversions of 7;. Then, we

define:
leco := Z inv 7y;
1<i<k
pix o := length of the factor p.

For instance, the hook factorization of the following permutation of
order 14 is indicated by vertical bars.

0=13414|12251115|867|13910

We have p = 1 3 4 14, so that pixo = 4. Also inv(12 2 5 11 15) = 3,
inv(86 7) = 2,inv(13 9 10) = 2, so that leco = 7. Our main two theorems
are the following.

Theorem 1.1 (The fix-version). Let A,(s,t,q,Y) (n > 0) be the se-
quence of polynomials in four variables, whose factorial generating func-
tion is given by (1.4). Then, the generating polynomial for &, by the
four-variable statistic (exc, des, maj, fix) is equal to A, (s,t,q,Y). In other
words,

(15) Z Sexcatdesaqmajayﬁxa _ An(s,t,q,Y).
ceG,

Theorem 1.2 (The pix-version). Let A,(s,t,q,Y) (n > 0) be the
sequence of polynomials in four variables, whose factorial generating
function is given by (1.4). Then, the generating polynomial for &,, by
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the four-variable statistic (lec,ides, imaj, pix) is equal to A, (s,t,q,Y). In
other words,

(16) Z Slec Utides qumaj prixa — An(S, t, q, Y)
ceS,

The ligne of route, Ligne o, of a permutation o = o(1)o(2) - --o(n) (also
called descent set) is defined to be the set of all i such that 1 <i<n-—1
and o(i) > o(i + 1). In particular, desoc = # Ligneo and majo is the
sum of all 7 such that ¢ € Ligneo. Also, let the inverse ligne of route
of o be defined by Iligneo := Ligneo !, so that ideso = #Iligneo and
imajo =Y, i (i € lligne o). Finally, let iexco := exco™'.

It follows from Theorem 1.1 and Theorem 1.2 that the two four-variable
statistics (iexc,ides,imaj, fix) and (lec, ides, imaj, pix) are equidistributed
on each symmetric group &,,. The third goal of this paper is to prove the
following stronger result.

Theorem 1.3. The two three-variable statistics
(iexc, fix, Iligne) and (lec, pix, Iligne)
are equidistributed on each symmetric group G,,.

Note that the third component in each of the previous triples is a set-
valued statistic. So far, it was known that the two pairs (fix, Iligne) and
(pix, Iligne) were equidistributed, a result derived by Désarménien and
Wachs [6, 7], so that Theorem 1.3 may be regarded as an extension of
their result. In the following table we reproduce the nine derangements
(resp. desarrangements) o from &4, which are such that fixc = 0 (resp.
pixc = 0), together with the values of the pairs (iexco, Iligneo) (resp.
(lec o, Iligne 0)).

lec | Iligne | Desarrangements | Derangements | Iligne | iexc

1 1 2134 2341 1 1
1,2 3241 3421 1,2
1,3 4231 2413 1,3

3124 3142

2] 2 3142 3412 2 172
1,3 2143 2143 1,3
2,3 4132 4312 2,3
1,2,3 4321 4321 1,2,3

3 3 4123 4123 3 3

Theorem 1.3 has been recently used by Han and Xin [14] to set up a
relation between the generating polynomial for derangements by number
of excedances and the corresponding polynomial for permutations with
one fixed point.
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In our previous papers [9, 10] we have introduced three statistics
“dez,” “maz” and “maf” on &,. If ¢ is a permutation, let iq,is,..., 17
be the increasing sequence of its fixed points. Let Do (resp. Zo) be
the word derived from o = o(1)o(2)---0(n) by deleting all the fixed
points (resp. by replacing all those fixed points by 0). Then those three
statistics are simply defined by: dezo := des Zo, mazo := maj Zo and
maf o := (iy — 1) + (i —2) +--- + (i; — h) + maj Do. For instance, with
o =821356497 we have (i1,...,1,) = (2,5,6), Zo = 801300497,
Do = 813497 and dezo = 3, mazo = 1+ 4+ 8 = 13, mafo =
2-1)+(5B—-2)4(6—-3)+maj(813497) = 13. Theorem 1.4 in [9]
and Theorem 1.1 above provide another combinatorial interpretation for
An(s,t,q,Y), namely

(17) Z Sexcatdezaqmazayﬁxa _ An(s,t,q,Y).
ceG,

In the sequel we need the notations for the g-multinomial coefficients

{ n } _ (43 0)n
mi,. .Myl (G Dmy (G Dy,
and the first g-exponential

(mi+ -+ my =n);

n

eq(“)zz(u = :

S0 @ @n (49

Multiply both sides of (1.4) by 1 —t and let ¢ = 1. We obtain the factorial
generating function for a sequence of polynomials (A,(s,1,¢,Y)) (n > 0)
in three variables:

un 1 —sq)eq(Yu
(1.8) ;)An(& 1,¢,Y) (@D eq<(sq7,t)qz S(geq(")i)'

It follows from Theorem 1.1 that

(19) Z Sexcaqmajayﬁxa _ An(S, 1,q,Y)
ceG,

holds for every n > 0, a result stated and proved by Shareshian and Wachs
[19] by means of a symmetric function argument, so that identity (1.8) with
the interpretation (1.9) belongs to those two authors. Identity (1.4) can
be regarded as a graded form of (1.8). The interest of the graded form
also lies in the fact that it provides the joint distribution of (exc, des), as
shown in (1.15) below.
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Of course, Theorem 1.2 yields a second combinatorial interpretation for
the polynomials A, (s,1,q,Y) in the form

(1.10) Z gleco gimajoypixo An(s,1,q,Y).
ces,

However we have a third combinatorial interpretation, where the statistic

13

“imaj” is replaced by the number of inversions “inv.” We state it as our
fourth main theorem.

Theorem 1.4. Let A, (s,1,q,Y) (n > 0) be the sequence of polynomials
in three variables, whose factorial generating function is given by (1.8).
Then, the generating polynomial for &,, by the three-variable statistic
(lec, inv, pix) is equal to A, (s,1,q,Y). In other words,

(1.11) Z slecoginvoypixe — A (s.1,q,Y).
cEG,

Again, Theorem 1.4 in [9] and Theorem 1.1 provide a fourth combina-
torial interpretation of A, (s, 1,¢q,Y), namely

(1'12) Z Sexcaqmafayﬁxa _ An(S, 1,q,Y).
ces,

Note that the statistic “maf” was introduced and studied in [4].
Let s =1 in identity (1.4). We get:

- - UQT—I—I
(1.13) ;}Altq, tan Zt< Z) WY q)ri1’

so that Theorem 1.1 implies

(114) Z tdesaqmajayﬁxa — An(l,t,q,Y),
ces,

an identity derived by Gessel and Reutenauer [13].
Finally, by letting ¢ = Y := 1 we get the generating function for
polynomials in two variables A, (s,t,1,1) (n > 0) in the form

(1.15)
1-s
A, 1,1) " .
Z (s:1, 1—t”+1 Zt (1 —w)™ (1 —us)™™ —s(1 —u)

n>0 r>0

It then follows from Theorems 1.1 and 1.2 that

(116) Z Sexcatdesaz Z SlecatideSU:An(S,t,1,1>.
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As is well-known (see, e.g., [11]) “exc” and “des” are equidistributed

over G,,, their common generating polynomial being the Eulerian poly-
nomial A,,(t) := A4,,(¢t,1,1,1) = A,,(1,¢,1,1), which satifies the identity

(1.17) (1 _t = t"(r+1)"

r>0

easily deduced from (1.15).

The polynomials A, (s,t,1,1) do not have any particular symmetries.
This is perhaps the reason why their generating function has never been
calculated before, to the best of the authors’ knowledge. However, with
q=1and Y =0 we obtain

, 1-s
(1.18) ZA s,t, 1, 0 _ )n-l—l - Zt (1—wus)™ —s(1 —u)="

n>0 r>0

The right-hand side is invariant under the change of variables u « wus,
s + s71, so that the polynomials A,(s,t,1,0), which are the generat-
ing polynomials for the set of all derangements by the pair (exc,des),
satisfy A, (s,t,1,0) = s™ A,(s~%,¢,1,0). This means that (exc,des) and
(iexc, des) are equidistributed on the set of all derangements. There is a
stronger combinatorial result that can be derived as follows. Let ¢ be the
complement of (n + 1) and r the reverse image, which map each permu-
tation 0 = o(1)...0(n) ontoco :=(n+1—0(1))(n+1—-0(2))...(n+
1—o0(n)) and ro:=0o(n) ... o(2)o(1), respectively. Then

(1.19) (exc, fix, des, ides) o = (iexc, fix, des, ides) cr o.

The paper is organized as follows. In order to prove that C'(r;u, s,q,Y)
is the generating polynomial for W, (r) by two multivariable statistics,
we show in the next section that it suffices to construct two explicit
bijections ¢* and ¢P*. The first bijection ¢f*, defined in Section 3, relates
to the algebra of Lyndon words, first introduced by Chen, Fox and Lyndon
[3], popularized in Combinatorics by Schiitzenberger [18] and now set in
common usage in Lothaire [17]. It is based on the techniques introduced by
Kim and Zeng [15]. In particular, we show that the V-cycle decomposition
introduced by those two authors, which is attached to each permutation,
can be extended to the case of words. This is the content of Theorem 3.4,
which may be regarded as our fifth main result.

The second bijection ¢P™*, constructed in Section 4, relates to the less
classical H-factorization, the analog for words of the hook factorization
introduced by Gessel [12].
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In Section 5 we complete the proofs of Theorems 1.1 and 1.2. By
combining the two bijections ¢™* and #P™ we obtain a transformation on
words serving to prove that two bivariable statistics are equidistributed
on the same rearrangement class. This is done in Section 6, as well as
the proof of Theorem 1.3. Finally, Theorem 1.4 is proved in Section 7 by
means of a new property of the second fundamental transformation.

2. Two multivariable generating functions for words

As 1/(u;q), = go [T+Z_1}qu” (see, e.g., [2, chap. 3]), we may rewrite
the fraction C(r;u,s,q,Y) = (1 — 5q) (w3 )r (u5G; 9)r as
((u; q)r — 5q(usq; q)r) (uY; q)rs1

(2.1) C(ryu,s,q,Y)
- (1_2 {T+n_1} Un((sq)+(sq)2+...+(8q)n—1)>_1 1

If ¢ = cico--- ¢, is a word, whose letters are nonnegative integers, let
Ac := n be the length of ¢ and totc := ¢; + ¢co + -+ + ¢, the sum of
its letters. Furthermore, NIW,, (resp. NIW, (7)) designates the set of all
monotonic nonincreasing words ¢ = cico - - - ¢, of length n, whose letters
are nonnegative integers (resp. nonnegative integers at most equal to 7):
cp>cy>->c1 >0 (resp. r>cp >cg > > ¢ >0). Also let NTW(r)
be the union of all NIw,, (r) for n > 0. It is g-routine (see, e.g., [2, chap. 3])

to prove
r+n—1
|: } _ Z qtot w
n
q WENIW,, (r—1)

Thesum Y. [7771]

n>2
as > s'qttt Wy where the sum is over all pairs (w, ) such that w €
(w,i)
NIW(r — 1), Aw > 2 and i is an integer satisfying 1 < ¢ < Aw —1. Let D(r)
(resp. D, (7)) denote the set of all those pairs (w, i) (resp. those pairs such
that Aw = n). Therefore, equation (2.1) can also be expressed as

C(T’, u, s, q, Y) — (1_ Z Siqi—i—tot wu)\w)—l Z u™ Z qtot wykw,

(w,i)eD(r) n>0 WENIW,, (1)
and the coefficient C),(r;s,q,Y) of u™ defined in (1.3) as

(2.2) C’n(r; s, q, Y) — Z girttim q¢1+...+¢m+tot Wwo-+tot wy+--—+tot w, YAwo,

qu”((sq) +(5q)%+- - -+(sq)™ 1) can then be rewritten

the sum being over all sequences (wq, (w1,%1),. .., (Wm,imn)) such that
wo € NIW(r), each of the pairs (w1,41), ... , (W, im) belongs to D(r),
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and \wg + A\wy + - -+ + Aw,,, = n. Denote the set of those sequences by
D¥(r). The next step is to construct the two bijections ¢* and ¢P™* of
D} (r) onto W, (r) enabling us to calculate certain multivariable statistical
distributions on words.

Let [ = zy25 - - -, be a nonempty word, whose letters are nonnegative
integers. Then [ is said to be a Lyndon word, if either n = 1, or if n > 2
and, with respect to the lexicographic order, the inequality xixo -2, >
TiTiy1 - Tp¥1---Ti—1 holds for every ¢ such that 2 < i < mn. When n > 2,
we always have z; > x; for all i = 2,...,n and x; > x;4; for at least one
integer i (1 < i < n — 1), so that it makes sense to define the rightmost
manimal letter of |, denoted by rminl, as the unique letter x;; satisfying
the inequalities x; > ©i11, Tiv1 < Tijyo < - < @y

Let w, w’ be two nonempty primitive words (none of them can be
expressed as v®, where v is a word and b an integer greater than or equal
to 2). We write w < w’ if and only if w® < w'®, with respect to the
lexicographic order, when b is large enough. As shown for instance in [17,
Theorem 5.1.5] each nonnempty word w, whose letters are nonnegative
integers, can be written uniquely as a product [ls - - -, where each [; is
a Lyndon word and l; < [y =< --- < [;. Classically, each Lyndon word
is defined to be the minimum within its class of cyclic rearrangements,
so that the sequence l; < Iy =X --- is replaced by [y > Il > --- The
modification made here is for convenience.

For instance, the factorization of the following word as a nondecreasing
product of Lyndon words with respect to “<” [in short, Lyndon word
factorization] is indicated by vertical bars:

w=|2[3211|3|5]6421323(6631662]|6].

Now let w = x125---x, be an arbitrary word. We say that a positive
integer ¢ is a decreaseof wif 1 <i<n—landx; > x;11 > --- 2> 2; > 41
for some j such that ¢ < 7 < mn — 1. In particular, ¢ is a decrease
if ©; > x;41. The letter x; is said to be a decrease value of w. If
1<t <ig <+ <1y <n—1Iis the increasing sequence of the decreases
of w, the subword z;, z;, - - - z; , is called the decrease value subword of w.
It will be denoted by decvalw. The number of decreases itself of w is
denoted by dec(w). We have dec(w) = 0 if all letters of w are equal. Also
dec(w) > 1 if w is a Lyndon word having at least two letters. In the
previous example we have decvalw = 32642366366, of length 11, so
that decw = 11.

Let l1ls...l; be the Lyndon word factorization of a word w and let
(liys ligy - 1i,) (1 <iq < dg < -+ <4 < k) be the sequence of all the
one-letter factors in its Lyndon word factorization. Form the nonincreasing
word Singlew defined by Singlew := [;, ---1;,l;, and let singlew = h
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be the number of letters of Singlew. In the previous example we have:
Singlew = 6532 and singlew = 4.

Theorem 2.1. The map ¢™ : (wo, (w1,71), ..., (W, im)) — w of D (r)
onto W, (r), defined in Section 3, is a bijection having the properties:
11+ -+ iy = decw;
(2.3) i1+ + iy + totwy + tot wy + - - - + tot w,, = tot w;
Awg = single w.

The next Corollary is then a consequence of (2.2) and the above

theorem.
Corollary 2.2. The sum C,,(r;s,q,Y) defined in (2.2) is also equal to
(24) On(T; s,q, Y) — Z gdec wqtot wYSinglew,

where the sum is over all words w € Wy, ().

To define the second bijection ¢P™* : D (r) — W, (r) another class of
words is in use. We call them H-words. They are defined as follows: let
h = x1x9 -z, be a word of length A\h > 2, whose letters are nonnegative
integers. Say that h is a H-word, if x1 < x9, and either n = 2, or n > 3
and x9 > 13> - > 2.

Each nonnempty word w, whose letters are nonnegative integers, can be
written uniquely as a product uhqhsg - - - hy, where u is a monotonic nonin-
creasing word (possibly empty) and each h; a H-word. This factorization
is called the H-factorization of w. Unless w is monotonic nonincreasing,
it ends with a H-word, so that its H-factorization is obtained by remov-
ing that H-word and determining the next rightmost H-word. Note the
discrepancy between the hook factorization for permutations mentioned in
the introduction and the present H-factorization used for words.

For instance, the H-factorization of the following word is indicated by
vertical bars:

w=[6532[1321|364]12|23|1663|266].
Three statistics are now defined that relate to the H-factorization
whyhg - - - hy of each arbitrary word w. First, let wpix(w) be the length

Au of u. Then, if r denotes the reverse image, which maps each word
1T ... Ty ONLO Ty ... T2x1, define the statistic wlec(w) by

k
wlec(w) := Z rinv(h;),
i=1
where rinv(w) = inv(r(w)). In the previous example, wpix w = A\(6532) =
4 and wlecw = inv(1231) + inv(463) + inv(21) + inv(32) + inv(3661) +
inv(662) =2+2+1+1+3+2=11.
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Theorem 2.3. The map ¢P™* : (wo, (w1,91), ..., (Wm,im)) — w of DX (r)
onto W, (r), defined in Section 4, is a bijection having the properties:

11+ -+ iy = Wlecw;
(2.5) i1 + o+ iy + tot wg + tot wy + - - - + tot w,, = tot w;

Awg = Wpix w.
Corollary 2.4. The sum C,(r;s,q,Y) defined in (2.2) is also equal to

Cn(T; s, q, Y) — Z Swlecwqtotwywpixw,

where the sum is over all words w € W, ().

3. The bijection ¢

The construction of the bijection ¢f* of D (r) onto W, (r) proceeds in
four steps and involves three subclasses of Lyndon words: the V-words, U-
words and L-words. We can say that V- and U-words are the word analogs
of the V- and U-cycles introduced by Kim and Zeng [15] for permutations.
The present construction is directly inspired by their work.

Each word w = zyx5 - - - x,, is said to be a V-word (resp. a U-word), if
it is of length n > 2 and its letters satisfy the following inequalities

(31) x1 > x> > > x4 and iy < Tigo <o <z < 4,

(resp.
(32) z1>x0> - >x; >xiqp1 and i1 < g0 <o <wp <21 )

for some i such that 1 < ¢ < n — 1. Note that if (3.1) or (3.2) holds,
then dec(w) = i. Also maxw (the maximum letter of w) = 21 > z,,. For
example, v =554112isa V-word and u =87577 is a U-word, but not
a V-word. Their rightmost minimal letters have been underlined.

Now w is said to be a L-word, if it is a Lyndon word of length at least
equal to 2 and whenever 1 = x; for some ¢ such that 2 < i < n, then
r1 =x9 = --- = x;. For instance, 6631662 is a Lyndon word, but not a
L-word, but 663121 is a L-word.

Let V,,(r) (resp. U, (r), resp. L, (r), Lyndon,, (r)) be the set of V-words
(resp. U-words, resp. L-words, resp. Lyndon words), of length n, whose
letters are at most equal to r. Also, let V(r) (resp. U(r), resp. L(r), resp.
Lyndon(r)) be the union of the V,,(r)’s (resp. the U,,(r)’s, resp. the L, (r)’s,
resp. the Lyndon, (r)’s) for n > 2. Clearly, V,,(r) C U,(r) C L,(r) C
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Lyndon,,(r). Parallel to D} (r), whose definition was given in (2.2), we
introduce three sets V,*(r), Uz (r), L (r) of sequences (wp, w1, ...,wy) of
words from W (r) such that wg € NIW(r), Awg + Aw; + - - - + Adwg, = n and

(i) for V*(r) the components w; (1 <i < k) belong to V(r);

(ii) for U}(r) the components w; (1 < i < k) belong to U(r) and
are such that: rminw; < maxws, rminw, < maxws, ... , rminwg_1 <
max wy;

(iii) for L (r) the components w; (1 < i < k) belong to L(r) and are
such that: maxw; < maxwsy < --- < max wy.

The first step consists of mapping the set D, (r) onto V,(r). This
is made by means of a very simple bijection, defined as follows: let
w = x1T2 - - Ty be a nonincreasing word and let (w, ) belong to D, (r),
sothat n >2and 1 <i<n-—1. Let

yri=z1+1, yoi=xa+1, ..., yi i=x; +1,
Yitl ‘= Ty Yit2 = Tpe1, ---y Yn = Tit1;
VI=Y1Y2 .. Yn.
The following proposition is evident.

Proposition 3.1. The mapping (w,i) — v is a bijection of D, (r) onto
V.. (r) satisfying dec(v) =i and totv = tot w + i.

For instance, the image of (w = 443211,7 = 3) is the V-word
v =554112 under the above bijection and dec(v) = 3.

Let (wo, (wy,11), (we,i2), ..., (wk,ix)) belong to D} (r) and, using the
bijection of Proposition 3.1, let (wq,i1) — v, (wa,iz) +— vo, ... |,
(wg, i) — vg. Then
(3.3) (wo, (w1, 1), (W2,12), . . ., (Wk,ix)) = (wo,v1,V2, ..., Vk)
is a bijection of D} (r) onto V,*(r) having the property that

i1+ ig 4 -+ + i = dec(vy) + dec(vg) + - - - + dec(vg);
(3.4) iy +is+ -+ ik + totwy + tot wy + tot wg + - - - 4 tot wy
= tot wg + tot vy + tot vy + - - - 4+ tot vy,.

For instance, the sequence

(6532, (2111, 2),(533, 2),(11, 1),(22, 1),(5521, 3), (552, 2))
from D3, (6) is mapped under (3.3) onto the sequence

(6532, 3211, 643, 21, 32, 6631, 662) € V55(6).

Alsodec(3211)+dec(643)+dec(21)+dec(32)+dec(6631)+dec(662) =
242+14+1+3+2=11.
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The second step is to map V,*(r) onto U} (r). Let u = y1ya - - -y € U(r)
and v = 2129 - - - z; € V(r). Suppose that rmin w is the (i+1)-st leftmost let-
ter of u and rmin v is the (j 4 1)-st letter of v. Also assume that rminu >
maxv. Then, the word [u,v] := y1---viz1 - 2jZj41 Z2Yit1 - - Yk De-
longs to U(r). Furthermore, rmin[u, v] is the (i + j 4 1)-st leftmost letter
of [u,v] and its value is z;41. We also have the inequalities: y; > y;41 (by
definition of rminw), y;41 > 21 (since minu > maxv) and z; > % (since
v is a V-word). These properties allow us to get back the pair (u,v) from
[u,v] by successively determining the critical letters 211, 25, 21, Yiv1, 21
The mapping (u,v) — [u,v] is perfectly reversible.

For example, with v = 87577 and v = 522 we have [u,v] =
87522577.

Now let (wq, vy, va,...,v%) € V.A(r). If k=1, let (wo,u1) := (wo,v1) €
Uk(r). If k > 2, let (1,2,...,a) be the longest sequence of integers such
that rminv; > maxwvy > rminve > maxwvy > --- > maxv, > rminv, and,
either a = k, or a < k — 1 and rminv, < maxv,4i. Let

L if a = 1;
(35) Ul '_{[--'[[Ul,v2]yv3]7"' ,Ua]7 1fa22

We have uy € U(r) and (wg,u1) € U (r) if a = k. Otherwise, rminu; <
maxv,41. We can then apply the procedure described in (3.5) to the
sequence (Vg41,Va+2,---,Vk). When reaching vy we obtain a sequence
(wo, U1, ...,up) € UZ(r). The whole procedure is perfectly reversible. We
have then the following proposition.

Proposition 3.2. The mapping
(3.6) (wo, v1,v2, ..., vk) — (wo, uy,ug, ..., up)

described in (3.5) is a bijection of V,*(r) onto U} (r) having the following
properties:

(1') uiUsg - - - up IS a rearrangement of vivs - - - Vg, SO that totuy + tot ug +
-« +totuy = totvy + totvg + - - - + tot vg;

(ii) dec(uy) + dec(ug) + - - - + dec(up) = dec(vy) + dec(vy) + - - - + dec(vg).

For example, the above sequence
(6532, 3211, 643, 21, 32, 6631, 662) € V5,(6)

is mapped onto the sequence
(6532, 3211, 64213, 32, 6631, 662) € Uj,(6).

where (643, 21] =64213. Also dec(3211) 4+ dec(64213) + dec(32) +
dec(6631) + dec(662) = 11.
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The third step is to map U} (r) onto L} (r). Let | = z1z2---x; € L(r)
and u = y1y2 - - -y;» € U(r). Suppose that rmin/ is the (i + 1)-st leftmost
letter of [ and rmin w is the (¢'+1)-st leftmost letter of u. Also assume that
rmin/ < maxwu and max! > maxu. If z; <y, let ({,u) := lu. If 2; >y,
there is a unique integer a > 7 + 1 such that z, < y; = maxu < z441.
Then, let

<l,'LL> = 371"'«%’«%’—H"'«Tayl"'yi’yi’+1"'yj’$a+1"'«Tj'

The word (I, u) belongs to L(r) and rmin(l, u) is the (a4’ +1)-st leftmost
letter of (I, u), its value being v,/ +1. Now y; is the rightmost letter of (I, u)
to the left of rmin(l,u) = y; 41 such that the letter preceding it, that
is x,, satisfies x, < y1 and the letter following it, that is g5, is such that
y1 > y2. On the other hand, y;/ is the unique letter in the nondecreasing
factor y; 41 -+ - Yjrxaqq1 - - - x; that satisfies y;» < y1 = maxu < x441. Hence
the mapping (I, u) — (I, u) is completely reversible.

For example, with | = 82533577 and v = 7612 we have (l,u) =
825335761277 (the leftmost minimal letters have been underlined).
The letter 7 is the rightmost letter in ([, u) greater than its predecessor 5
and greater than or equal to its successor 6. Also 2 is the unique letter in
the factor 1277 that satisfies 2 < maxu =7 < 7.

Let (wg,u1,us,...,up) € Ut(r). If h = 1, let (wo,l1) := (wo,u1) €
Li(r). If h > 2, let (1,2,...,a) be the longest sequence of integers such

that maxwu; > maxu; for all j = 2,...,a and, and either a = h, or
a < h—1and maxu; < maxugyi. Let

] ug, if a = 1;
(3.7) h '_{<~-~((u1,u2>,U3), ug), ifa>2

We have [; € L(r) and (wo,l1) € L} (r) if a = h. Otherwise, maxl; <
maxug+1. We then apply the procedure described in (3.7) to the se-
quence (Ugi1,Ugt2,---,up). When reaching wu;, we obtain a sequence
(wo,ly,...,lm) € L} (r). The whole procedure is perfectly reversible. We
have then the following proposition.

Proposition 3.3. The mapping

(38) (wo,ul,u2,...,uh)l—> (wo,ll,lg,...,lm>

described in (3.7) is a bijection of U} (r) onto L} (r) having the following
properties:

(i) lils - - - 1, is a rearrangement of ujus - - - up, So that tot l; +totlo+- - -+
tot [, = totuy + totus + - - - + tot up;

(ii) dec(l1) + dec(lz) + - - - + dec(l,,) = dec(uqy) + dec(ug) + - - - + dec(up).
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For example the above sequence

(6532, 3211, 64213, 32, 6631, 662)) € Ujy(6).
is mapped onto the sequence
(6532, 3211, 6421323, 6631, 662) € L3,(6),

where (64213, 32) = 6421323. Also dec(3211) 4 dec(6421323) +
dec(6631) + dec(662) = 11.

The fourth step is to map L (r) onto W, (r). Let (wo,l1,l2,...,lm) €
L*(r). If wy is nonempty, of length b, denote by fi, fa, ... , fp its b
letters from left to right, so that r > f1 > fo > - > f, > 0. If m = 1,
let o1 := [l;. If m > 2, let a be the greatest integer such that [; > [o,
lily =13, ... ;11 lg_q1 = lg. If a < h—1, let a’ > a be the greatest
integer such that lo+1 > lay2, lat1lat2 = lavs, o lav1 - lar—1 > Lo,
etc. Form o1 :=l1ly- -1y, 09 :=lgt1 - lar, etc. The sequence (01,09, ...)
is a nonincreasing sequence of Lyndon words. Let (71, 72,...,7,) be the
nonincreasing rearrangement of the sequence (o1,09,..., f1, fo,..., fv)
if wp is nonempty, and of (o1, 09,...) otherwise. Then, (71, 72,...,7p) is
the Lyndon word factorization of a unique word w € W, (r). The mapping

(39) (wo,ll,lg,...,lm) = w

is perfectly reversible. Also the verification of dec(w) = dec(ly) +dec(l2) +
-+ 4+ dec(l,,) is immediate.

For example, the above sequence
(6532, 3211, 6421323, 6631, 662) € L3,(6)

is mapped onto the Lyndon word factorization
(3.10) w=[2|3211]3|5]|6421323]|6631662]|6 .

The map ¢ is then defined as being the composition product of

(wo, (wy,11), (wa,12), ..., (W, ix)) — (wo,v1,v2,...,vk)  in (3.3)
(wo, V1, V2, ..., V) — (Wo, ut,Uu2, ..., up)  in (3.6)

(wo, u1, ug, . .., up) — (wo,ll,lg,...,lm) in (3.8)

(wo, l1,lay ..oy ly) — in (3.9)

Therefore, ¢ is a bijection of D} (r) onto W, (r) having the properties
stated in Theorem 2.1. The latter theorem is then proved.

From the property of the bijection w — (wq,v1,va,...,vg) of W, (r)
onto V*(r) we deduce the following theorem, which may be regarded as a
word analog of Theorem 2.4 in Kim-Zeng’s paper [15].
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Theorem 3.4 (V-word decomposition). To each word w = x1x9- -2y,
whose letters are nonnegative integers there corresponds a unique sequence
(wg, v1,v2,...,vx), where wg is a nondecreasing word and vy, va, ... , Vg
are V-words with the further property that wovivs - -- vy IS a rearrange-
ment of w and decval w is the juxtaposition product of the decval v;’s:

decval w = (decval vy )(decval vy) - - - (decval vy,).
In particular,

decw = decv; +decvg + - - - + decvg.

For instance, the decrease values of the word w below and of the V-
factors of its V-decomposition are reproduced in boldface:

w=2321135642132366316626;
(6532, 3211, 643, 21, 32, 6631, 662).

4. The bijection ¢P*

The bijection ¢P™* : D} (r) — W, (r) whose properties were stated in
Theorem 3.2 is easy to construct. Let H,(r) be the set of all H-words
of length n, whose letters are at most equal to r and H(r) be the union
of all H,(r)’s for n > 2. We first map D,,(r) onto H,(r) as follows. Let
w = x1T2 - - Ty be a nonincreasing word and let (w, ) belong to D, (r),
so that n > 2 and 1 < ¢ <n — 1. Define:

h:= xi—l—l(xl —+ 1)({132 —+ 1) . ({IJZ + 1).’131'_'_2.’131'_'_3 R

The following proposition is evident.

Proposition 4.1. The mapping (w,i) — h is a bijection of D,,(r) onto
H,, (r) satisfying rinv(h) = i and tot h = tot w + 1.

For instance, the image of (w = 443221,7 = 3) is the H-word
h =255421 under the above bijection and rinv(h) = 3.

Let (wo, (wy,11), (we,42), ..., (wk,ix)) belong to D} (r) and, using the
bijection of Proposition 4.1, let (wi,i1) — h1, (w2,i2) — ha, ... |
(wg,ix) +— hg. Then wohihs---hy is the H-factorization of a word
w € W, (r). Accordingly,

P> (wo, (w1, 1), (W2,12), . . ., (W, ix)) = w := wohihg - - - hy,

is a bijection of D} (r) onto W, (r) having the properties listed in (2.5).
This completes the proof of Theorem 2.3.
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For instance, the sequence

(6532, (2111, 2),(533, 2),(11, 1),(22, 1),(5521, 3),(552, 2))
from D3,(6) is mapped under ¢ onto the word
6532 1321(364|12[23[1663|266¢€ Wan(6).

Also (wlec, tot, wpix) w = (11, 74, 4).

5. From words to permutations

We are now in a position to prove Theorems 1.1 and 1.2. Suppose that
identity (1.5) holds. As

th Z qtotw,

Dn+1 >0 weNIW, (4)

the right-hand side of (1.4) can then be written as

ZtTZBﬁX (r;s,q,Y)u",

r>0 n>0

where

(51) BEX(T’;S,(],Y) — Z Sexcaqmaj a—l—totcyﬁxa,
(o,¢)

the sum being over all pairs (o,c) such that 0 € &, deso < r and
¢ € NIW,,(r — des o). Denote the set of all those pairs by &,,(r, des).

In the same manner, let &, (r,ides) denote the set of all pairs (o, c)
such that 0 € G,,, ideso < r and ¢ € NIW,,(r — ides o) and let

(52) BgiX(T; S,(],Y) — Z Sleca qimaj cr—i—totcypixcr,
(o,c)

where the sum is over all (o, ¢) € &,,(r,ides). If (1.6) holds, the right-hand
side of (1.4) is equal to Y. " >° BPX(r;s,q,Y)u"
r>0 n>0
Accordingly, for proving identity (1.5) (resp. (1.6)) it suffices to show
that Cn(r;5,¢,Y) = ByX(r;5,¢,Y) (resp. Cn(r;s,q,Y) = BE*(ris,q,Y))
holds for all pairs (r,n). Referring to Corollaries 2.2 and 2.4 it suffices to
construct a bijection

P w e (o)
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of Wy, (r) onto &,,(r, des) having the following properties

decw = exco;
(5.3) tot w = majo + tot ¢
singlew = fix o;
and a bijection ‘
PP w (o, c)

of Wy, (r) onto &,,(r,ides) having the following properties

wlecw = leco;
(5.4) tot w = imaj o + tot ¢;
WpiX w = pix o.

The construction of ¥ is achieved by adapting a classical bijection
used by Gessel-Reutenauer [13] and Désarménien-Wachs [6, 7]. Start with

the Lyndon word factorization (7i,72,...,7,) of a word w € W,(r).
If x is a letter of the factor 7, = y1---yj—12Y;j41 - - yn, form the cyclic
rearrangement cyc(z) := TYj41 - YnY1 - -Yj—1. If o, y are two letters

of w, we say that x precedes y, if cycx > cycy, or if cycx = cycy and the
letter x is to the right of the letter y in the word w. Accordingly, to each
letter = of w there corresponds a unique integer p(x), which is the number
of letters preceding x plus one.

When replacing each letter x in the Lyndon word factorization of w
by p(x), we obtain a cycle decomposition of a permutation o. Furthermore,
the cycles start with their minima and when reading the word from left
to right the cycle minima are in decreasing order.

When this replacement is applied to the Lyndon word factorization
displayed in (3.10), we obtain:

w=2|3211|3|5/642 13 23[663 166216
c=16]12182221[10|7[48172011159|25131936 14| 1

Let ¢ := p~1(i) for i = 1,2,...,n. As the permutation o is expressed
as the product of its disjoint cycles, we can form the three-row matrix

d= 1 2 -+ n
o =0(l)c(2) - o(n)
C = C1 Co Cp,

The essential feature is that the word ¢ just defined is the monotonic
nonincreasing rearrangement of w and it has the property that

(55) O‘(Z) > 0'(7;4-1) = C; > Cit1-
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See [13, 7] for a detailed proof. The rest of the proof is routine. Let
2z = z129 -+ - zp be the word defined by

zi=#{j:i<j<n—-1,00)>c(G+ 1}

In other words, z; is the number of descents of ¢ within the right factor
o(i)o(i+1)---o(n). In particular, z; = deso. Because of (5.5) the word
¢ = ci1cy---c, defined by ¢; == ¢ — z; for i = 1,2,...,n belongs to
NIW(r — deso) and deso < 7.

Finally, the verification of the three properties (5.3) is straightforward.
Thus, we have constructed the desired bijection ¥ : w +— (o, ¢), as the
reverse construction requires no further development.

With the above example we have:

[d=12345 6 78 9101112131415 16 17 18 19 20 21 22
c=15681314717410151819 2 9 162022 3 111221
c=66666 65433 3332222211171
z=44444 43322 222111110000
c=22222221111111111111T171

The excedances of o have been underlined (exco = 11). As tot z = majo,
we have 74 = tot w = maj o +tot ¢ = 454 29. The fixed points are written
in boldface (fixo = 4).

The bijection 1P : w + (o, ¢) of W, (r) onto &,,(r, ides) is constructed
by means of the classical standardisation of words. Read w from left to
right and label 1, 2, ... all the maximal letters. If there are m such letters,
restart the reading from left to right and label m+1, m+2, ... the second
greatest letters. Pursue this reading method until reaching the minimal
letters. Call 0 = o(1)0(2)---0(n) the permutation derived by reading
those labels from left to right.

The permutation ¢ and the word w have the same hook-factorization
type. This means that if ahjhg...hs (resp. bpips...pk) is the hook-
factorization of o (resp. H-factorization of w), then k = s and Aa = Ab.
For each 1 < i < k we have Ah; = Ap; and inv(h;) = rinv(p;). Hence
wlecw = leco and wpixw = pixo.

Now define the word z = z129...2, as follows. If o(j) = n is the
maximal letter, then z; := 0; if 0(j) = o(k) — 1 and j < k, then z; := z;
if 0(j) = o(k) — 1 and j > k, then z; := 2, + 1. We can verify that
imajo = totz. With w = z129---x, define the word d = dids---d,
by di ==z —2z (1 <i<n)Asz =2z, +1= z; >z, +1, the
letters of d are all nonnegative. The final word c is just defined to be the
monotonic nonincreasing rearrangement of d. Finally, properties (5.4) are
easily verified.
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For defining the reverse of 1P we just have to remember that the
following inequality holds: o(j) < o(k) = d; > dj. This achieves the
proofs of Theorems 1.1 and 1.2. For example,

[d=1234 5 6 7 8 9 1011121314 1516 17 18 19 20 21 22

w=653213213¢64122316°%6 3 266
c=179141910152011 2 8 2116171222 3 4 1318 5 6
2=43210210243011204421414
d=221111111211111122112 2
c=2222222111111111111111

6. A bijection on words and the proof of Theorem 1.3

Consider the two bijections ¢f* and ¢P™* that have been constructed
in Sections 3 and 4 and consider the bijection F' defined by the following
diagram:

QSﬁX Wn (T)

D (r) F

Wk« W, (r)

Fig. 1. Definition of F'

On the other hand, go back to the definition of the bijection (w,i) +— v
(resp. (w,i) — h) given in Proposition 3.1 (resp. in Proposition 4.1).
If w= z129---x,, then both v and h are rearrangements of the word
(r1 4+ 1)(z2+ 1)+ (x; + 1)zj41 - - - ©,. Now consider the two bijections

¢ﬁX : (w07 (wlvi].)v CIEI (wm77'm>) — w;
¢pix : (w07 (w17i1>7 ) (wmyzm» —w'.

It then follows from Proposition 3.2, Proposition 3.3 and (3.9), on the one
hand, and from the very definition of ¢P*, on the other hand, that the
words w and w’ are rearrangements of each other. Finally, Theorems 2.1
and 2.3 imply the following result.

Theorem 6.1. The transformation F defined by the diagram of Fig. 1
maps each word whose letters are nonnegative integers on another
word F(w) and has the following properties:

(i) F(w) is a rearrangement of w and the restriction of F' to each rear-
rangement class is a bijection of that class onto itself;

(ii) (dec, single) w = (wlec, wpix) F'(w).

Let ¢ be the complement to (n + 1) that maps each permutation o =
o()o(2)---o(n)ontoco :=(n+1—0c(1))(n+1—-0(2)) - - (n+1—0(n)).
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When restricted to the symmetric group G,, the mapping F' o c maps &,
onto itself and has the property

(des, single) o = (lec, pix) (F o c)(0o).

Note that “dec” was replaced by “des”, as all the decreases in a permuta-
tion are descents. Finally, the so-called first fundamental transformation
(see [11]) o +— ¢ maps &,, onto itself and is such that

(exc, fix) 0 = (des, single) 7.
Hence
(exc, fix) o = (lec, pix) (F o c)(&).

As announced in the introduction we have a stronger result stated in
Theorem 1.3. Its proof is as follows.

Proof of Theorem 1.3. For each composition J = j1j2 - jm (word
with positive letters) define the set L(J) and the monotonic nonincreasing
word ¢(J) by

L(J) := {Gms Jm + Gm—ts -+ Jm + et + -+ Jo + 1}
c(J) = mjm(m - 1)jmfl ...9J2101

For example, with J = 455116 we have L(J) = {6,7,8,13,18,22} and
c(J) = 6666665433333222221111.

Fix a composition .J of n (i.e., tot J = n) and let &7 be the set of all
permutations o of order n such that Ilignec C L(J). Using the bijection
P given in Section 5, define a bijection w; + o1 between the set R; of
all rearrangements of c(J) and &7 by

(o1, %) = P> (wy).

For defining the reverse o7 — w; we only have to take the multiplicity of
wy € Ry into account. This is well-defined because Iligneoy C L(.J). For
example, take the same example used in Section 5 for ¥P™:

Id=1234 5 6 7 8 9 1011121314 1516 17 18 19 20 21 22
wp=6532 132136 412231663266
00 =179141910152011 2 8 2116171222 3 4 1318 5 6

Then Iligneo; = {6,8,13,18} C L(J) and the basic properties of this
bijection are
wlecw, = lecoy, wpixw; = pixoy.
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On the other hand the bijection ¥ given in Section 5 defines a bijection
wy — 09 between Ry and &7 by

(o3t %) = ™ (ws).

Again, for the reverse o9 — wo the multiplicity of wy € R is to be taken
into account. This is also well-defined, since Iligneos C L(J). With the
example used in Section 5 for ¥ we have:

Id =12 345 678 9 101112131415 16 17 18 19 20 21 22
wy =23 2113564 2132366 3166 26
02_1:156813147174101518192 9162022 3 111221
oo =114199 2 37 415102021 5 6 1116 8 1213172218

Also Tligne oy = Ligne o, ' = {6,8,13,18} c L(J).
The basic properties of this bijection are

dec wy = iexcog, singlews = fix os.

We can use those two bijections and the bijection F' defined in Fig. 1 to
form the chain -
O = Wy Wy O,

and therefore obtain a bijection oy +— o5 of &7 onto itself having the
following properties

iexcog = lecoy, fixoy = pixoy.

In other words, the pairs (iexc, fix) and (lec, pix) are equidistributed on
{o € 6,,llignec C J} for all compositions J of n. By the inclusion-
exclusion principle those pairs are also equidistributed on each set {o €
Sy, lligneo = J}. Hence the triples (iexc, fix, Iligne) and (lec, pix, Iligne)
are equidistributed on &,,. []

7. Proof of Theorem 1.4

If m = (mq,ma,...,my,) is a sequence of n nonnegative integers, the
rearrangement class of the nondecreasing word 1712™2 ... r"n_ that is,
the class of all the words than can be derived from 1™12™2 .. .r™» by
permutation of the letters, is denoted by Ry,. The definitions of “des,”
“maj” and “inv” used so far for permutations are also valid for words.
The second fundamental transformation, as it was called later on (see [8],
[17], §10.6 or [16], ex. 5.1.1.19) denoted by ®, maps each word w on another
word ®(w) and has the following properties:

(a) majw = inv ®(w);
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(b) ®(w) is a rearrangement of w, and the restriction of ® to each
rearrangement class Ry, is a bijection of Ry, onto itself.

Further properties were further proved by Foata, Schiitzenberger [11]
and Bjorner, Wachs [1], in particular, when the transformation is restricted
to act on rearrangement classes Ry, such that m; = --- = m,, = 1, that
is, on symmetric groups &,,.

Ligne and inverse ligne of route have been defined in the Introduction.
As was proved in [11], the transformation ® preserves the inverse ligne of
route, so that the pairs (Iligne, maj) and (Iligne, inv) are equidistributed
on G, a result that we express as

(7.1) (Tligne, maj) ~ (Iligne, inv);
or as
(7.2) (Ligne, imaj) ~ (Ligne, inv).

The refinement of (7.2) we now derive (see Proposition 7.1 and Theorem
7.2 below) is based on the properties of a new statistic called LAC.

For each permutation 0 = o(1)o(2)---0(n) and each integer i such
that 1 <i < ndefine ¢; :=0if (i) < o(i+1) and ¢; := k if o() is greater
than all the letters o(i+1), o(i+2), ..., 0(i+ k), but 0(i) < o(i+k+1).
[By convention, o(n + 1) = +00.]

Definition. The statistic LACo attached to each permutation o =
o(1)o(2)---0(n) is defined to be the word LACo = {145 ... ¢,,.

Ezxample. We have

id =12 3 4 5 6 7 8 9 10 11 12
o =3 4 8 1 9 2 5 10 12 7 6 11
LACo = 0 0 1 0 2 0 0 0O 3 1 0 0
In the above table /5 = 2 because 0 =...925 10--- and /9 = 3 because
c=...1276 11.

Proposition 7.1. Let 0 = o(1)o(2)---0(n) be a permutation and let
LACo = {15 ...L,. Then i € Ligne o if and only if £; > 1.

Theorem 7.2. We have
(7.3) (LAC,imaj) ~ (LAC, inv).

7

Proof. Define ILACo := LACo~!. Since ® maps “maj” to “inv,
property (7.3) will be proved if we show that ® preserves “ILAC”, that is,

(7.4) ILAC®(0) = ILAC 0.
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A direct description of ILACo can be given as follows. Let ILACo =
fife ... fn. Then f; = jif and only if within the word o = (1) (2) - - -o(n)
the integer j is such that the letters of c equal toi+1,i4+2, ... , 1+ 7
are on the left of the letter equal to ¢ and either (i 4+ j + 1) is on the right
of i,or i +j =n.

As can be seen in ([17], chap. 10), the second fundamental trans-
formation ® is defined by induction: ®(z) = x for each letter = and
O (wz) = v, (P(w))x for each word w and each letter z, where v, is a
well-defined bijection. See the above reference for an explicit description
of .. Identity (7.4) is then a simple consequence of the following property
of v, (we omit its proof): Let w be a word and z a letter. If u is a subword
of w such that all letters of u are smaller (resp. greater) than x, then u is
also a subword of v, (w). []

Proposition 7.3. Let 0 and 7 be two permutations of order n. If
LACo = LACT, then

(i) Ligne o = Ligne 7;

(ii) (des, maj)o = (des, maj)T;

(iii) pix o = pix T;

(iv) leco = lecT.

Proof. (i) follows from Proposition 7.1. (ii) follows from (i). By (i) we
see that o and 7 have the same hook-factorization type. That means that
if ahihg...hs (resp. bpips...pk) is the hook-factorization of o (resp. of
T), then k = s and Aa = Ab, Ah; = Ap; for 1 < i < k. Hence (iii) holds.
For proving (iv) it suffices to prove that inv(h;) = inv(p;) for 1 < i < k.
This is true since LAC o = LAC 7 by hypothesis. []

It follows from Proposition 7.3 that
(7.5) (lec, imaj, pix) =~ (lec, inv, pix)

and this is all we need to prove Theorem 1.4.
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DECREASES AND DESCENTS IN WORDS

Dominique Foata and Guo-Niu Han

ABSTRACT. The generating function for words by a multivariable statis-
tic involving decrease, increase, descent and rise values is explicitly cal-
culated by using the MacMahon Master Theorem and the properties of
the first fundamental transformation on words. Applications to statistical
study of the symmetric group are also given.

1. Introduction

In our recent papers [2, 3, 4, 5, 6, 7, 8, 9] that involve the calculations
of factorial generating functions for the symmetric and hyperoctahedral
groups, we have obtained several results on statistical distributions on
words. In this paper we take up again the study of those word statistics in
a more general context. They do not necessarily have counterparts on
permutations, but are essential in this word calculus. The MacMahon
Master Theorem [14, p. 97-98] and the first fundamental transformation
on words [13, chap. 10] will be our basic tools.

The number of decreases is a crucial statistic; as such it is at the origin
of our word studies. The definition of decrease slightly differs from the
definition of the classical descent. Let w = x1x5 - - - x,, be an arbitrary word,
whose letters are nonnegative integers. Recall that a positive integer
is said to be a descent (or descent place) of w if 1 < i < n — 1 and
x; > xiy1. We say that ¢ is a decrease of w if 1 < ¢ < n — 1 and
Ty = Tig1 = - = Tj > Tj4q1 for some j such that ¢ < j < n — 1.
The letter x; is said to be a decrease value (resp. descent value) of w.
The set of all decreases (resp. descents) is denoted by DEC(w) (resp.
DES(w)). Each descent is a decrease, but not conversely. This means that
DES(w) C DEC(w). However, DES(w) = DEC(w) when w is a word without
repetitions.

In the present paper our intention is to go back to the study of
the number of decreases, this time associated with several other word
statistics, and derive the Ur-result that should have been at the origin of
several of our statistical distribution studies. This Ur-result is stated in
Theorem 1.1, but has two equivalent forms, as written in Theorems 1.2
and 1.3.

In parallel with the notion of decrease, we say that that a positive
integer i is an increase (resp. a rise) of wif 1 <i <mn and z; = ;41 =
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- =1x; < x4 for some j such that i < j < n (resp. if 1 < ¢ < n and
x; < xiy1). By convention, x,41 = +o0o. The letter z; is said to be an
increase value (resp. a rise value) of w. Thus, the rightmost letter z,, is
always a rise value. Again, the set of all increases (resp. rises) is denoted
by INC(w) (resp. RISE(w)). Each rise is an increase, but not conversely.

This means that RISE(w) C INC(w).

Furthermore, a position i (1 <14 < n) is said to be a record if z; < z;
for all j such that 1 < j <1 — 1. The letter x; is said to be a record value.

The set of all records of w is denoted by REC(w).

Introduce six sequences of commuting variables (X;), (Y;), (Z;), (T3),
(Y/)), (T}) (i =0,1,2,...) and for each word w = z125 ...z, from [0, r]*

define the weight (w) of w = 125 ... 2, to be

1) ww) = I[ X

n -

n =

1€EDES tERISE\REC 1EDEC\DES

/
S | R | G
1€(INC\RISE)\REC 1ERISENREC

where the argument “(w)” has not been written for typographic reasons.

I

1€(INC\RISE)NREC

For example, i € RISE \ REC stands for i € RISE(w) \ REC(w).

Ezxample. For the word w =324455531114135 the sets DES, DEC,

INC, RISE, REC of w are indicated by bullets.

w =3 2 4 4 5 5 5 3 1 114 1 3 5
DES = e o o °

DEC = e e o o o °

RISE = ° °

INC = e o o e o

REC = e e o o o o

We have ¢<w) = XgYQTiYZZg,ZE,XE,XngTlY1X4Y1Y3Y5/.
Now let C be the (r + 1) x (r 4+ 1) matrix

0 X1 Xa
1-727 1-— 25
Yo 0 X5
1—-1TH 1— 2725
Yo Y; 0
(12) c=|1-To 1=1
Yo Y, Yy
1-Tp 1-T7 1-T
Yo Y; Y5
1-T, 1-T, 1-T,

Xr—l Xr
1-Z,.14 1-2,
Xr—l Xr
1-Z..4 1-2,
Xr—l Xr
1-Z,.1 1-2,

X
0
1-2,.
Yr—l 0
1- Tr—l




DECREASES AND DESCENTS IN WORDS

Theorem 1.1. The generating function for the set [0, r]* by the weight v
is given by

Ogggr(l 1 —jTJf)
(13) > YW = =

we[0,r]*

where [ is the identity matrix of order (r + 1).

Of course, the expression 1/ det(I —C') is too redolent of the MacMahon
Master Theorem [14, p. 97-98] for not having it play a crucial role in the
proof of (1.3). It does indeed. However we further need the properties of
the first fundamental transformation, as it is developed in Cartier-Foata
[1] and also in Lothaire [13, chap. 10]. As mentioned earlier, Theorem 1.1
must be regarded as our Ur-result. Its proof is given in Section 2. Its two
equivalent forms come next.

Theorem 1.2. We also have:

1 ==
1—Zj+Xj

0<j<r
H 1- T]f
0<5< 1= TJ/ + i/jl
SIST
wel0,r]* H m

0<j<l—1 X
1—
Z 1-1T; 1-27;+ X,

0<I<r H 71—Tj+Yj
0<j<i—1

By definition each letter equal to 0 cannot be a decrease value. Con-
sequently, the weight ¢ (w) of each word w must not contain the vari-
ables X, Zy. There is then another expression for the right-hand side of
(1.4) which does not involve the variables Xy, Zy. To obtain it we factor
out (1 —Zy)/(1 = Zy+ Xo) from both numerator and denominator of the
right-hand side, as done in the next theorem.

Theorem 1.3. We also have:
H 1-— Zj
1— Zj —f-Xj

1<5<r
1—ij
SIST
(1.5) > w(w) = [ 7
welo,r)” 1-7+1%,

1<j<i—1 X
-2
L-T; 1-Z1+ X,
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Theorem 1.2 (and therefore Theorem 1.3) is proved in Section 3
by using a determinantal manipulation and summing the weights ¥ (w)
according to their so-called keys. An alternate proof of Theorem 1.2,
which is not reproduced in this paper, is based on the word-analog of
the Kim-Zeng transformation [11] and follows the pattern developed in
our previous paper [9]. Specializations of those two theorems for deriving
generating functions on words only appear in Section 6. There is however
a specialization of (1.5) that deserves a special development and is now
presented.

Let v be the homomorphism defined by the following substitutions of
variables:

vi=A{X; —sY;_1, Zj—sYj1, T;<Y;, T;<Y}

For each word w = z1xs - - -z, € [0,7]* we then have:

(16)  yvw = [ Yix J] Yecrx [ Ya

x; EINCNREC r; EDEC x; EINC\REC
Applying v to (1.5) we get:

[[ (1-sY;1)

i
(1.7) Z Y p(w) = _ﬁr (1— SYj—l)

wel0,r]* -
1= 1§J§ﬁ1 a-vy)
ISIST ogj<ia ’

The above right-hand side can be further simplified as stated in the
following theorem, whose proof is given in Section 4.

Theorem 1.4. We have:

(18) Y. vv(w)
welorl” (1-s) I (-Y) I (1-sY))

_ 0<j<r—1 0<j<r—1
[ a=-y)( II a-Y)-s I (1-sY))
0<j<r 0<j<r—1 0<j<r—1

For each word w = z125 - - - x,, let inrec w denote the number of letters
of w, which are increase and record values. Also let decw be the number
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of decreases in w and totw = x1 + 29 + - - - + x,, be the sum of the letters

of w. Also make the substitution Yj’ «— RY}, where R is a new variable
and let Yp ==~y |yj/<_Ryj, so that (1.6) becomes:

(19) wR(w):Rinrechdecw H Yxi—1>< H sz

x; EDEC x; €EINC

On the other hand, let
(1.10) HY)=]]a-v)™%

(1.11) H(Y):= [] a-v)™" (r>0).

0<i<r—1

Using the homomorphism g identity (1.8) may be rewritten as:

(1.12) > Yr(w) = SZS?)I{Z}EIR(Q '

welo,r]*

The left-hand side of (1.12) can be further expressed as a series over
the symmetric groups &,, (n = 0,1,...). If 0 = 0(1)0(2)---0(n) is a
permutation of 12---n, let 2 = 2125 - - - 2, be the word defined by:

(113)  zi=#{ji<j<n—1o()>o(G+1)} (1<i<n),

so that z; is the number of descents, deso, and tot z = 27 + 20+ -+ 2, is
the major index, majo, of 0. Also, let exco:={i: 1 <i<n-—1,0(i) > i}
be the number of excedances and fix o be the number of fixed points of o.
Finally, let NIW,, (resp. NIW,,(k)) denote the set of words ¢ = cica - - - ¢y,
of length n, whose letters are integers satisfying ¢y > ¢; > --- > ¢, >0
(resp. k> c¢1 > ¢1 > -+ > ¢, > 0). With each pair (o,¢) € §,, X NIW,, we
associate the monomial

(1.14) Yoo = [ Yereo1x [ Yeris

Theorem 1.5. We have:

ﬁXO’ exco J— (1 — S)Hr—’_l(RY)
(L18) D D, R™7s™7 ) Yoo =g &) —siv) 20
n>0 da€6<" CENIW,, (r—des o) " "
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When r tends to infinity in (1.15), we get the identity

X0 gexco 1_8 H(RY
(1.16) SN RS > Yoo = Sy))_ ;H(;),

n>00€S,, CENIW,,

derived by Shareshian and Wachs [15, Theorem 2.1] using a quasi-
symmetric function approach. However, starting from (1.15), we can ob-
tain a graded form of (1.16) as follows. Let

(1.17) Y(ost):=) t" Y Yo

k>0 CENIW , (k)

Theorem 1.6. The graded form of (1.16) reads:

xo gexcoydeso r B T (RY)
(118) Y > RS 457y (05 1) Zt _Z}I ok

n>00e6,

Section 5 starts with redescribing the Gessel-Reutenauer standardiza-
tion [10] and showing how it is used to prove Theorem 1.5. The graded
form (1.18) is deduced from Theorem 1.5 by a standard series manipula-
tion. We end the paper by giving some specializations of our Ur-theorem
and also by showing that the distribution of (fix, exc, des, maj) over the
symmetric groups that was found earlier in [9] using the word-analog of
the Kim-Zeng transformation [11], can also be deduced from our Ur-result
in two different manners.

2. Proof of Theorem 1.1

A word w = y1y2 -+ - yn € [0,7r]* having no equal letters in succession
is called an h-derangement (horizontal derangement). The set of all h-
derangement words in [0, r|* is denoted by [0, r|;. Let a be the substitution
of variables defined by

a:={Z; —0, T,—0, T/ 0}

Then
ap(w) =Y(w) = H Xz, H Ya, H Ym/i?
1€DES 1ERISE\REC 1€ERISENREC
if w is an h-derangement and av(w) = 0 otherwise. The following

specialization of Theorem 1.1 is obtained by taking the image of identity
(1.3) under a.
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Theorem 2.1. We have

L)

(2.1) Z Ylw) = det(I —aC)

we(0,r]}

Even though Theorem 2.1 is a special case of Theorem 1.1, it can still
be used as a lemma to prove Theorem 1.1. We proceed as follows.

Proof of Theorem 1.1. Let w be a word from [0, r]*. The key of w is
defined to be the h-derangement k derived from w by erasing all letters x;
such that x; = x;41. For instance, the key of w = 324455531114135 is the
h-derangement k = 3245314135.

Let 3 be the substitution of variables defined by

Bi=AXi = Xi/(1-2), Yi<Y;/(1-T), Y/ <Y//QA-T)}

(2

Then, the generating function for the set of all w whose key is k& by the
weight 1 is given by

> w(w) =By(k).

w, key(w)=k

Since B aC = C we have

Yoowwy= > > pw) = > Be(k)
wel0,r]* kel0,r]; key(w)=k kelo,r];
I <1+Yj’>
=0( X W) = 85 v @)

kelo,r];
/

I (1+ﬁYj’) 11 (1+ Y )

!
_0<i<r 0<j<r 1 =T

det(I—BaC)  det(I-0O)

Proof of Theorem 2.1. A letter z; which is a record and also a rise
value is called an riserec value. For each h-derangement k = xixs-- -2,
let wy be the nondecreasing word composed of all the riserec values of k
and let ky be the word obtained from £ by erasing all the riserec values
of k. Since the letters of wy can be uniquely inserted into the word kg for
reconstructing k, the map

(2.2) k — (wo, ko)
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is a bijection of the set of all h-derangements onto the the set of all pairs
(wo, ko) such that wq is a nondecreasing word and kg is an h-derangement
without any riserec value. Moreover, if a letter x; of k is a record value
and therefore becomes a letter, say, xg; of wg, then xg; is a rise of wy if
and only if x; is a rise of k. Therefore

(2.3) (k) = 1 (wo) b (ko)-

Next apply the first fundamental transformation to kg (see [13, §10.5]),
say, u = F1(ko). Let us recall how F; is defined by means of an example.
Start with the word kg = 5365324612431 and cut it before each record
value to get kg = 53 | 65324 | 612431 =: wy | we | ws. In each
compartment move the leftmost letter to the end to obtain the cyclic
shifts dw, = 35, dwy, = 53246, dwz = 124316 and form the two-row
mabrix <5w1 Swa 6w3> _ <3553246124316

wy] wg w3 5365324612431
vertical biletters of that two-row matrix in such a way that the entries on
the top row are in nondecreasing order, assuming that two biletters (:,),

). Finally, rearrange the

(;’,) can commute only when a # b. We then obtain the two-row matrix

Py (ko) = (a) _ (1 122333445566)‘
u 6331554223641

We can characterize the word v = y1y2 - - - ¥, when we start with an h-
derangement kg. Let w = 2125 - - - 2,,, be the nondecreasing rearrangement
of u (and of kp). By construction y; # z; for 1 < i < m. Such a word u
is called a v-derangement (vertical derangement). Denote the set of all
v-derangements in [0,7]* by [0,7]5. Then F; provides a bijection of the
set of all h-derangements onto the set of all pairs (wp,u) such that wy is
a nondecreasing word and u is a v-derangement:

ki (w0, ko) — (wo,u) where Fl(ko):(Z).

Ezxample. k = 2535653246124316 — (wg = 256, ko = 5365324612431)

(
(

— (wo = 256, u = 6331554223641),
e P, (ko) = @\ (1122333445566
") =\w) ~\6331554223641 )

Let ® be the homomorphism generated by

i)Y, ifj<i
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By the property [13, chap. 10] of the first fundamental transformation we
have

(2.4) () = D)) = () (7).

Let ND(r) be the set of all non-decreasing words from [0, r|*. It follows
from the properties of the above bijections that

> ww= X v Y ofl);

welo,r]}; wo€ND(r) u€l0,r]}
Yo wwo)= [[ a+Y).
woEND(r) 0<j<r

There remains to prove the identity:
(2.5) Z o wy_ L
' Sons U ~det(I —aC)’

The proof is based on the celebrated MacMahon Master Theorem, using
the noncommutative version developed in ([1], chap. 4). Also see ([13],
chap. 10). Consider the matrix

o O G (2 0
As shown in the references just mentioned, there holds the identity
(2.6) R R >, ;
' det(I —C”) oy \U '

Applying ® to both sides of (2.6) yields (2.5). []

3. Proof of Theorem 1.2

The proof of Theorem 1.2 is similar to the proof of Theorem 1.1 given
in the previous section. First we prove the following specialization of
Theorem 1.2.
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Theorem 3.1. We have:
H 1+ Yj’
1+ X;
0<j<r J
(3.1) > p(w) = )
welo,r]: 1-— Z H L+Y X
1 —+ Xj 1 —+ Xl

0<I<r 0<5<i—1

Proof. Denote the left-hand side of (3.1) by LHS. From Theorem 2.1 we

have
/
M (1+Y)
0<j<r
LHS:T,
where
1 =X —-Xo —-Xr1 —X»
—Yo 1 —-Xo —Xr—1 —X»
Yo Y1 1 X1 =X,
D = ) .
Yo Y1 Yo 1 —Xr
-Yy -1 —-Y; =Y, 1 1

In the above determinant subtract the r-th row from the (r + 1)-st one;
then the (r — 1)-st from the r-th row; ..., the first row from the second.

We obtain:
1 -X1 —Xo — X1 —Xr
—-1—-Y, 1+ X 0 0 0
0 -1-Y7 14+ X5 0 0
D = . . .
0 0 0 1+ X1 0
0 0 0 -1-Y,1 1+ X,

Now expand the determinant by the cofactors of the first row. We get:

p= Tl a+x)- > ( II a+v) I a+x))x
1<5<r 1<I<r 0<j<l—1 I+1<j<r
We further have:
D= [ a+x)+Xo J[ 1 +X)
1<j<r 1<j<r
X

_ Z( [T a+vy) I (1+Xj)>1

. + X
0<i<r 0<5<l-1 1<j<r
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Hence,

(1+Y)
OSJ]:LT(l-i-Xj) D
7] %
=3 I o5 x

0<1<r 0<;<i—1

(3.2) LHS =

Proof of Theorem 1.2. As in the proof of Theorem 1.1 we may write:

dYooww)= > > pw)= Y Buy(k) = B(LHS).

wel0,r]* ke[0,r]} key(w)=k ke[0,r];

Using (3.2) it is immediate to verify that G(LHS) is equal to the right-hand
side of (1.4). []

4. Proof of Theorem 1.4
First, we may check that

ITa-9- ] a-v

0<j<r 0<j<r
Y Moo [T ew- % I oo [[a-n
0<I<r0<j<l! I+1<j<r 0<I<r0<;<i—1 I<j<r
=a-5 > v [[ a-sv J] a-v.

0<i<r 0<5<i-1 I+1<5<r

Proof of Theorem 1.4. Using (1.7) we have:

1
I=s > % [ (-sY)/ 11 0-Y)
0<i<r—1 0<5<i-1 0<5<1
()<‘1;[—1(1_Yj>
T G-Y)-s y v I a-sy) 11 (1-Y)
0<j<r—1 0<i<r—1 0<5<i-1 +1<j<r—1
1 a-v)
_ 0<j<r—1
[I -Y)-s( II (-s¥)— I (1-Y))/(1-s)
0<j<r—1 0<j<r—1 0<j<r—1
(=5 I (=Y

o av)-s 0 a-w) U

0<j<r—1 0<j<r—1
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5. Proofs of Theorems 1.5 and 1.6

An updated version of the Gessel-Reutenauer standardization [10] is
fully described in our previous paper [9], Section 5. The standardization
consists of mapping each word w from [0, ]* of length n onto a pair (o, ¢),
where 0 € G,, and ¢ = c1¢o -+ - ¢, s a word of length n, whose letters are
nonnegative integers having the property: r —deso > ¢; > ¢ > -+ >
cn > 0, the symbol des o being the number of descents of o. We recall the
construction of the inverse (o, ¢) — w by means of an example.

d =1 2 34 5 6 7 8910111213141516 17181920 21 22
o= 1 5 6 8 13 14 7 17410151819 2 9 162022 3 11 12 21
z= 4 4 4 4 4 4 3 322 22211111000 O
—c= 2 2 22 2 2 2111 111111111111
c= 6 6 6 6 6 6 5 433 333222221111
o = (16) (1218 22 21) (10) (7) (48 17201115 9) (2 5 1319 3 6 14) (1)
=16 12 182221 10 7 48172011159 2 5 13193 6 14 1
—w=12] 3 2113|5642 1323663166 2|6
In the example n = 22. The second row contains the values o(3)
(1 = 1,2,...,n) of the starting permutation o. The excedances o(i) > i

are underlined, while the fized points o (i) = i are written in boldface. The
third row is the vector z = z125 - - - z,, defined by (1.13) so that z; = deso
and tot z = 21 + 29 + - - - + 2z, is the major index of o denoted by majo,
as already mentioned in the Introduction. The fourth row is the starting
nonincreasing word ¢ = c¢i¢g - - - ¢,. The fifth row ¢ = ¢¢5 - - - ¢, is the word
defined by

In the sixth row the permutation o is represented as the product of its
disjoint cycles. Each cycle starts with its minimum element and those
minimum elements are in decreasing order when reading the whole word
from left to right. When removing the parentheses in the sixth row we
obtain the seventh row denoted by & = §(1)5(2) - - - 5(n). The bottom row
is the word w = x5 - - -z, corresponding to the pair (o, c) defined by

Ti = Eé—(i) (1 <3< TL)

For instance, 6(9) = 8 and ¢(8) = 4. Hence x9 = 4. The decrease values
of w have been underlined.

It can be verified that all the above steps are reversible and that
w — (0,c) is a bijection of the set of all words from [0, r|* of length n
onto the set of pairs (o, ¢) such that 0 € &,,, deso <r and ¢ =cjca--- ¢y,
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is a word satisfying r — deso > ¢; > ¢ > --- > ¢, > 0. Furthermore,
x; is a decrease value of w if and only if 5(i) < &(i + 1), if and only if
d(i) < o(d(7)). Also x; is an increase and record value of w if and only if
&(1) is a fixed point of o. Hence,

wR(w) :Rinrecwsdecw H Yxi—l H sz

r; EDEC x; EINC

_ pfixo exco - -
=R7s I %o II %o

&(i)<o (s (i) 5(i)20(5(i))

:Rﬁxasexccr H Y%j—l H Y'Ej

j<a(4) 7200
:Rﬁxasexccr H Y’Cj_’_zj_l H YCj+Zj
j<o(j) izo(j)

fixo _exco
= R77s5 Y (6,0

Consequently,
(61) D wmlw)=) D> RSN Ve
welo,r]* n>0 d0'66<n CENIW,, (r—des o)

This achieves the proof of Theorem 1.5 by taking identity (1.12) into
account. |[]

For the proof of Theorem 1.6 we multiply both sides of (1.15) by ¢" and
sum over r > 0. We obtain:

(1= 5)Hy (RY)
;t H,(sY) — sH.(Y)

:Ztrz Z Rﬁxasexca Z Yv(cr,c)

r>0 n>0 o0€6, CENIW,, (r—des o)
deso<r
:E E t" E E : Rﬁxasexca E Y'(U’C)
n>0r>0 0<j<r o€6, CENIW,, (5)

deso=r—j

_ Z th Ztr—j Z Rﬁxasexca Z }/v(g"c)

n>035>0 r>j ceG, CENIW,, (5)
deso=r—j

_ Zztj Ztk Z Rﬁxasexca Z Y(cr,c)

n>04>0 k>0 cEG, CENTW,, (j)
des o=k
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:Z Z Rﬁxasexcatdesa th Z Yv(cr,c)

n>00€6, J20 ceNIW, (j)
:§ : § : Rﬁxasexcatdesay(o_;t)‘ |:|
n>00€e6,

6. Specializations and ¢-Calculus

In Theorem 1.4, replace Y, Y]/ (j > 0) by u. We get the identity

1—s
6.1 decw, Aw —
00 S ) sy

where \w denotes the length of w.

Now replace X; (j > 0) by us and the other variables by wu in
Theorem 1.2. We then recover the classical generating function for words
by number of descents:

(62) Z Sdeswukw _

welo,r]*

1-s
(1—u+us)rtl —s

As was proved in our paper [9] (formula (1.15)), when multiplying (6.1)
(and not (6.2)) by t" and summing over r > 0 we get the generating
function for the pair (exc, des) over the symmetric groups:

(63) Zt’" Z Sdecwukw — Z # Z gox¢ o'tdeso"

>0  wel0,r]* n>0 e,

Now, recall the traditional notation of the g-ascending factorial

. (1, if n =0;
(avC.I)n_ (1_a)(1_aq)...<1—aqn_1), ifn>1.

Theorem 6.1. The factorial generating function for the distributions of
the vector (fix, exc, des, maj) over the symmetric groups &,, is given by

(6.4) ZW Z Rﬁxa eXCa'tdesa'qman—

n>0 n+l

1—sq) (u;q), (usq; q),
:ZtTURq (1 = 59) (u; ¢)r (usg; )

Jre1 (w5 9)r — sq(usq; q)r)

The theorem was proved in our previous paper [9] by means of the word-
analog of the Kim-Zeng transformation [11] and the Gessel-Reutenauer
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standardization. Here, it is a simple consequence of Theorem 1.6 by
applying the homomorphism ¢ generated by ¢(Y;) := ug’ (j > 0) and
¢(s) := sq to both sides of (1.18).

We proceed as follows. First, oH,.(Y) = [ (1 —ug¢’)™t =1/(u;q).
and Osjsr—1
(1= 9)H,a(RY) (1 sq)/(uRi )i
Hy(sY) —sH,(Y)  1/(usq; q)r — 5q/(u; ¢)r

_ (1 —5q)(u; q)r (usq; q)r
(uR; @)rs1 (((w; ) — sq(usgq; q),)

Then, for (o,c) € &,, X NIW,,

__ .. n, totct+totz—exco __  majo—exco, n totc,
OY(5,c) = u"q =q u"qg

¢

n

: u
¢Y(O’;t) maJU exc o n t] qtotc: maj o—exc o :
DS o

>0 cENIW, () £ q)n1
so that

¢(RﬁXU Sexcatdesay(o_;t» — Rﬁxa(sq)excatdesaqmaj o—exco

un

(t§ Q>n—|—1 ‘
Hence, the image of identity (1.18) under ¢ gives back (6.4). []

There is still another proof, which we now describe as follows. In identity
(1.4) make the substitutions X; < usq’, Y; « ug’, Z; «— usq’, T; «— uq’,
Y] — uRq¢’, T] — uRq’. The weight ¢)(w) becomes s°¢™ Rinrec vy ’\wthtw
and (1.4) yields the identity

(65) Z Sdec wRinrec wu)\wqtotw _ (UR(,:L]ir—l—l
we[0,r]* 1— ‘7 q lusql

Now, use the g-telescoping argument provided by Krattenthaler [12]:

(usiqh, . 1_ 84 ((US;q)m _ (us;q) ) 1<i<r)
(u; q); 1—sq\ (u;q) (u;q)i-1
We obtain:
i 1 1 - 5 r 5 r
Z Sdec lenrec wu)\wqtotw _ ( SQ) (u7 Q> (’LLS(] Q> '
welonl* (ul; @)r1 (w5 9)r — sq(usq; q)r)

The summation can also be made over the symmetric groups by using
the Gessel-Reutenauer standardization w +— (o, c¢). This time only the
following properties are needed:

decw = exco; totw = majo + totec; inrecw = fixo.
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Multiply (6.6) by ¢" and sum over r > 0. We get:

r exco pfixo, n _majo+totc
LD DID DENND DRNC L

r>0 n>0 0€6, ceENIW,(r—deso)
deso<r
(1 = sq) (w5 q)r (usg; @)r

” 1
- got (UR, Q)r—l—l ((u, q)T - Sq(USQ; Q)r) '

Following the same pattern as in the proof of Theorem 1.6 we again derive
identity (6.4). []

Acknowledgements. The authors should like to thank Christian
Krattenthaler and Jiang Zeng for their careful readings and knowledgeable
remarks.
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PERMUTATIONS WITH EXTREMAL NUMBER OF FIXED POINTS
GUO-NIU HAN! AND GUOCE XIN?

ABSTRACT. We extend Stanley’s work on alternating permutations with extremal num-
ber of fixed points in two directions: first, alternating permutations are replaced by
permutations with a prescribed descent set; second, instead of simply counting per-
mutations we study their generating polynomials by number of excedances. Several
techniques are used: Désarménien’s desarrangement combinatorics, Gessel’s hook-
factorization and the analytical properties of two new permutation statistics “DEZ”
and “lec”. Explicit formulas for the maximal case are derived by using symmetric
function tools.

Mathematics Subject Classification. Primary 05A05, secondary 05A15, 05E05.
Key words. Alternating permutations, derangements, desarrangements, descent set

1. INTRODUCTION

Let J = {j1,J2,---,Jr}< be a set of integers arranged increasingly and let & ; denote
the set of all permutations on J. For each permutation o = o(j1)o(j2)---0(j,) € &,

define the number of excedances, the number of fixed points and the descent set of o to
be

fixe=|{i:1<i<ro(s) =7},
exco=|{i:1<i<ro(j) >},
DESo ={i:1<i<r—1,0(j5;) > o(jit1)}, (1)
respectively. A permutation without fixed point is called a derangement. When J =
n] :={1,2,...,n}, we recover the classical definitions. The set &y, is abbreviated by

S, and for 0 € G,, we write o; for o(i). Our main results are the following Theorems 1
and 2.

Theorem 1. Let J be a subset of [n — 1].
(i) If o € &,, and DESo = J, then

fixo <n—|J|.

(ii) Let F,,(J) be the set of all permutations o of order n such that DESo = J and
fixo =n — |J|. Furthermore, let G(J) be the set of all derangements T on J such that
7(i) > 7(i + 1) whenever i and i + 1 belong to J. Then

§ SCXC [ — E SCXC T .
)

o€Fn(J) TeEG(J

Date: June 22, 2007.
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Example. For n = 8 and J = {1,2,3,6}, there are two permutations in F,,(.J), both
having two excedances: 74315628 and 74325618. On the other hand, there are two
derangements in G(J), both having two excedances: 6321 and 6312.

Theorem 2. Let DJ(n) be the set of all derangements o on [n] such that DESc = J,
and let D{(n) be the set of all permutations o on [n] such that DES o = J with ezxactly
one fized point. If J is a proper subset of [n — 1], then there is a polynomial Q. (s) with
positive integral coefficients such that

Z gexXco _ Z gexco (S o 1)@5(8)

oeD (n) oeD{ (n)

Example. For n = 6 and J = {1,3,4,5} there are six derangements in D (n):
216543, 316542, 416532, 436521, 546321, 645321;

and there are six permutations in Dy (n):
326541, 426531, 516432, 536421, 615432, 635421

The numbers of excedances are respectively 3, 3, 3, 4, 3, 3 and 3, 3, 2, 3, 2, 3, so that

Z goXCo _ Z goXcT (583+$4) —(4$3+2$2) _ (8—1)(83+2$2).

oeDY (n) oeD{ (n)

Theorem 1 extends Stanley’s work on alternating permutations (that we explain next)
with maximal number of fixed points, and Theorem 2 extends the corresponding minimal
case. The extensions are in two directions: first, alternating permutations are replaced
by permutations with a prescribed descent set; second, instead of simply counting per-
mutations we study their generating polynomials by number of excedances.

A permutation 7 = mmy - -, € G, is said to be alternating (resp. reverse alternat-
ing) if m > my < w3 >my < ... (resp. if m < my > w3 < my > ...); or equivalently, if
DES7is {1,3,5,...} N[n —1] (resp. {2,4,6,...} N[n — 1]). Therefore, results on per-
mutations with a prescribed descent set apply to alternating permutations. Let Dy (n)
be the set of permutations in &,, with exactly & fixed points. Then Dgy(n) is the set of
derangements of order n. Write di(n) (resp. dj(n)) for the number of alternating (resp.
reverse alternating) permutations in Dg(n). The next two corollaries are immediate
consequences of Theorems 1 and 2.

Corollary 3 ([14], Conjecture 6.3). Let D,, denote the number of derangements. Then,
forn > 2 we have

dn(20) = dpyy (20 + 1) = 5 (20 + 1) = d, (20 + 2) = D,,.
Corollary 4 ([14], Corollary 6.2). Forn > 2 we have dy(n) = di(n) and di(n) = di(n).

Stanley enumerated Dy (n) and came up with Corollaries 3 and 4 on alternating per-
mutations with extremal number of fixed points. He then asked for combinatorial proofs
of them. This is the motivation of the paper. The results in Corollary 3, conjectured by
Stanley, was recently proved by Chapman and Williams [16] in two ways, one directly
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and the other using the newly developed concept of permutation tableaux [15]. In Sec-
tion 3 we give a direct proof of a generalized form of Corollary 3. Corollary 4 is actually
a special case of a more general result due to Gessel and Reutenauer, which itself can
be derived from Theorem 2 by setting s = 1, as stated in the next corollary.

Corollary 5 ([10], Theorem 8.3). Let J be a proper subset of [n—1]. Then, the number
of derangements in &,, with descent set J is equal to the number of permutations in &,
with exactly one fixed point and descent set J.

The paper is organized as follows. In Section 2 we give the proof of Theorem 1 that
contains the results for the maximal case. Section 3 includes a direct proof of an exten-
sion of Corollary 3. Section 4 introduces the necessary part of Gessel and Reutenauer’s
work for enumerating the maximal case. Section 5 is devoted to the proof of Theorem 2
dealing with the minimal case. We conclude the paper by making several remarks of an-
alytic nature (see Section 6). In particular, Corollary 19, proved combinatorially, should
deserve an analytic proof. Several techniques are used: Désarménien’s desarrangement
combinatorics [1], Gessel’s hook-factorization [9] and the analytical properties of two
new permutation statistics “DEZ” and “lec” [5, 6].

2. PERMUTATIONS WITH MAXIMAL NUMBER OF FIXED POINTS

Our task in this section is to prove Theorem 1. The proof relies on the properties

of the new statistic “DEZ” introduced by Foata and Han [5]. For a permutation o =

01090, € 6, let 0° = 0907 - - 6% be the word derived from o by replacing each fixed

point o; = ¢ by 0. The set-valued statistic “DEZ” is defined by

DEZo =DESc’:={i:1<i<n-—1,00 >0y}

For example, if ¢ = 821356497, then DESo = {1,2,6,8}, ¢ = 801300497 and
DEZ o = DES 0" = {1,4,8}. The basic property of the statistic “DEZ” is given in the
following proposition.

Proposition 6 ([5], Theorem 1.4). The two three-variable statistics (fix, exc, DEZ) and
(fix, exc, DES) are equi-distributed on the symmetric group GS,,.

More precisely, Proposition 6 asserts that there is a bijection ¢ : G,, — &,, such that
fixm = fix®(7), excm=exc®(mw), DES7=DEZ®(7), forall 7 € &,,.

By Proposition 6 Theorem 1 is equivalent to the following Theorem 1’, where the statistic
“DES” has been replaced by “DEZ”.

Theorem 1'. Let J be a subset of [n — 1].
(i) If o € &, and DEZ o = J, then

fixo <n—|J].

(ii) Let F)(J) be the set of all permutations o of order n such that DEZo = J and
fixo =n — |J|. Furthermore, let G(J) be the set of all derangements T on J such that
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7(1) > 7(i + 1) whenever i and i + 1 belong to J. Then

E SCXC o — § SCXC T .
)

cEF!(J) T€G(J

Proof of Theorem 1'. Let o be a permutation such that DEZ o = J and let i € J. Then
o) > o), > 0, so that i is not a fixed point of o. It follows that o has at least |J|
non-fixed points. This proves (i).

Now, consider the case where ¢ has exactly n — |J| fixed points. Then J is the set
of all the non-fixed points of o. By removing the fixed points from ¢ we obtain a
derangement 7 on J. If ;i +1 € J, then 7(i) = 0(i) > o(i + 1) = 7(i + 1). It follows
that 7 € G(J). On the other hand, take any derangement 7 € G(J) and let o be the

permutation defined by
o(i) = {T(z), ifi e J,

i, ifig .
Then DEZ o = J. It is easy to see that ¢ € F/(J) and exco = excr. This proves the
second part of Theorem 1’. O

Example. Suppose n = 8 and J = {1,2,3,6}. Let us search for the permutations
o € Gg such that fixoc =8 — |J| = 4 and DEZ o = J. There are two derangements 7 in
G(J), namely, 6321 and 6312, both having two excedances, so that the two corresponding
elements o in F)(J) are 63245178 and 63145278, both having two excedances.

Remarks. (i) For permutations with descent set J it is easy to show that the maximum
number of fixed points is n—|J|, except when J consists of an odd number of consecutive
integers. In the latter exceptional case the only decreasing permutation has exactly one
fixed point and therefore is not a derangement.

(ii) The first part of Theorem 1 can also be proved directly by using the fact that in
any consecutive decreasing subsequence of m, say m; > w4 > .-+ > W, there is at
most one fixed point in {i,7+ 1,...,i+ k}. However the “DEZ” statistic is an essential
tool in the proof of the second part.

3. AN EXTENSION OF COROLLARY 3

Stanley’s conjectured result in Corollary 3 was first proved by Williams [16] using
the newly developed concept of permutation tableaux. A direct proof without using
permutation tableaux was later included in her updated version with Chapman. Our
direct proof was independently derived just after Williams’ first proof. It has the ad-
vantage of automatically showing the following extension (Proposition 7). We only give
the generalized form for d,(2n) = D,,, since the other cases are similar. All of the three
proofs are bijective, and the bijections are all equivalent. Note that Proposition 7 is still
a corollary of Theorem 1.

Proposition 7. The number of alternating permutations in Ga, with n fixed points and
k excedances is equal to the number of derangements in &,, with k excedances.
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Let 7 be an alternating permutation. Then, each doubleton {my;_1,m9;} contains at
most one fixed point. This proves the following lemma.

Lemma 8. Fach alternating permutation m € &,, has at most [n/2] fized points. When
this mazximum is reached, either 2i — 1, or 2i is a fived point of m (2 <2i <n+1).

When the underlying set of the permutation 7 is not necessarily [n|, we use (i)
instead of 7; for convenience. An integer i is called an excedance, a fixed point, or a
subcedance of 7 if w(i) > i, w(i) = i, or 7w(i) < i, respectively.

Proof of Proposition 7. Let m € G5, be alternating and have exactly n fixed points. It
follows from Lemma 8 that for each ¢ we have the following property: either 2¢ — 1
is a fixed point and 2¢ a subcedance, or 2¢ — 1 is an excedance and 2¢ a fixed point.
Conversely, if the property holds, the permutation 7 is necessarily alternating, because
m(20) <20 <2i+1<7(2i+1); m(20—1) > 2i—1 > 7(2i) — 1. Those inequalities imply
that m(2¢ — 1) > m(2i), since 2 — 1 and 2i cannot be both fixed points.

By removing all fixed points of m we obtain a derangement ¢ on an n-subset of [2n].
The standardization of o, which consists of replacing the i-th smallest element of ¢ by 1,
yields a derangement 7 on [n]. We claim that the map ¢ : 7 + 7 is the desired bijection.
Since the standardization preserves excedances, subcedances and fixed points, it maps
one element of {m(2i — 1), 7(2¢)} to 7(i). It follows that 7(i) > i if and only if 2 — 1
is an excedance and 2i is a fixed point of 7, and that 7(i) < ¢ if and only if 2 — 1 is
a fixed point and 2i is a subcedance of 7. Thus, the set of all fixed points of m can be
constructed from 7. The map ¢ is then reversible.

The proposition then follows since the bijection preserves the number of excedances.

O
123456 7 89 10 . .
Example. Let m = 292615 110809 7)° Removing all the fixed points
. 136 7 10 . 1 2345
gives 0 = <3 6 1 10 7) , standardized to 7 = 9315 4/ Conversely, 7 has

excedances at positions 1, 2,4 and subcedances at positions 3,5. This implies that 2,4, 8
and 5,9 are fixed points of 7 and hence we can construct m. Furthermore, we have
EeXCTT = eXCO = eXCT = J.

4. ENUMERATION FOR THE MAXIMAL CASE

In this section we will use Theorem 1 to enumerate the number of permutations with
a prescribed descent set and having the maximal number of fixed points. Every descent
set J C [n—1] can be partitioned into blocks of consecutive integers, such that numbers
from different blocks differ by at least 2. Let J° = (a1, as, . . ., ai) denote the sequence of
the size of the blocks. For instance, if J = {1,2,3,6}, then 1,2, 3 form a block and 6 itself
forms another block. Hence J* = (3,1). Let M; denote the number of derangements
in &,, with descent set J having n — |J| fixed points. By Theorem 1 the number M,
depends only on J°. Thus, we can denote M; by M (a1, as, ..., ay).
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Theorem 9. The number M(aq,...,ax) is the coefficient of xi* ---x}* in the expan-
sion of
1
(I4+z)Q+mz) - (I+ap)(l =2y —29— - — 1)

An immediate consequence of Theorem 9 is the following Corollary 10, which says
that M(aq,as, ..., a;) is symmetric in the a;’s.

Corollary 10. For each permutation 7 € &) we have
M(ay,az, ... a;) = M(ar,Gry, ..., ar7).

For example, M(3,1) counts two derangements 4312 and 4321; M(1,3) counts two
derangements 3421 and 4321. This symmetry seems not easy to prove directly. Using

Theorem 9 an explicit formula for M (ay,as, ..., ax) can be obtained when k = 1,2. We
have M(a) = 1if a is even, and M (a) = 0 if a is odd; also

To prove Theorem 9 we need some notions from [10], where Gessel and Reutenauer
represented the number of permutations with given cycle structure and descent set by the
scalar product of two special characters of the symmetric group introduced by Foulkes
[7, 8]. Their results were also key ingredients in [14] for the enumeration of alternating
permutations by number of fixed points. In what follows, we assume the basic knowledge
of symmetric functions (see, e.g., [11, 12, 13]). The scalar product ( , ) of two symmetric
functions is a bilinear form defined for all partitions A and p by

<m)\7 hu) = <hwm)\> = 5/\;“ (2>

where my is the monomial symmetric function, h, is the complete symmetric function,
and ¢ is the usual Kronecker symbol. Moreover, if w is the homomorphism defined by
we; = h; and wh; = e;, where e; is the elementary symmetric function, then for any
symmetric functions f and g we have

(f,9) = (wf,wg). (3)
Associate the function

S; = Z Tapy Ty * * * Tapy, (4)

DESw=J

with each subset J C [n — 1], where the sum ranges over all words on positive integers
with descent set J. We claim that S; is a symmetric function whose shape is a border
strip (see [13, p. 345]). In particular, Sp,_q) is equal to e,, the elementary symmetric
function of order n. On the other hand, every partition A of n has an associate symmetric
function L, related to a Lie representation. The definition of L, is omitted here (see
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[10]); just remember that the symmetric function corresponding to derangements of
order n is given by

D, _ZLA_Z 1)7e;h} ™, (5)

where the sum ranges over all partitions A having no part equal to 1 [10, Theorem 8.1].
We need the following result from [10] for our enumeration.

Proposition 11 (Gessel-Reutenauer). The number of permutations having descent set .J
and cycle structure \ is equal to the scalar product of the symmetric functions Sy and L.

Proof of Theorem 9. For each fixed integer sequence (aq,as,...,ax) let s; = a3 + as +
cda;fori=1,... kand ¢ = si. Then M(ay,as,...,ax) is the number of derangements
m € Gy such that s; with « = 1,2,...,k — 1 may or may not be a descent of 7w, and

such that all the other numbers in [¢ — 1] are descents of w. There is then a set T of
2k=1 descent sets J to consider, depending on whether each s; is a descent or not (for
i=1,...,k—1). By Proposition 11 and linearity we have

M(a17a27"'7ak):<ZSJ7DZ>' (6)
JeT
From (4) it follows that

g S; = E Ty Tapy * * * Tayy,, = g Ty Ty * ** Lapy -

JerT DESweT [0—1\{s1,52,....,5,—1 }CDESw

Each word w occurring in the latter sum is the juxtaposition product w = uMu® ... *)
where each u) is a decreasing word of length a; (i = 1,2,...,k). Hence > oser Sy
€ay€as * *  €q,- 10 (6) replace Y Jer S7 DY €44, - - €4, and Dy by the second expression
n (5). We obtain

n

M(a'b ag, . .. aa'k) = <ea16a2 T Cays Z(_l)jejh?_j>'

J=0

The image under w yields

M(ay,as, ... a;) = (weg, - eak,wz ejhg J
7=0

chay Y (1Y hel ).

7=0
Notice that Zﬁzo(—l)j h;ei™ is the coefficient of u’ in

j i iy 1
(;hj(_u) )(Zelu) T+ zu) (T4 zou) - (L + apu)(1 — (21 + 22 + -+ + ap)u)

)

It follows from (2) that M(as,...,ax) is the coefficient of {* - - - z7*u’ in the expansion
of the above fraction. O
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5. PERMUTATIONS WITH O OR 1 FIXED POINTS

Our objective in this section is to prove Theorem 2. We will establish a chain of
equivalent or stronger statements, leading to the final easy one. Further notations are
needed. Let w = wjwsy - - - w, be a word on the letters 1,2, ..., m, each letter appearing
at least once. The set-statistic IDESw is defined to be the set of all ¢ such that the
rightmost ¢ appears to the right of the rightmost ¢+1 in w. Note that if 7 is a permutation

n [n], then IDES 7 = DES 7!, For every proper subset J of [n— 1] let & be the set of
permutations o € &,, with IDESo = J. Note the difference with the notation of D{(n)
for k = 0,1. We will see that it is easier to deal with IDES than with DES directly.

A word w = wyws - --w, is said to be a desarrangement if wy; > wy > -+ > woy
and wq, < wogyq for some k > 1. By convention, w,;; = co. We may also say that
the leftmost trough of w occurs at an even position [6]. This notion was introduced,
for permutations, by Désarménien [1] and elegantly used in a subsequent paper [2]. A
further refinement is due to Gessel [9]. A desarrangement w = wyws - --w, is called
a hook, if n > 2 and w; > wy < w3z < --- < w,. Every nonempty word w on the
letters 1,2,3,... can be written uniquely as a product whqhs - - - hy, where u is a weakly
increasing word (possibly empty) and each h; is a hook. This factorization is called the
hook-factorization of w [6]. For permutations it was already introduced by Gessel [9].
For instance, the hook-factorization of the following word is indicated by vertical bars:

w=|1245]6456|413]65|54|6114|511].

Let uhihs - - - hy, be the hook factorization of the word w. The statistic pix w is defined
to be the length of u, and the statistic lecw is defined, in terms of inversion statistics
nv”, by the sum [6]
k
lecw := Zinv(hi).
i=1
In the previous example, pix w = [1245| = 4 and lec w = inv(6456) +inv(413) +inv(65) +
inv(54) +inv(6114) +inv(511) =2+2+1+1+3+2 = 11.

For each permutation o let iexco = exco™!. The next proposition was proved in

Foata and Han [6].

Proposition 12. The two three-variable statistics (iexc, fix, IDES) and (lec, pix, IDES)
are equi-distributed on the symmetric group G,,.

Let KJ(n) denote the set of all desarrangements in &;, and K{(n) the set of all
permutations in &7 with exactly one pixed point. Since the map o — o~! preserves the
number of fixed points, Theorem 2 is equivalent to asserting that

Yo=Y = (s=1)QIs).

o€ Dg(n) ocD1(n)
IDES(c)=J  IDES(c)=J

Then by Proposition 12 this is equivalent to the following Theorem 2°.
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Theorem 2¢. We have

§ Sloc o

Y 87 = (s = 1)Qu(s),

oeK{ (n) oeK{ (n)

where Q7 (s) is a polynomial with positive integral coefficients.

The following lemma enables us to prove a stronger result.
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Lemma 13. Let w = wywsy - - - w,, be a desarrangement such that IDESw # {1,2,...,n—
1} and let w' = wywyws -+ - w,—q. Then, either lecw’ = lecw, or lecw’ = lecw — 1.

Proof. Several cases are to be considered. Say that w belongs to type A if lec(w’) =
lec(w), and say that w belongs to type B if lec(w’) = lec(w) — 1.

Since w is a desarrangement, we may assume w; > wg > - -

> wop < Wopyy for

some k. It follows that w’ has one pixed point. Let Ay ---hj be the hook-factorization
of w. Then the hook-factorization of w’ must have the form w,|h) ---hj. Thus, when
computing lec(w’), we can simply omit w,. This fact will be used when checking the
various cases. The reader is invited to look at Figures 1-3, where the letters b, ¢, z,y, 2

play a critical role.

(1) If the rightmost hook hy has at least three elements, as shown in Figure 1, then
b < ¢ belongs to type A and b > ¢ belongs to type B. This is because the only
possible change for “lec” must come from an inversion containing ¢. Furthermore,
(b, ¢) forms an inversion for type B and does not form an inversion for type A.

v

FIGURE 1. Transformation for case 1.

(2) Suppose the rightmost hook hy has two elements b > c.
(a) If there is a hook xy followed by several decreasing hooks of length 2 with
y < z, as shown in Figure 2, then x < z belongs to type B and x > 2z

belongs to type A.

/

FIGURE 2. Transformation for case 2a.

(b) If there is a hook of length at least 3, followed by several decreasing hooks
of length 2, then (see Figure 3)
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(i) x > y belongs to type B and = < y belongs to type A in case y > z;
(ii) = < z belongs to type B and = > z belongs to type A in case y < z.

/’N
/
e
-
=

.

FIGURE 3. Transformations for case 2b.

This achieves the proof of the lemma. O

With the notations of Lemma 13 we say that a desarrangement w is in class Ag if
lecw’ = lecw and in class By if lecw’ = lecw — 1. A word w = wywsws - - - w,, is said to
be in class A; (resp. in class By) if the word wows - - - w,w; is in class Ay (resp. in class
By). Notice that a word in class A; or By has exactly one pixed point. Then, Theorem
2% is a consequence of the following theorem.

Theorem 2°. We have

§ sleca — 2 Sleca and 2 Sleca =g 2 Sleca‘

c€GINAg ceG)NAL c€G)NBy o€ NB1

Let G5/ be the set of all permutations o of order n such that IDESo C J. By the
inclusion-exclusion principle, Theorem 2° is equivalent to the following theorem.

Theorem 2¢. We have

§ Sleca — 2 Sleca and 2 Sleca — 2 Sleca.

ce6s' N4 ce6s’nAy 0€657NBy ce6s'nB,;

If J = {j1,J2,---,Jr—1} C [n— 1], define a composition m = (my,my,...,m,) by
My = J1,Ma = Jo — Jiy-eesMp1 = Jro1 — Jr2,My = 0 — jr_1. Let R(m) be the set
of all rearrangements of 1™12™2 ...r™r We construct a bijection ¢ from R(m) to &=/
by means of the classical standardization of words. Let w € R(m) be a word. From
left to right label the letters 1 in w by 1,2,...,mq, then label the letters 2 in w by
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my + 1,my + 2,...,mq + mo, and so on. Then the standardization of w, denoted by
o = ¢(w), is the permutation obtained by reading those labels from left to right. It is
easy to see that ¢ is reversible and IDESco C J if and only if w € R(m) (see [3, 6]).
Moreover, the permutation ¢ and the word w have the same hook-factorization type.
This means that if ahihs ... hs (vesp. bpips...pg) is the hook-factorization of o (resp.
hook-factorization of w), then k = s and |a| = |b|. For each 1 <1i < k we have |h;| = |p;]
and inv(h;) = inv(p;). Hence lecw = lec o and pix w = pixo. Furthermore, ¢ is in class
Ay, A1, By or By if and only if w is in the same class. Theorem 2°¢ is equivalent to the
next theorem, whose proof follows from the definition of the classes Ag, A1, By, B; and
Lemma 13.

Theorem 2%. We have

2 Sleco — § Sloccr and 2 Sleco — 3 2 Sleco.

c€ER(m)NAg cER(mM)NA; c€R(m)NBy c€ER(m)NB;

The following variation of Theorem 2 follows from Theorem 2°, but cannot be derived
from Theorem 2 directly.

Theorem 14. We have

Z iexco Z glexco S o 1)QJ( )

oeDY (n) oeD{ (n)

for some polynomial Q7 (s) with positive integral coefficients.

6. FURTHER REMARKS

A combinatorial proof of Corollary 5 can be made by using the methods developed in
the preceding section. However this proof does not need the concept of “hook” and the
statistic “lec”. We only list the equivalent statements, leaving the details to the reader.

Theorem 15. Let J be a proper subset of [n—1]. The following statements are equivalent
to Corollary 5:

(1) The number of derangements in & is equal to the number of permutations in
&7 with ezactly one fized point.

(2) The number of desarrangements in & is equal to the number of permutations in
&7 with exactly one pized point.

(3) The number of desarrangements in &</ is equal to the number of permutations
in &=/ with exactly one pized point.

(4) The number of desarrangements in R(m) is equal to the number of words in
R(m) with exactly one pized point.

We remark that the equivalence of (1) and (2) also follows from a result of Désarménien
and Wachs [2, 3]: the two bi-variable statistics (fix, IDES) and (pix, IDES) are equi-
distributed on the symmetric group &,,.

The statistics “des” and “maj” are determined by “DES”: desm = # DES7 and
majm =) . .pps.t for ™ € &,. By using Theorem 2 for each proper subset .J of [n — 1]
and by checking the case J = [n — 1] directly, we have the following result.
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Theorem 16. There is a polynomial Q,(s,t,q) with positive integral coefficients such
that

Z Sexcatdesa majo Z Sexcatdesa majo __ (S o I)Qn(s,t, q) + ’f’n(S, t, q)
o€Dg(n) o€D1(n)

where v (5,1, q) = s*2F 1R for k > 1 and ropq (5,1, q) = —sFt2R¢FHD for k > 0.
A related result is the following, where we use the standard notation for g-series:
(2:0)m = (1= 2)(1 = zq) -+ (1 — 2™ 7).

Proposition 17 ([6], Theorem 1.1). Let (A,(s,t,q,Y))n>0 be the sequence of polynomi-
als in four variables, whose factorial generating function is given by

Ztr(( .(1—5’([)(“;(1) - (usq; q), SN At Y

= (wa)r = 5q(usg; @)r) (WY 9)rin 23 (t Q)n-i-l

Then A, (s,t,q,Y) is the generating polynomial for &, according to the four-variable
statistic (exc, des, maj, fix). In other words,

excoydeso majoyfixo

An(s,t,q,Y) = g gEXCTpAS T grmal Ty X
ceS,

oxccrtdescr maj o

exc crtdos o majo

Since ZJeDO(n q is simply A, (s,t,¢,0) and ZaeDl(n) s q is
equal to the coefficient of Y in A, (s,t,q,Y), Theorem 16 and Proposition 17 imply the

following theorem.

Theorem 18. There is a sequence of polynomials (Q(s,t,q))n>0 with positive integral
coefficients such that

S (1 L qr“) (1 —sq) (u;9)r (usqiq)y 1

=0 1—q ) ((u;q), —sq(usq;q),) 1—t
(s—1) QnStq +7(s,t,q),
; )n—l—l
where -
u?k
(s,t,q) 2R R 1) §F 2K 2R
; t Q) 2k41 kz>0 (t Q)oks2

In the case of t =1 and ¢ = 1 the above theorem yields the following corollary.

Corollary 19. For each n > 0 let Q,(s) be the coefficient of u"™/n! in the Taylor
expansion of

u—1 1 euvs e
H(s) = - —( + )
seus — s2et 2sy/s\y/s+1 /s—1
that s
3 4 ) u5 6 u™
H(s):§+(s+3)4l (s +17s+4)a (s® 4465 +805+5)6 + -+ Qu(s )n! +- -

Then, the coefficients Q,(s) are polynomials in s with positive integral coefficients.
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It is easy to show that Qg, 1(1) = Da,_1/2 and Qs,(1) = (D2, — 1)/2 for n > 2. By
Formula (6.19) in [4] we have

Qu()= > kxnn—1)(n—2)---(2k+2).

2<2k<n—1

Since @,,(1) counts the number of desarrangements of type B, Corollary 19 implies that
the number of desarrangements of type A equals the number of desarrangements of type
B, when excluding the decreasing desarrangement of even length. It would be interesting
to have a direct (analytic) proof of Corollary 19 which would not use the combinatorial
set-up of this paper.
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