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FOREWORD

In those ten papers (1) bound in a single volume (five [1--5] in the
series “Signed words and permutations,” three [6--8] in the series “Fix-
Mahonian Calculus” and two isolated papers, [9] “Decreases and descents
on words,” [10] “Permutations with extremal number of fixed points”) our
main goal has been to calculate multivariable statistical distributions on
the hyperoctahedral group Bn and the symmetric group Sn. As indicated
by the title of this memoir, those calculations first involve the studies
of statistical distributions on words, then the standardizations of those
words by permutations, signed or plain, suitably coded, finally q-calculus
methods to derive generating functions for those permutations by desired
multivariable statistics.

1. Word statistical study. This first step is so fundamental that
our results could be regarded as contributions to Combinatorial Theory of
Words with applications to Statistical Theory of Weyl groups. The words
in question are linear sequences w = x1x2 · · ·xn, whose letters x1, x2, . . . ,
xn belong to the finite alphabet [0, r] = {0, 1, . . . , r}. This set of words is
denoted by [0, r]∗, often referred to as the free monoid generated by [0, r].

By way of illustration, we should like to mention two derivations
developed in [2] and [8]. Consider the sequence Hr(u) (r = 0, 1, 2 . . . )
of rational functions defined by the recurrence

H0(u) =
1

1− uX ; H1(u) =
1− uqZ(1− Y )

1− u(X + qZ)
; and for r ≥ 1

H2r(u) =
1− u(q(1− Y )Z + q2 + q3Z + · · ·+ q2r−1Z + q2r)

1− u(X + qZ + q2 + q3Z + · · ·+ q2r−1Z + q2r)
H2r−2(uq

2);

H2r+1(u)=
1− u(q(1− Y )Z + q2 + q3Z+· · ·+q2r + q2r+1Z)

1− u(X + qZ + q2 + q3Z + · · ·+ q2r + q2r+1Z)
H2r−1(uq

2).

Each rational function Hr(u) (r ≥ 0) can be interpreted as a generating
function for [0, r]∗ by a certain vector (λ, tot, evenlower, oddlower, odd),
say,

(1.1) Hr(u) =
∑

c∈[0,r]∗

u|c|qtot cXevenlower cY oddlower cZodd c,

(1) The references to those papers are written in typewriter font: [1-10]. We use the
usual Roman font for the other papers: [KiZe01], etc.



 - 4 - 

DISTRIBUTIONS ON WORDS AND q-CALCULUS

but what are the five components of that vector? First, λ is just the
length of each word. For c = c1c2 · · · cn we have λ c = n. Then, tot c =
c1 + c2 + · · ·+ cn. A letter ci (1 ≤ i ≤ n) is said to be an even lower record

(resp. odd lower record) of c, if ci is even (resp. odd) and if cj ≥ ci (resp.
cj > ci) for all j such that 1 ≤ j ≤ i−1. For instance, the even (resp. odd)
lower records of the word c = 5 544 1 2 10 40 3 are reproduced in boldface
(resp. in italic). Let evenlower c (resp. oddlower c) be the number of even
(resp. odd) lower records of c and odd c be the number of odd letters in c.
With the above example we have λc = 11, tot c = 29, evenlower c = 4,
oddlower c = 2, odd c = 5. See [2], theorem 2.2 for the proof of (1.1).

Now, let

(a; q)n :=

{

1, if n = 0;
(1− a)(1− aq) · · · (1− aqn−1), if n ≥ 1;

(a; q)∞ :=
∏

n≥0

(1− aqn);

be the traditional q-ascending factorials. The next step is to form the series
∑

r≥0 t
rHr(u) and show that it can be expanded as a factorial series

∑

r≥0

trHr(u) =
∑

n≥0

(1 + t)Bn(t, q, X, Y, Z)
un

(t2; q2)n+1
,

where each coefficient Bn(t, q, X, Y, Z) is a polynomial with nonnegative
integral coefficients [2, § 3]. The final step is to prove that Bn(t, q, X, Y, Z)
is the generating polynomial for the hyperoctahedral group Bn by a well-
defined statistic (fdes, fmaj, lowerp, lowern, neg). The proof is based on a
standardization process, the so-called MacMahon Verfahren, that maps
each word c ∈ [0, r]∗ onto a pair (w, b), where w is an element of the
group Bn and b an increasing word (see [2], theorem 4.1).

In the second example the rational fraction

(1.2) C(r; u, s, q, Y ) :=
(1− sq) (u; q)r (usq; q)r

((u; q)r − sq(usq; q)r)(uY ; q)r+1
(r ≥ 0)

can be shown [8] to be the generating function

(1.3) C(r; u, s, q, Y ) =
∑

c∈[0,r]∗

uλcsdec cqtot cY inrec c,

where “dec” and “inrec” are two word statistics defined as follows. Let
c = x1x2 · · ·xn be an arbitrary word. We say that the letter xi is
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a decrease value (resp. increase value) of c if 1 ≤ i ≤ n − 1 and
xi = xi+1 = · · · = xj > xj+1 (resp. xi = xi+1 = · · · = xj < xj+1)
for some j such that i ≤ j ≤ n − 1. By convention, xn+1 = +∞. The
number of decrease values of c is denoted by dec c. Furthermore, xi is a
record value of c if xj ≤ xi for all j ≤ i− 1. Let inrec c be the number of
letters of c which are both record and increase values. For instance, the
decrease values (resp. letters which are both record and increase values)
of the word c = 3 2 564 2 366 3 66 are in boldface (resp. underlined), so
that dec c = 5 and inrec c = 3. Identity (1.3) is proved in [8], Corollary
2.2 and in [9] by a different method. In [8] we make use of the word-
analog of the Kim-Zeng transformation [KiZe01]; in [9] identity (1.3) is a
consequence of a more general result involving other geometric properties
on words.

As above, the second step is to show that we have the expansion

∑

r≥0

trC(r; u, s, q, Y ) =
∑

n≥0

An(s, t, q, Y )
un

(t; q)n+1
,

where An(s, t, q, Y ) is the generating polynomial for the symmetric
group Sn by a well-defined statistic (exc, des,maj, fix). This is achieved
by means of another standardization, introduced by Gessel-Reutenauer
[GeRe93], that maps each word c onto a pair (σ, b), where this time σ is a
(plain) permutation.

2. Length function and major index. As is well-known, the
length function of the symmetric group Sn, when regarded as a Weyl
group, is the usual inversion number “inv,” defined for each permutation
σ = σ(1)σ(2) · · ·σ(n) by

inv σ :=
∑

1≤i≤n−1

∑

i<j

χ(σ(i) > σ(j)),

making use of the χ-notation that maps each statement A to the value
χ(A) = 1 or 0 depending on whether A is true or not. The inversion
number is a true q-analog maker, in the sense that each generating function
for Sn by some statistic “stat” is liable to have a true q-extension if we
know how to calculate the generating function by the pair (stat, inv). The
major index “maj”, defined by

majσ :=
∑

1≤i≤n−1

i χ(σ(i) > σ(i+ 1)),

plays an analogous role. Although the two generating polynomials
∑

σq
inv σ

and
∑

σ q
maj σ (σ ∈ Sn) are equal (as a matter of fact to (q; q)n/(1− q)n),

the q-extensions using either “inv,” or “maj” can be very much different.



 - 6 - 

DISTRIBUTIONS ON WORDS AND q-CALCULUS

In the early nineties Reiner [Re93a, b, c, d, Re95] has calculated several
q-generating functions for the hyperoctahedral group Bn using the length
function. The results he obtained were natural extensions of what was
known for Sn when “inv” was used instead of “maj.” There remained to
do a parallel work for Bn with the q-formulas derived for Sn by means of
the major index. What was needed was an appropriate extension of “maj”
for Bn. It was found by Adin and Roichman [AR01] with their flag-major

index, whose definition will be given shortly, together with the flag-descent

number and flag-inversion number.
By signed word we mean a word w = x1x2 . . . xm, whose letters are

positive or negative integers. If m = (m1, m2, . . . , mr) is a sequence of
nonnegative integers such that m1 + m2 + · · · +mr = m, let Bm be the
set of all rearrangements w = x1x2 . . . xm of the sequence 1m12m2 . . . rmr ,
with the convention that some letters i may be replaced by their opposite
values −i. For typographical reasons we shall use the notation i := −i.
When m1 = m2 = · · · = mr = 1, m = r, the class Bm is simply the
hyperoctahedral group Bm of the signed permutations of order m.

The flag-major index, fmajw, and the flag-descent number, fdesw, of a
signed word w = x1x2 · · ·xm are defined by

fmajw := 2 majw + negw;

fdesw := 2 desw + χ(x1 < 0);

where “maj” and “des” are the usual major index majw :=
∑

i iχ(xi >
xi+1) and number of descents desw :=

∑

i χ(xi > xi+1), and where
negw :=

∑

j χ(xj < 0) (1 ≤ j ≤ m).
To define the flag-inversion number, finvw, of a signed word w =

x1x2 · · ·xm we use the traditional inversion number

invw :=
∑

1≤i≤m−1

∑

i<j

χ(xi > xj),

together with

invw :=
∑

1≤i≤m−1

∑

i<j

χ(xi > xj)

and set

finvw := invw + invw + negw.

It is important to note that the restriction finv |Bn
of the flag-inversion

number to each hyperoctahedral group Bn is the length function ℓ.
Adin, Brenti and Roichman [ABR01] proved that “fmaj” and “ℓ” were

equidistributed on each hyperoctahedral group Bn:

∑

w∈Bn

qfmaj w =
∑

w∈Bn

qℓ w =
(q2; q2)n

(1− q)n
.
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It was then very tantalizing to construct a bijection Ψ of Bn onto itself
such that fmajw = ℓΨ(w). However, let

fmajBn(q, Z) :=
∑

w∈Bn

qfmaj wZneg w, finvBn(q, Z) :=
∑

w∈Bn

qfinv wZneg w.

Then, we can calculate those polynomials in the form:

finvBn(q, Z) = (−Zq; q)n
(q; q)n

(1− qn)
;

fmajBn(q, Z) = (q2; q2)n

(1 + qZ

1− q2
)n

.

We see that finvBn(q, Z) 6= fmajBn(q, Z) as soon as n ≥ 2. For instance,
the coefficient of q in the first polynomial is (n− 1) and 0 in the second.
However, finvBn(q, 1) = fmajBn(q, 1) = (q2; q2)n/(1− q)n, as done above.
This shows that the transformation Ψ to be constructed cannot preserve
“neg” and will not be a banal extension of the second fundamental
transformation [Lo83] (chap. 10) valid for unsigned words.

Still, as done in [1], such a transformation Ψ could be constructed,
having the following properties:

(a) fmajw = finv Ψ(w) for every signed word w;
(b) the restriction of Ψ to each rearrangement class Bm of signed

words is a bijection of Bm onto itself, so that “fmaj” and “finv” are
equidistributed over each class Bm.

It is also shown that Ψ preserves the lower records of each signed word
(also called “strict right-to-left minima”), a property that is fully exploited
in the subsequent paper [2]. It also preserves the so-called inverse ligne

of route.

Let

Zij :=

{

Z, if i and j are both odd;
1, if i and j are both even;
0, if i and j have different parity.

This allowed us to calculate the expansion of the infinite product (see [3],
formula (4.3))

∏

i≥0,j≥0

1

1− uZijq
i
1q

j
2

=
∑

n≥0

un

(q21 ; q21)n (q22 ; q
2
2)n)

Bn(q1, q2, Z),

where the coefficient Bn(q1, q2, Z) is the generating polynomial

Bn(q1, q2, Z) =
∑

w∈Bn

qfmaj w
1 qfmaj w−1

2 Zneg w,
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together with the expansion of the graded form of that infinite product
(see [3], Theorem 1.1), namely,

∑

r≥0,r≥0

tr1t
s
2

∏

0≤i≤r, 0≤j≤s

1

1− uZijqi
1q

j
2

.

3. Fixed points. It is readily seen that the polynomials Bn(Y0, Y1, Z)
(n ≥ 0) defined by

(3.1)
∑

n≥0

un

n!
Bn(Y0, Y1, Z) =

(

1− u(1 + Z)
)−1 × exp(u(Y0 + Y1Z))

exp(u(1 + Z))

are generating functions for the hyperoctahedral groups Bn by a certain
three-variable statistic. When Z = 0, the variable Y1 vanishes and we
recover the generating function for the symmetric groups by the number
of fixed points “fix”:

(3.2)
∑

n≥0

un

n!

∑

σ∈Sn

Y fix σ
0 = (1− u)−1 exp(uY0)

exp(u)
.

Accordingly, the variable Y1 must take another kind of fixed point into
account. If w = x1x2 · · ·xn is a signed permutation, let fix+w (resp.
fix−w) be the number of i such that 1 ≤ i ≤ n and xi = i (resp.
xi = i = −i). It is rather easy to prove

(3.3) Bn(Y0, Y1, Z) =
∑

w∈Bn

Y fix+w
0 Y fix−w

1 Zneg w.

As the q-analog of (3.2) has already been derived by Gessel and Reutenauer
[GeRe93] using the major index “maj,” it matters to q-analoguize (3.1)
by means of the flag-major index “fmaj” and also the length function “ℓ.”
The question is then to calculate the factorial generating functions for the
polynomials

fmajBn(q, Y0, Y1, Z) =
∑

w∈Bn

qfmaj wY fix+w
0 Y fix−w

1 Zneg w.

In [4] we obtain

(3.4)
∑

n≥0

un

(q2; q2)n

fmajBn(q, Y0, Y1, Z)

=
(

1− u1 + qZ

1− q2
)−1

× (u; q2)∞
(uY0; q2)∞

(−uqY1Z; q2)∞
(−uqZ; q2)∞

,

together with its graded from (see [4] (1.9)).
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The q-analog of (3.1) using “ℓ” as a q-maker requires another combina-
torial interpretation for the polynomial Bn(Y0, Y1, Z). Let w = x1x2 · · ·xn

be a word, all letters of which are integers without any repetitions. Say
that w is a desarrangement if x1 > x2 > · · · > x2k and x2k < x2k+1 for
some k ≥ 1. By convention, xn+1 = ∞. The notion was introduced by
Désarménien [De84]. Let w = x1x2 · · ·xn be a signed permutation. Un-
less w is increasing, there is always a nonempty right factor of w which is
a desarrangement. It then makes sense to define wd as the longest such a
right factor. Hence, w admits a unique factorization w = w−w+wd, called
its pixed factorization, where w− and w+ are both increasing, the letters
of w− being negative, those of w+ positive and where wd is the longest
right factor of w which is a desarrangement. For example, the pixed fac-
torization of the following signed permutation is materialized by vertical
bars: w = 53 | 1 | 4 2. Let pix− w := λw− and pix+ w := λw+.

If ℓBn(q, Y0, Y1, Z) :=
∑

w∈Bn

qℓ wY pix+ w
0 Y pix− w

1 Zneg w, the second q-

analog of (3.1) by the q-maker “ℓ” reads ([4], Theorem 1.2)

(3.5)
∑

n≥0

un

(−Zq; q)n (q; q)n

ℓBn(q, Y0, Y1, Z)

=
(

1− u

1− q
)−1

× (u; q)∞

(

∑

n≥0

(−qY −1
0 Y1Z; q)n (uY0)

n

(−Zq; q)n (q; q)n

)

.

One specialization of (3.4) is worth mentioning. Let dn be the number
of permutations σ ∈ Sn such that fix σ = 0, also called derangements.
Then

dn =
∑

2≤2k≤n−1

(2k)(2k + 2)n−2k−1 + χ(n even).

Thus, dn is an explicit sum of positive integers. To the best of the authors’
knowledge such a formula has not appeared elsewhere.

4. The statistics “maf ” and “maz”. If σ = σ(1)σ(2) · · ·σ(n)
is a permutation, let (j1, j2, . . . , jm) be the increasing sequence of the
integers k such that 1 ≤ k ≤ n and σ(k) 6= k and “red” be the increasing
bijection of {j1, j2, . . . , jm} onto {1, 2, . . . , m}. The word w = x1x2 · · ·xn

derived from σ = σ(1)σ(2) · · ·σ(n) by replacing each fixed point by 0 and
each other letter σ(jk) by redσ(jk) will be denoted by ZDer(σ). Also let

DESσ := {i : 1 ≤ i ≤ n− 1, σ(i) > σ(i+ 1)};
DEZσ := {i : 1 ≤ i ≤ n− 1, xi > xi+1};
Derσ := red σ(j1) redσ(j2) · · · redσ(jm);
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so that Derσ is the word derived from ZDer(σ) by deleting all the zeros.
Besides “maf” that was introduced in [CHZ97] we found it convenient to
have another statistic “maz”. Their definitions are the following:

maf σ :=
∑

i,σ(i)=i

i−
∑

1≤i≤fix σ

i+ majDerσ;

mazσ := majZDerσ; dezσ := des ZDerσ.

For instance, for σ = 82 1 356 4 9 7, we have ZDer(σ) = 5 0 1 2 0 0 3 6 4,
Derσ = 5 1 2 3 6 4, fixσ = 3 and maf σ = (2 + 5 + 6) − (1 + 2 + 3) +
maj(512364) = 7 + 6 = 13. Also mazσ = 1 + 4 + 8 = 13.

It is quite unexpected that “maf,” “maz” and “maj” are equidistributed

over Sn. Much more is proved in [6], where we construct two bijections
Φ and F3 of Sn onto itself having the following properties:

(fix,DEZ, exc) σ = (fix,DES, exc) Φ(σ);

(fix,maz, exc) σ = (fix,maf, exc) F3(σ);

for every σ from Sn.
In [7] composing several other bijections with the new ones Φ and F3

we show that several multivariable statistics are equidistributed either
with the triplet (fix, des,maj), or the pair (fix,maj).

In [10] the equidistribution of (fix,DEZ, exc) with (fix,DES, exc) over
Sn enables the two authors to give an immediate proof of a conjecture by
Stanley [St06] on alternating permutations. In fact, they prove a stronger
result dealing with permutations with a prescribed descent set.

5. A quadruple distribution. The distribution of the vector
(exc, des,maj, fix) over Sn had not been calculated before. Several mar-
ginal distributions were known. Let

(5.1) An(s, t, q, Y ) :=
∑

σ∈Sn

sexc σtdes σqmaj σY fix σ (n ≥ 0).

The distribution of the three-variable statistic (des,maj, fix) had been
calculated by Gessel and Reutenauer [GeRe93] in the form

(5.2)
∑

n≥0

An(1, t, q, Y )
un

(t; q)n+1
=
∑

r≥0

tr
(

1− u
r
∑

i=0

qi
)−1 (u; q)r+1

(uY ; q)r+1
.

Shareshian and Wachs [ShWa07] obtained the distribution of the three-
vector (exc,maj, fix) in the form

(5.3)
∑

n≥0

An(s, 1, q, Y )
un

(q; q)n
=

(1− sq)eq(Y u)

eq(squ)− sqeq(u)
,
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where eq(u) is the q-exponential
∑

n≥0 u
n/(q; q)n. We were then convinced

that a graded form of (5.3) was to be discovered, which would also be an
extension of (5.2). This was achieved by calculating the distribution of the
vector (exc, des,maj, fix) over Sn, which reads [8]:

(5.4)
∑

n≥0

An(s, t, q, Y )
un

(t; q)n+1
=
∑

r≥0

tr
(1− sq) (u; q)r (usq; q)r

((u; q)r − sq(usq; q)r)(uY ; q)r+1
.

As already explained in Section 1 the derivation was made in two steps,
first showing that the fraction on the right-hand side was a generating
function for words by an appropriate statistic, then using the Gessel-
Reutenauer standardization.

An interesting specialization yields the distribution of the pair of the
two Eulerian statistics “exc” and “des” over Sn in the form:

∑

n≥0

An(s, t, 1, 1)
un

(1− t)n+1
=
∑

r≥0

tr
1− s

(1− u)r+1(1− us)−r − s(1− u) .

6. A sextuple distribution. Since the distribution of the vector
(fix, exc, des,maj) over Sn could be derived, it was natural to look for an
extension of this result for the hyperoctahedral group Bn. The polynomial

Bn(s, t, q, Y0, Y1, Z) :=
∑

w∈Bn

sfexc wtfdes w qfmaj w Y fix+ w
0 Y fix− w

1 Zneg w

had to be considered, introducing a new variable “fexc” defined for each
signed permutation w = x1x2 · · ·xn by

fexcw := 2
∑

1≤i≤n−1

χ(xi > i) + negw,

which is known to be equidistributed with “fdes.”

An(s, t, q, Y )An(s,1,q,Y)

An(1, t, q, Y )An(1, 1, q, Y )

-

-

t

t

s
s

�
���

�
���Z=0

66 6

66

Bn(1, 1, q,Y0,Y1, Z)

Bn(s, 1, q, Y0, Y1, Z) Bn(s, t,q,Y0,Y1,Z)

Bn(1, t, q,Y0,Y1, Z)

Z=0
-

-

�
��

�
��

Z=0

Z=0

s s

t

t

Fig. 1
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The diagram of Fig. 1 shows that the polynomials written in roman can
be obtained from the polynomial Bn(s, t,q,Y0,Y1,Z) written in boldface
by giving certain variables specific values. For instance, the polynomial
An(s, t, q, Y ) (defined in (5.1)) is simply Bn(s1/2, t1/2, q1/2, Y, 0, 0). More
importantly, all the generating functions for those polynomials are true
specializations of the generating function derived for the polynomials
Bn(s, t,q,Y0,Y1,Z).

The factorial generating function in question is the following

∑

n≥0

(1 + t)Bn(s, t, q, Y0, Y1, Z)
un

(t2; q2)n+1

=
∑

r≥0

tr
(u; q2)⌊r/2⌋+1

(uY0; q2)⌊r/2⌋+1

(−usqY1Z; q2)⌊(r+1)/2⌋

(−usqZ; q2)⌊(r+1)/2⌋
Fr(u; s, q, Z),

where

Fr(u; s, q, Z)

=
(us2q2; q2)⌊r/2⌋ (1− s2q2) (u; q2)⌊(r+1)/2⌋ (u; q

2)⌊r/2⌋

(u; q2)⌊r/2⌋+1

(

(u; q2)⌊(r+1)/2⌋

(

(u; q2)⌊r/2⌋ − s2q2 (us2q2; q2)⌊r/2⌋

)

+ sqZ (u; q2)⌊r/2⌋

(

(u; q2)⌊(r+1)/2⌋ − (us2q2; q2)⌊(r+1)/2⌋

)

)

.

This derivation is the main result of our paper [5].

7. Our Ur-result. Our last paper [9] may be regarded as our funda-
mental result, as we explicitly calculate a generating function for words by
a statistic that involves six sets of variables (Xi), (Yi), (Zi), (Ti), (Y

′
i ), (T ′i )

(i ≥ 0). Without getting into details, say that the weight ψ(w) of each
word w includes variables referring to decreases, descents, increases, rises

and records. Let C be the (r + 1)× (r + 1) matrix

C =







































0
X1

1− Z1

X2

1− Z2
· · · Xr−1

1− Zr−1

Xr

1− Zr
Y0

1− T0
0

X2

1− Z2
· · · Xr−1

1− Zr−1

Xr

1− Zr
Y0

1− T0

Y1

1− T1
0 · · · Xr−1

1− Zr−1

Xr

1− Zr

...
...

...
. . .

...
...

Y0

1− T0

Y1

1− T1

Y2

1− T2
· · · 0

Xr

1− Zr
Y0

1− T0

Y1

1− T1

Y2

1− T2
· · · Yr−1

1− Tr−1
0







































.
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We prove that the generating function for the set [0, r]∗ by the weight ψ
is given by

∑

w∈[0,r]∗

ψ(w) =

∏

0≤j≤r

(

1 +
Y ′j

1− T ′j

)

det(I − C)
,

where I is the identity matrix of order (r + 1).
The basic techniques of proof are the traditional MacMahon Master

Theorem, together with the first fundamental transformation for words.
The specializations are numerous, in particular in q-series Calculus, for
instance,

∑

w∈[0,r]∗

sdec wRinrec wuλwqtot w =

(us; q)r+1

(uR; q)r+1

1−
∑

0≤l≤r

(us; q)l

(u; q)l
usql

.

We can then use the q-telescoping argument provided by Krattenthaler

(us; q)l

(u; q)l
usql =

sq

1− sq
( (us; q)l+1

(u; q)l
− (us; q)l

(u; q)l−1

)

(1 ≤ l ≤ r)

to reprove identity (1.3).



 - 14 - 

DISTRIBUTIONS ON WORDS AND q-CALCULUS

References

[AR01] Ron M. Adin and Yuval Roichman. The flag major index and group actions on
polynomial rings, Europ. J. Combin., vol. 22, , p. 431–446.

[ABR01] Ron M. Adin, Francesco Brenti and Yuval Roichman. Descent Numbers and
Major Indices for the Hyperoctahedral Group, Adv. in Appl. Math., vol. 27,
, p. 210–224.

[De84] Jacques Désarménien. Une autre interprétation du nombre des dérangements,
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SIGNED WORDS AND PERMUTATIONS, I;

A FUNDAMENTAL TRANSFORMATION

DOMINIQUE FOATA AND GUO-NIU HAN

This paper is dedicated to the memory of Percy Alexander MacMahon.

Abstract. The statistics major index and inversion number, usually defined

on ordinary words, have their counterparts in signed words, namely the so-

called flag-major index and flag-inversion number. We give the construction
of a new transformation on those signed words that maps the former statistic

onto the latter one. It is proved that the transformation also preserves two

other set-statistics: the inverse ligne of route and the lower records.

1. Introduction

The second fundamental transformation, as it was called later on (see [16],
chap. 10 or [15], ex. 5.1.1.19), was described in these proceedings [8]. Let w =
x1x2 . . . xm be a (finite) word, whose letters x1, x2, . . . , xm are integers. The
integer-valued statistics Inversion Number “inv” and Major Index “maj” attached
to the word w are defined by

invw :=
∑

1≤i≤m−1

∑

i<j

χ(xi > xj};(1.1)

majw :=
∑

1≤i≤m−1

i χ(xi > xi+1);(1.2)

making use of the χ-notation that maps each statement A to the value χ(A) = 1
or 0 depending on whether A is true or not.

If m = (m1, m2, . . . , mr) is a sequence of r nonnegative integers, the rearrange-
ment class of the nondecreasing word 1m12m2 . . . rmr , that is, the class of all the
words than can be derived from 1m12m2 . . . rmr by permutation of the letters, is
denoted by Rm. The second fundamental transformation, denoted by Φ, maps each
word w on another word Φ(w) and has the following properties:

(a) majw = inv Φ(w);
(b) Φ(w) is a rearrangement of w and the restriction of Φ to each rearrangement

class Rm is a bijection of Rm onto itself.

Further properties were proved later on by Foata, Schützenberger [10] and Björner,
Wachs [5], in particular, when the transformation is restricted to act on rearrange-
ment classes Rm such that m1 = · · · = mr = 1, that is, on symmetric groups Sr.

Received by the editors March 7, 2005.
1991 Mathematics Subject Classification. Primary 05A15, 05A30, 05E15.

Key words and phrases. Flag-inversion number, flag-major index, length function, signed per-
mutations, signed words.
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The purpose of this paper is to construct an analogous transformation not simply
on words, but on signed words, so that new equidistribution properties on classical
statistics, such as the (Coxeter) length function (see [7, p. 9], [14, p. 12]), defined
on the group Bn of the signed permutations can be derived. By signed word we
understand a word w = x1x2 . . . xm, whose letters are positive or negative integers.
If m = (m1, m2, . . . , mr) is a sequence of nonnegative integers such that m1 +m2 +
· · · + mr = m, let Bm be the set of all rearrangements w = x1x2 . . . xm of the
sequence 1m12m2 . . . rmr , with the convention that some letters i may be replaced
by their opposite values −i. For typographical reasons we shall use the notation
i := −i in the sequel. The class Bm contains 2m

(

m
m1,m2,... ,mr

)

signed words. When

m1 = m2 = · · · = mr = 1, m = r, the class Bm is simply the group Bm of the
signed permutations of order m.

Next, the statistics “inv” and “maj” must be adapted to signed words and cor-
respond to classical statistics when applied to signed permutations. Let

(ω; q)n :=

{

1, if n = 0;

(1− ω)(1− ωq) . . . (1− ωqn−1), if n ≥ 1;

denote the usual q-ascending factorial in a ring element ω and
[

m1 + · · ·+mr

m1, . . . , mr

]

q

:=
(q; q)m1+···+mr

(q; q)m1
· · · (q; q)mr

be the q-multinomial coefficient. Back to MacMahon [17, 18, 19] it was known that
the above q-multinomial coefficient, which is the true q-analog of the cardinality
of Rm, was the generating function for the class Rm by either one of the statistics
“inv” or “maj.” Consequently, the generating function for Bm by the new statistics
that are to be introduced on Bm must be a plausible q-analog of the cardinality
of Bm. The most natural q-analog we can think of is certainly (−q; q)m

[

m1+···+mr

m1,... ,mr

]

q
,

that tends to 2m
(

m1+···+mr

m1,... ,mr

)

when q tends to 1. As a substitute for “inv” we are led

to introduce the following statistic “finv,” called the flag-inversion number, which
will be shown to meet our expectation, that is,

(1.3) (−q; q)m

[

m1 + · · ·+mr

m1, . . . , mr

]

q

=
∑

w∈Bm

qfinv w.

This identity is easily proved by induction on r. Let w = x1x2 . . . xm be a signed
word from the class Bm. To define finvw we use “inv” defined in (1.1), together
with

invw :=
∑

1≤i≤m−1

∑

i<j

χ(xi > xj)(1.4)

and define

finvw := invw + invw +
∑

1≤j≤m

χ(xj < 0).(1.5)

The salient feature of this definition of “finv” is the fact that it does not involve
the values of the letters, but only the comparisons between letters, so that it can be
applied to each arbitrary signed word. Moreover, the definition of “finv” is similar
to that of “fmaj” given below in (1.7). Finally, its restriction to the group Bm of
the signed permutations is the traditional length function:

(1.6) finv|Bm

= ℓ.
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This is easily shown, for instance, by using the formula derived by Brenti [6] for the
length function ℓ over Bn, that reads.

ℓ w = invw +
∑

1≤j≤m

|xj|χ(xj < 0).

Next, the statistic “maj” is to be replaced by “fmaj”, the flag-major index,
introduced by Adin and Roichman [1] for signed permutations. The latter authors
(see also [2]) showed that “fmaj” was equidistributed with the length function ℓ
over Bn. Their definition of “fmaj” can be used verbatim for signed words, as well
as their definition of “fdes.” For a signed word w = x1x2 . . . xm those definitions
read:

fmajw := 2 majw +
∑

1≤j≤m

χ(xj < 0);(1.7)

fdesw := 2 desw + χ(x1 < 0);(1.8)

where “des” is the usual number of descents desw :=
∑

i χ(xi > xi+1). We postpone
the construction of our transformation Ψ on signed words to the next section. The
main purpose of this paper is to prove the following theorem.

Theorem 1.1. The transformation Ψ constructed in section 2 has the following
properties:

(a) fmajw = finv Ψ(w) for every signed word w;
(b) the restriction of Ψ to each rearrangement class Bm of signed words is a

bijection of Bm onto itself, so that “fmaj” and “finv” are equidistributed over
each class Bm.

Definition 1.1. Let w = x1x2 . . . xm ∈ Bm be a signed word. We say that a
nonnegative integer i belongs to the inverse ligne of route, Ilignew, of w, if one of
the following two conditions holds:

(1) i = 0, m1 ≥ 1 and the rightmost letter xk satisfying |xk| = 1 is equal to 1;
(2) i ≥ 1,mi = mi+1 = 1 and the rightmost letter that belongs to {i, i, i+1, i+ 1}

is equal to i or i+ 1.
For example, with w = 4 4 1 3 2 5 56 7 we have: Ilignew = {0, 2, 6}.

Remark. The expression “line of route” was used by Foulkes [11,12]. We have
added the letter “g” making up “ligne of route,” thus bringing a slight touch of
French. Notice that 0 may or may not belong to the inverse ligne of route. The
ligne of route of a signed word w = x1x2 . . . xm is defined to be the set, denoted by
Lignew, of all the i’s such that either 1 ≤ i ≤ m − 1 and xi > xi+1, or i = 0 and
x1 < 0. In particular, majw =

∑

0≤i≤m−1

i χ(i ∈ Lignew). Finally, if w is a signed

permutation, then Ilignew = Lignew−1. For ordinary permutations, some authors
speak of descent set and descent set of the inverse, instead of ligne of route and
inverse ligne of route, respectively.

Theorem 1.2. The transformation Ψ constructed in section 2 preserves the inverse
ligne of route:

(c) IligneΨ(w) = Ilignew for every signed word w.
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Definition 1.2. Let w = x1x2 . . . xm be a signed word of length m. A letter xi

is said to be a lower record of w, if either i = m, or 1 ≤ i ≤ m − 1 and |xi| < |xj |
for all j such that i + 1 ≤ j ≤ m. When reading the lower records of w from left
to right, we get a signed subword xi1xi2 . . . xik

, called the lower record subword,
denoted by Lowerw, which has the property that: mini xi = |xi1 | < |xi2 | < · · · <
|xik
| = |xm|. The notion of lower record is classical in the statistical literature. In

combinatorics the expression “strict right-to-left minimum” is also used.

With our previous example w = 44 1 3 2 5 5 6 7 we get Lowerw = 12 5 6 7. Our
third goal is to prove the following result.

Theorem 1.3. The transformation Ψ constructed in section 2 preserves all the
lower records:
(d) Lower Ψ(w) = Lowerw for every signed word w.

For each signed permutation w = x1x2 . . . xm let

ifmajw := 2
∑

1≤j≤m

i χ(j ∈ Ilignew) +
∑

1≤j≤m

χ(xj < 0);(1.11)

ifdesw := 2
∑

1≤j≤m

χ(j ∈ Ilignew) + χ(xi = −1 for some i).(1.12)

It is immediate to verify that

finvw = finvw−1, ifmajw = fmajw−1, ifdesw = fdesw−1,

where w−1 denotes the inverse of the signed permutation w (written as a linear
word w−1 = w−1(1) . . .w−1(m)).

Let iw := w−1; then the chain

w
i−−−→ w1

Ψ−−−→ w2
i−−−→ w3

(

fdes

ifmaj

) (

ifdes

fmaj

) (

ifdes

finv

) (

fdes

finv

)

shows that the four generating polynomials
∑

tfdes wqifmaj w,
∑

tifdeswqfmaj w,
∑

tifdes wqfinv w and
∑

tfdes wqfinv w (w ∈ Bm) are identical. Their analytic ex-
pression will be derived in a forthcoming paper [9].

2. The construction of the transformation

For each signed word w = x1x2 . . . xm the first or leftmost (resp. last or right-
most) letter x1 (resp. xm) is denoted by F (w) (resp. L(w)). Next, define s1 w :=
x1x2 . . . xm. The transformation s1 changes the sign of the first letter. Together
with s1 the main ingredients of our transformation are the bijections γx and δx
defined for each integer x, as follows.

If L(w) ≤ x (resp. L(w) > x), then w admits the unique factorization

(v1y1, v2y2, . . . , vpyp),

called its x-right-to-left factorisation having the following properties:
(i) each yi (1 ≤ i ≤ p) is a letter verifying yi ≤ x (resp. yi > x);
(ii) each vi (1 ≤ i ≤ p) is a factor which is either empty or has all its letters

greater than (resp. smaller than or equal to) x.
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Then, γx is defined to be the bijection that maps w = v1y1v2y2 . . . vpyp onto the
signed word

(2.1) γx(w) := y1v1y2v2 . . . ypvp.

In a dual manner, if F (w) ≥ x (resp. F (w) < x) the signed word w admits the
unique factorization

(z1w1, z2w2, . . . , zqwq)

called its x-left-to-right factorisation having the following properties:
(i) each zi (1 ≤ i ≤ q) is a letter verifying zi ≥ x (resp. zi < x);
(ii) each wi (1 ≤ i ≤ q) is a factor which is either empty or has all its letters less

than (resp. greater than or equal to) x.
Then, δx is defined to be the bijection that sends w = z1w1z2w2 . . . zqwq onto the
signed word

(2.2) δx(w) := w1z1w2z2 . . . wqzq.

Next, if (v1y1, v2y2, . . . , ypvp) is the x-right-to-left factorization of w, we define

(2.3) βx(w) :=

{

δx γx(w), if either x ≤ y1 ≤ x, or x < y1 < x;

δx s1 γx(w), otherwise.

The fundamental transformation Ψ on signed words that is the main object of
this paper is defined as follows: if w is a one-letter signed word, let Ψ(w) := w;
if it has more than one letter, write the word as wx, where x is the last letter.
By induction determine Ψ(w), then apply βx to Ψ(w) and define Ψ(wx) to be the
juxtaposition product:

(2.4) Ψ(wx) := βx(Ψ(w)) x.

The proof of Theorem 1.1 is given in section 3. It is useful to notice the following
relation

(2.5) y1 ≤ x⇔ L(w) ≤ x
and the identity

(2.6) Ψ(wx) = Ψ(w)x, whenever x < −max{|xi|} or x ≥ max{|xi|}.

Example. Let w = 3 2 1 3 4 3. The factorizations used in the definitions of γx

and δx are indicated by vertical bars. First, Ψ(3) = 3. Then

| 3 | γ
2−→ 3

s1−→ | 3 | δ2−→ 3, so that Ψ(3 2) = 3 2;

| 3 | 2 | γ1−→ 3 2
s1−→ | 3 2 | δ

1−→ 2 3, so that Ψ(3 2 1) = 2 3 1;

| 2 | 3 | 1 | γ
3−→ | 2 3 | 1 | δ3−→ 3 2 1, so that Ψ(3 2 1 3) = 3 21 3;

and Ψ(3 2 1 3 4) = 3 21 3 4, because of (2.6);

| 3 | 2 | 1 | 3 | 4 | γ3−→ | 3 | 2 | 1 | 34 | δ
3−→ 3 2 1 4 3.

Thus, with w = 3 2 1 3 4 3 we get Ψ(w) = 3 21 4 3 3. We verify that fmajw =
finv Ψ(w) = 19, Ilignew = IligneΨ(w) = {1}, Lowerw = Lower Ψ(w) = 1 3.
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3. Proof of Theorem 1.1

Before proving the theorem we state a few properties involving the above sta-
tistics and transformations. Let |w| be the number of letters of the signed word w
and |w|>x be the number of its letters greater than x with analogous expressions
involving ths subscripts “≥ x”, “< x” and “≤ x”. We have:

fmajwx = fmajw + χ(x < 0) + 2 |w|χ(L(w) > x);(3.1)

finvwx = finvw + |w|>x + |w|<x + χ(x < 0);(3.2)

finv γx(w) = finvw + |w|≤x − |w|χ(L(w) ≤ x);(3.3)

finv δx(w) = finvw + |w|≥x − |w|χ(F (w) ≥ x).(3.4)

Next, let y1 denote the first letter of the signed word w′′. Then

finv s1 w
′′ = finvw′′ + χ(y1 > 0)− χ(y1 < 0);(3.5)

|s1 w′′|>x = |w′′|>x + χ(x > 0)(χ(y1 < x)− χ(x < y1))(3.6)

+ χ(x < 0)(χ(y1 ≤ x)− χ(x ≤ y1)).

Theorem 1.1 is now proved by induction on the word length. Assume that
fmajw = finv Ψ(w) for a given w. Our purpose is to show that

(3.7) fmajwx = finv Ψ(wx)

holds for all letters x. Let w′ = Ψ(w), so that by (2.4) the words w and w′

have the same rightmost letter. Denote the x-right-to-left factorization of w′ by
(v1y1, . . . , vpyp). By (2.3) the signed word v := βx(w′) is defined by the chain

w′ = v1y1 . . . vpyp
γx−→ w′′ = y1v1 . . . ypvp = z1w1 . . . zqwq(3.8)

δx−→ v = w1z1 . . . wqzq

if either x ≤ y1 ≤ x, or x < y1 < x, and by the chain

w′ = v1y1 . . . vpyp
γx−→ w′′ = y1v1 . . . ypvp(3.9)
s1−→ w′′′ = y1v1 . . . ypvp = z1w1 . . . zqwq

δx−→ v = w1z1 . . . wqzq ,

otherwise. Notice that (z1w1, . . . , zqwq) designates the x-left-to-right factorization
of w′′ in chain (3.8) and of w′′′ in chain (3.9).

(i) Suppose that one of the conditions x ≤ y1 ≤ x, x < y1 < x holds, so that
(3.8) applies. We have

finv Ψ(wx) = finv vx = finv v + |v|>x + |v|<x + χ(x < 0) [by (3.2)]

finv v = finv δx(w′′) = finvw′′ + |w′′|≥x − |w′′|χ(F (w′′) ≥ x) [by (3.4)]

finvw′′ = finv γx(w′) = finvw′ + |w′|≤x − |w′|χ(L(w′) ≤ x) [by (3.3)]

finvw′ = fmajw [by induction]

fmajw = fmajwx− χ(x < 0)− 2 |w|χ(L(w) > x). [by (3.1)]

By induction,

(3.10) L(w) = L(w′) and χ(L(w′) > x) = 1− χ(L(w′) ≤ x).
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Also F (w′′) = y1. As w′, w′′, v are true rearrangements of each other, we have
|v|>x + |w′|≤x = |w|, |v|<x + |w′′|≥x = |w|. Hence,

finv Ψ(wx) = fmajwx+ |w|[χ(L(w′) ≤ x)− χ(y1 ≥ x)].

By (2.5), if x ≤ y1 ≤ x holds, then L(w′) ≤ x and the expression between brackets
is null. If x < y1 < x holds, then L(w′) > x and the same expression is also null.
Thus (3.7) holds.

(ii) Suppose that none of the conditions x ≤ y1 ≤ x, x < y1 < x holds, so that
(3.9) applies. We have

finv Ψ(wx) = finv vx = finv v + |v|>x + |v|<x + χ(x < 0) [by (3.2)]

finv v = finv δx(w′′′)=finvw′′′ + |w′′′|≥x − |w′′′|χ(F (w′′′) ≥ x) [by (3.4)]

finvw′′′ = finv s1 w
′′ = finvw′′ + χ(y1 > 0)− χ(y1 < 0) [by (3.5)]

finvw′′ = finv γx(w′) = finvw′ + |w′|≤x − |w′|χ(L(w′) ≤ x) [by (3.3)]

finvw′ = fmajw [by induction]

fmajw = fmajwx− χ(x < 0)− 2 |w|χ(L(w) > x). [by (3.1)]

Moreover, F (w′′′) = y1, so that χ(F (w′′′) ≥ x) = χ(y1 ≥ x) = χ(y1 ≤ x) =
χ(L(w′) ≤ x) = χ(L(w) ≤ x). As v and w′′′ are rearrangements of each other, we
have |v|<x + |w′′′|≥x = |w|. Using (3.6) since |v|>x = |w′′′|>x = |s1w′′|>x we have:

finv Ψ(wx) = |w′′|>x + χ(x > 0)(χ(y1 < x)− χ(x < y1))

+ χ(x < 0)(χ(y1 ≤ x)− χ(x ≤ y1)) + χ(x < 0)

+ |w| − |w|χ(y1 ≤ x) + χ(y1 > 0)− χ(y1 < 0)

+ |w′|≤x − |w′|χ(y1 ≤ x)
+ fmajwx− χ(x < 0)− 2 |w|+ 2|w|χ(y1 ≤ x)

= fmajwx+ χ(x > 0)(χ(y1 < x)− χ(x < y1))

+ χ(x < 0)(χ(y1 ≤ x)− χ(x ≤ y1))
+ χ(y1 > 0)− χ(y1 < 0)

= fmajwx,

for, if none of the conditions x ≤ y1 ≤ x, x < y1 < x holds, then one of the following
four ones holds: (a) y1 > x > 0; (b) y1 > x > 0; (c) y1 ≤ x < 0; (d) y1 ≤ x < 0;
and in each case the sum of the factors in the above sum involving χ is zero.

The construction of Ψ is perfectly reversible. First, note that s1 is an involution
and the maps γx, δx send each class Bm onto itself, so that their inverses are
perfectly defined. They can also be described by means of left-to-right and right-to-
left factorizations. Let us give the construction of the inverse Ψ−1 of Ψ. Of course,
Ψ−1(v) := v if v is a one-letter word. If vx is a signed word, whose last letter
is x, determine v′ := δ−1

x (v) and let z1 be its first letter. If one of the conditions
x ≤ z1 ≤ x or x < z1 < x holds, the chain (3.8) is to be used in reverse order,
so that Ψ−1(vx) := (Ψ−1 γ−1

x δ−1
x (v))x. If none of those two conditions holds, then

Ψ−1(vx) := (Ψ−1 γ−1
x s1 δ

−1
x (v))x. �
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4. Proofs of Theorems 1.2 and 1.3

Before proving Theorem 1.2 we note the following two properties.

Property 4.1. Let Ix = {i ∈ Z : i < −|x|} (resp. Jx = {i ∈ Z : −|x| < i < |x|},
resp. Kx = {i ∈ Z : |x| < i}) and w be a signed word. Then, the bijections γx and
δx do not modify the mutual order of the letters of w that belong to Ix (resp. Jx,
resp. Kx).

Proof. Let y ∈ Ix and z ∈ Ix (resp. y ∈ Jx and z ∈ Jx, resp. y ∈ Kx and z ∈ Kx) be
two letters of w with y to the left of z. In the notations of (2.1) (resp. of (2.2)) both
y, z are, either among the yi’s (resp. the zi’s), or letters of the vi’s (resp. the wi’s).
Accordingly, y remains to the left of z when γx (resp. δx) is applied to w. �

Property 4.2. Let w = x1x2 . . . xm ∈ Bm be a signed word and i be a positive
integer such that mi = mi+1 = 1. Furthermore, let x be an integer such that
x 6∈ {i, i, i+ 1, i+ 1}. Then the following conditions are equivalent:
(a) i ∈ Ilignew; (b) i ∈ Iligne s1w; (c) i ∈ Iligne γxw; (d) i ∈ Iligne δxw.

Proof. (a)⇔(b) holds by definition 1.1, because s1 has no action on the rightmost
letter belonging to {i, i, i + 1, i+ 1}. For the other equivalences we can say the
following. If the two letters of w that belong to {i, i, i+1, i+ 1} are in Ix (resp. Jx,
resp. Kx), Property 4.1 applies. Otherwise, if i ∈ Ilignew, then w is either of the
form . . . i+ 1 . . . i . . . or . . . i . . . i+ 1 . . . and the order of those two letters
is immaterial. �

Theorem 1.2 holds for each one-letter signed word. Let w = x1x2 . . . xm ∈ Bm

be a signed word, x a letter and i a positive integer. Assume that Ilignew =
IligneΨ(w).

If x = i, then i ∈ Ilignewx if and only if w contains no letter equal to ±i
and exactly one letter equal to ±(i+ 1). As βxΨ(w) is a rearrangement of w with
possibly sign changes for some letters, the last statement is equivalent to saying
that βxΨ(w) has no letter equal to ±i and exactly one letter equal to ±(i+1). This
is also equivalent to saying that i ∈ IligneβxΨ(w)x = IligneΨ(wx). In the same
manner, we can show that

if x = i+ 1, then i ∈ Ilignewx if and only if i ∈ IligneΨ(wx);
if x = i, then i 6∈ Ilignewx and i 6∈ IligneΨ(wx);
if x = i+ 1, then i 6∈ Ilignewx and i 6∈ IligneΨ(wx).

Now, let i be such that none of the integers i, i+ 1, i, i+ 1 is equal to x. There
is nothing to prove if mi = mi+1 = 1 does not hold, as i does not belong to
any of the sets Ilignew, IligneβxΨ(w). Otherwise, the result follows from Property
4.2 because Ψ is a composition product of βx, s1 and γx. Finally, the equivalence
[0 ∈ Iligneβx(w)x]⇔ [0 ∈ Ilignewx] follows from Proposition 4.1 when |x|> 1 and
the result is evident when |x|=1. �

The proof of Theorem 1.3 also follows from Property 4.1. By definition the lower
records of wx, other than x, belong to Jx. As the bijections γx and δx do not
modify the mutual order of the letters of w that belong to Jx, we have Lowerwx =
Lower βx(w)x when the chain (3.8) is used. When (3.9) is applied, so that y1 6∈ Jx,
we also have z1 = y1 6∈ Jx. Thus, neither y1, nor z1 can be lower records for each
word ending with x. Again, Lowerwx = Lower βx(w)x. �
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5. Concluding remarks

Since the works by MacMahon, much attention has been given to the study of
statistics on the symmetric group or on classes of word rearrangements, in particular
by the M.I.T. school ([25, 26, 27, 13, 6]). It was then natural to extend those
studies to other classical Weyl groups, as was done by Reiner [20, 21, 22, 23, 24]
for the signed permutation group. Today the work has been pursued by the Israeli
and Roman schools [1, 2, 3, 4]. The contribution of Adin, Roichman [1] has been
essential with their definition of the flag major index for signed permutations. In
our forthcoming paper [9] we will derive new analytical expressions, in particular
for several multivariable statistics involving “fmaj,” “finv” and the number of lower
records.
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26. Richard P. Stanley, Binomial posets, Möbius inversion, and permutation enumeration, J.

Combinatorial Theory Ser. A 20 (1976), 336–356.
27. John Stembridge, Eulerian numbers, tableaux, and the Betti numbers of a toric variety,

Discrete Math. 99 (1992), 307–320.

Institut Lothaire, 1 rue Murner, F-67000 Strasbourg, France

E-mail address: foata@math.u-strasbg.fr
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Dans la théorie de Morse, quand on veut étudier
un espace, on introduit une fonction numérique; puis
on aplatit cet espace sur l’axe de la valeur de cette
fonction. Dans cette opération d’aplatissement, on crée
des singularités de la fonction et celles-ci sont en
quelque sorte les vestiges de la topologie qu’on a tuée.

René Thom, Logos et Théorie des catastrophes, .

Dedicated to Richard Stanley,
on the occasion of his sixtieth birthday.

Abstract

As for the symmetric group of ordinary permutations there is also a statistical
study of the group of signed permutations, that consists of calculating multi-
variable generating functions for this group by statistics involving record values
and the length function. Two approaches are here systematically explored, us-
ing the flag-major index on the one hand, and the flag-inversion number on the
other hand. The MacMahon Verfahren appears as a powerful tool throughout.

1. Introduction

The elements of the hyperoctahedral group Bn (n ≥ 0), usually called signed

permutations, may be viewed as words w = x1x2 . . . xn, where the letters xi are positive
or negative integers and where |x1| |x2| . . . |xn| is a permutation of 1 2 . . . n (see [Bo68]
p. 252–253). For typographical reasons we shall use the notation i := −i in the sequel.
Using the χ-notation that maps each statement A onto the value χ(A) = 1 or 0

the electronic journal of combinatorics 12 (2005), #R00
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depending on whether A is true or not, we recall that the usual inversion number,
invw, of the signed permutation w = x1x2 . . . xn is defined by

invw :=
∑

1≤j≤n

∑

i<j

χ(xi > xj).

It also makes sense to introduce

invw :=
∑

1≤j≤n

∑

i<j

χ(xi > xj),

and verify that the length function (see [Bo68, p. 7], [Hu90, p. 12]), that will be denoted
by “finv” (flag-inversion number) in the whole paper, can be defined, using the notation
negw :=

∑

1≤j≤n

χ(xj < 0), by

finvw := invw + invw + negw.

Another equivalent definition will be given in (7.1). The flag-major index “fmaj” and
the flag descent number “fdes” were introduced by Adin and Roichman [AR01] and
read:

fmajw := 2 majw + negw;

fdesw := 2 desw + χ(x1 < 0);

where majw :=
∑

j j χ(xj > xj+1) denotes the usual major index of w and desw the
number of descents desw :=

∑

j χ(xj > xj+1).
Another class of statistics needed here is the class of lower records. A letter xi

(1 ≤ i ≤ n) is said to be a lower record of the signed permutation w = x1x2 . . . xn,
if |xi| < |xj| for all j such that i + 1 ≤ j ≤ n. When reading the lower records of w
from left to right we get a signed subword, called the lower record subword, denoted by
Lowerw. Denote the number of positive (resp. negative) letters in Lowerw by lowerpw
(resp. lowernw).

In our previous paper [FoHa05] we gave the construction of a transformation Ψ on
(arbitrary) signed words, that is, words, whose letters are positive or negative with
repetitions allowed. When applied to the group Bn, the transformation Ψ has the
following properties:

(a) fmajw = finv Ψ(w) for every signed permutation w;
(b) Ψ is a bijection of Bn onto itself, so that “fmaj” and “finv” are equidistributed

over the hyperoctahedral group Bn;
(c) Lowerw = Lower Ψ(w), so that lowerpw = lowerp Ψ(w) and lowernw =

lowern Ψ(w).
Actually, the transformation Ψ has stronger properties than those stated above, but

these restrictive properties will suffice for the following derivation. Having properties
(a)–(c) in mind, we see that the two three-variable statistics (fmaj, lowerp, lowern) and
(finv, lowerp, lowern) are equidistributed overBn. Hence, the two generating polynomials

fmajBn(q,X, Y ) :=
∑

w∈Bn

qfmajX lowerp wY lowern w

finvBn(q,X, Y ) :=
∑

w∈Bn

qfinvX lowerp wY lowern w

the electronic journal of combinatorics 12 (2005), #R00
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are identical. To derive the analytical expression for the common polynomial we have
two approaches, using the “fmaj” interpretation, on the one hand, and the “finv”
geometry, on the other. In each case we will go beyond the three-variable case, as
we consider the generating polynomial for the group Bn by the five-variable statistic
(fdes, fmaj, lowerp, lowern, neg)

(1.1) fmajBn(t, q, X, Y, Z) :=
∑

w∈Bn

tfdes wqfmaj wX lowerp wY lowern wZneg w

and the generating polynomial for the group Bn by the four-variable statistic
(finv, lowerp, lowern, neg)

(1.2) finvBn(q,X, Y, Z) :=
∑

w∈Bn

qfinv wX lowerpwY lowern wZneg w.

Using the usual notations for the q-ascending factorial

(a; q)n :=

{

1, if n = 0;
(1− a)(1− aq) . . . (1− aqn−1), if n ≥ 1;

(1.3)

in its finite form and

(a; q)∞ := limn(a; q)n =
∏

n≥0

(1− aqn);(1.4)

in its infinite form, we consider the products

(1.5) H∞(u) :=

(

uq
( Z + q

1− q2 − ZY
)

; q2
)

∞
(

u
(q(Z + q)

1− q2 +X
)

; q2
)

∞

,

in its infinite version, and

(1.6) H2s(u) :=
1− q2

1− q2 + uq2s+1(Z + q)

(

uq
Z + q − ZY (1− q2)

1− q2 + uq2s+1(Z + q)
; q2
)

s

(

u
q(Z + q) +X(1− q2)

1− q2 + uq2s+1(Z + q)
; q2
)

s+1

,

as well as

(1.7) H2s+1(u) :=

(

uq
Z + q − ZY (1− q2)

1− q2 + uq2s+2(Zq + 1)
; q2
)

s+1

(

u
q(Z + q) +X(1− q2)

1− q2 + uq2s+2(Zq + 1)
; q2
)

s+1

,

in its graded version under the form
∑

s≥0

tsHs(u).

The purpose of this paper is to prove the following two theorems and derive several
applications regarding statistical distributions over Bn.
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Theorem 1.1 (the “fmaj” approach). Let fmajBn(t, q, X, Y, Z) be the generating
polynomial for the groupBn by the five-variable statistic (fdes, fmaj, lowerp, lowern, neg)
as defined in (1.1). Then

(1.8)
∑

n≥0

(1 + t) fmajBn(t, q, X, Y, Z)
un

(t2; q2)n+1
=
∑

s≥0

tsHs(u),

where Hs(u) is the finite product introduced in (1.6) and (1.7).

Theorem 1.2 (the “finv” approach). Let finvBn(q,X, Y, Z) be the generating polyno-
mial for the group Bn by the four-variable statistic
(finv, lowerp, lowern, neg), as defined in (1.2). Then

(1.9) finvBn(q,X, Y, Z) = (X + q + · · ·+ qn−1 + qnZ + · · ·+ q2n−2Z + q2n−1Y Z)

· · · × (X + q + q2 + q3Z + q4Z + q5Y Z)(X + q + q2Z + q3Y Z)(X + qY Z).

The proofs of those two theorems are very different in nature. For proving Theo-
rem 1.1 we re-adapt the MacMahon Verfahren to make it work for signed permutations.
René Thom’s quotation that appears as an epigraph to this paper illustrates the essence
of the MacMahon Verfahren. The topology of the signed permutations measured by the
various statistics, “fdes”, “fmaj”, . . . must be reconstructed when the group of the
signed permutations is mapped onto a set of plain words for which the calculation of
the associated statistic is easy. There is then a combinatorial bijection between signed
permutations and plain words that describes the “flattening” (“aplatissement”) process.
This is the content of Theorem 4.1.

Another approach might have been to make use of the P -partition technique
introduced by Stanley [St72] and successfully employed by Reiner [Re93a, Re93b, Re93c,
Re95a, Re95b] in his statistical study of the hyperoctahedral group.

Theorem 1.2 is based upon another definition of the length function for Bn (see
formula (7.1)). Notice that in the two theorems we have included a variable Z, which
takes the number “neg” of negative letters into account. This allows us to re-obtain the
classical results on the symmetric group by letting Z = 0.

In the next section we show that the infinite product Hs(u) first appears as the gen-
erating function for a class of plain words by a four-variable statistic (see Theorem 2.2).
This theorem will be an essential tool in section 4 in the MacMahon Verfahren for
signed permutations to handle the five-variable polynomial fmajBn(t, q, X, Y, Z). Sec-
tion 3 contains an axiomatic definition of the Record-Signed-Euler-Mahonian Polyno-

mials Bn(t, q, X, Y, Z). They are defined, not only by (1.8) (with Bn replacing fmajBn),
but also by a recurrence relation. The proof of Theorem 1.1 using the MacMahon Ver-
fahren is found in Section 4. In Section 5 we show how to prove that the polynomials
fmajBn(t, q, X, Y, Z) satisfy the same recurrence as the polynomials Bn(t, q, X, Y, Z),
using an insertion technique. The specializations of Theorem 1.1 are numerous and
described in section 6. We end the paper with the proof of Theorem 1.2 and its special-
izations.

the electronic journal of combinatorics 12 (2005), #R00



 - 29 - 

2. Lower Records on Words

As mentioned in the introduction, Theorem 2.2 below, dealing with ordinary words,
appears to be a preparation lemma for Theorem 1.1, that takes the geometry of signed

permutations into account. Consider an ordinary word c = c1c2 . . . cn, whose letters
belong to the alphabet {0, 1, . . . , s}, that is, a word from the free monoid {0, 1, . . . , s}∗.
A letter ci (1 ≤ i ≤ n) is said to be an even lower record (resp. odd lower record) of c, if
ci is even (resp. odd) and if cj ≥ ci (resp. cj > ci) for all j such that 1 ≤ j ≤ i−1. Notice
the discrepancy between even and odd letters. Also, to define those even and odd lower
records for words the reading is made from left to right, while for signed permutations,
the lower records are read from right to left (see Sections 1 and 4). We could have
considered a totally ordered alphabet with two kinds of letters, but playing with the
parity of the nonnegative integers is more convenient for our applications. For instance,
the even (resp. odd) lower records of the word c = 5 44 1 5 2 10 40 3 are reproduced in
boldface (resp. in italic).

For each word c let evenlower c (resp. oddlower c) be the number of even (resp. odd)
lower records of c. Also let tot c (“tot” stands for “total”) be the sum c1 +c2 + · · ·+cn of
the letters of c and odd c be the number of its odd letters. Also denote its length by |c| and
let |c|k be the number of letters in c equal to k. Our purpose is to calculate the generating
function for {0, 1, . . . , s}∗ by the four-variable statistic (tot, evenlower, oddlower, odd).

Say that c = c1c2 . . . cn is of minimal index k (0 ≤ k ≤ s/2), if min c :=
min{c1, . . . , cn} is equal to 2k or 2k + 1. Let cj be the leftmost letter of c equal to
2k or 2k + 1. Then, c admits a unique factorization

(2.1) c = c′cjc
′′,

having the following properties:

c′ ∈ {2k + 2, 2k + 3, . . . , s}∗, cj = 2k or 2k + 1, c′′ ∈ {2k, 2k + 1, . . . , s}∗.

With the forementioned example we have the factorization c′ = 5 4 4, cj = 1,
c′′ = 5 2 1 0 4 0 3. In this example notice that cj = 1 6= min c = 0.

Lemma 2.1. The numbers of even and odd lower records of a word c can be calculated
by induction as follows: evenlower c = oddlower c := 0 if c is empty; otherwise, let
c = c′cjc

′′ be its minimal index factorization (defined in (2.1)). Then

evenlower c = evenlower c′ + χ(cj = 2k) + |c′′|2k;(2.2)

oddlower c = oddlower c′ + χ(cj = 2k + 1).(2.3)

Proof. Keep the same notations as in (2.1). If cj = 2k, then cj is an even lower
record, as well as all the letters equal to 2k to the right of cj . On the other hand, there
is no even lower record equal to 2k to the left of cj , so that (2.2) holds. If cj = 2k + 1,
then cj is an odd lower record and there is no odd lower record equal to 2k + 1 to the
right of cj . Moreover, there is no odd lower record to the left of cj equal to cj . Again
(2.3) holds.
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It is straightforward to verify that the fraction Hs(u) displayed in (1.6) and (1.7)
can also be expressed as

H2s(u) =
∏

0≤k≤s

1− u([q2k+1(1− Y )Z + q2k+2 + · · ·+ q2s−2 + q2s−1Z + q2s])

1− u(q2kX + [q2k+1Z + q2k+2 + · · ·+ q2s−2 + q2s−1Z + q2s])
(2.4)

H2s+1(u) =
∏

0≤k≤s

1− u(q2k+1(1− Y )Z + [q2k+2 + · · ·+ q2s + q2s+1Z])

1− u(q2kX + q2k+1Z + [q2k+2 + · · ·+ q2s + q2s+1Z])
,(2.5)

where the expression between brackets vanishes whenever k = s, and that the Hs(u)’s
satisfy the recurrence formula

(2.6) H0(u) =
1

1− uX ; H1(u) =
1− uqZ(1− Y )

1− u(X + qZ)
; and for s ≥ 1

H2s(u) =
1− u(q(1− Y )Z + q2 + q3Z + · · ·+ q2s−1Z + q2s)

1− u(X + qZ + q2 + q3Z + · · ·+ q2s−1Z + q2s)
H2s−2(uq

2);

H2s+1(u)=
1− u(q(1− Y )Z + q2 + q3Z+· · ·+q2s + q2s+1Z)

1− u(X + qZ + q2 + q3Z + · · ·+ q2s + q2s+1Z)
H2s−1(uq

2).

Theorem 2.2. The generating function for the free monoid {0, 1, . . . , s}∗ by the four-
variable statistic (tot, evenlower, oddlower, odd) is equal to Hs(u), that is to say,

(2.7)
∑

c∈{0,1,...,s}∗

u|c|qtot cXevenlower cY oddlower cZodd c = Hs(u).

Proof. Let H∗s (u) denote the left-hand side of (2.7). Then,

H∗0 (u) =
∑

c∈{0}∗

u|c|q0X |c|Y 0Z0 =
1

1− uX .

When s = 1 the minimal index factorization of each nonempty word c reads c = cjc
′′,

so that

H∗1 (u) = 1 + u(X + qY Z)
∑

c′′∈{0,1}∗

u|c
′′|q|c

′′|1X |c
′′|0Y 0Z|c

′′|1

= 1 + u(X + qY Z)
1

1− u(X + qZ)
=

1− uqZ(1− Y )

1− u(X + qZ)
.

Consequently, H∗s (u) = Hs(u) for s = 0, 1. For s ≥ 2 we write

H∗s (u) =
∑

0≤k≤s/2

H∗s,k(u)

with

H∗s,k(u) :=
∑

c∈{0,1,...,s}∗

mini ci=2k or 2k+1

u|c|qtot cXevenlower cY oddlower cZodd c.
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From Lemma 2.1 it follows that

H∗s,0(u) =
∑

c′∈{2,...,s}∗

u|c
′|qtot c′Xevenlower c′Y oddlower c′Zodd c′ × u(X + qY Z)

×
∑

c′′∈{0,...,s}∗

u|c
′′|qtot c′′X |c

′′|0Zodd c′′

=
∑

c′∈{0,...,s−2}∗

(uq2)|c
′|qtot c′Xevenlower c′Y oddlower c′Zodd c′× u(X + qY Z)

×
∑

c′′∈{0,...,s}∗

(uX)|c
′′|0(uqZ)|c

′′|1(uq2)|c
′′|2(uq3Z)|c

′′|3(uq4)|c
′′|4 · · ·

= H∗s−2(uq
2)u(X + qY Z)

1

1− u(X + qZ + q2 + q3Z + q4 + · · · ) ,

the polynomial in the denominator ending with · · · + qs−1Z + qs or · · · + qs−1 + qsZ
depending on whether s is even or odd.

On the other hand,
∑

1≤k≤s/2

H∗s,k(u) =
∑

c∈{2,3,...,s}∗

u|c|qtot cXevenlower cY oddlower cZodd c

=
∑

c∈{0,1,...,s−2}∗

(uq2)|c|qtot cXevenlower cY oddlower cZodd c

= H∗s−2(uq
2).

Hence,

H∗s (u) =
(

1 +
u(X + qY Z)

1− u(X + qZ + q2 + q3Z + q4 + · · · )
)

H∗s−2(uq
2)

=
1− u(qZ(1− Y ) + q2 + q3Z + q4 + · · · )
1− u(X + qZ + q2 + q3Z + q4 + · · · ) H∗s−2(uq

2).

As the fractions H∗s (u) satisfy the same induction relation as the Hs(u)’s, we conclude
that H∗s (u) = Hs(u) for all s.

When s tends to infinity, then Hs(u) tends to H∞(u), whose expression is shown
in (1.5). In particular, we have the identity:

(2.8)
∑

c∈{0,1,2,...}∗

u|c|qtot cXevenlower cY oddlower cZodd c = H∞(u).

3. The Record-Signed-Euler-Mahonian Polynomials

Our next step is to form the series
∑

s≥0 t
sHs(u) and show that the series can be

expanded as a series in the variable u in the form

(3.1)
∑

n≥0

Cn(t, q, X, Y, Z)
un

(t2; q2)n+1
=
∑

s≥0

tsHs(u),

where Bn(t, q, X, Y, Z) := Cn(t, q, X, Y, Z)/(1 + t) is a polynomial with nonnegative
integral coefficients such that Bn(1, 1, 1, 1, 1) = 2nn! .
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Definition. A sequence
(

Bn(t, q, X, Y, Z) =
∑

k≥0

tkBn,k(q,X, Y, Z)
)

(n ≥ 0) of

polynomials in five variables t, q,X , Y and Z is said to be record-signed-Euler-Mahonian,
if one of the following equivalent three conditions holds:

(1) The (t2, q2)-factorial generating function for the polynomials

(3.2) Cn(t, q, X, Y, Z) := (1 + t)Bn(t, q, X, Y, Z)

is given by identity (3.1).

(2) For n ≥ 2 the recurrence relation holds:

(3.3) (1− q2)Bn(t, q, X, Y, Z)

=
(

X(1− q2) + (Zq + q2)(1− t2q2n−2) + t2q2n−1(1− q2)ZY
)

Bn−1(t, q, X, Y, Z)

− 1

2
(1− t)q(1 + q)(1 + tq)(1 + Z)Bn−1(tq, q,X, Y, Z)

+
1

2
(1− t)q(1− q)(1− tq)(1− Z)Bn−1(−tq, q,X, Y, Z),

while B0(t, q, X, Y, Z) = 1, B1(t, q, X, Y, Z) = X + tqY Z.

(3) The recurrence relation holds for the coefficients Bn,k(q,X, Y, Z):

(3.4) B0,0(q,X, Y, Z) = 1, B0,k(q,X, Y, Z) = 0 for all k 6= 0;

B1,0(q,X, Y, Z) = X, B1,1(q,X, Y, Z) = qY Z,

B1,k(q,X, Y, Z) = 0 for all k 6= 0, 1;

Bn,2k(q,X, Y, Z) = (X + qZ + q2 + q3Z + · · ·+ q2k)Bn−1,2k(q,X, Y, Z)

+ q2kBn−1,2k−1(q,X, Y, Z)

+ (q2k + q2k+1Z + · · ·+ q2n−1Y Z)Bn−1,2k−2(q,X, Y, Z),

Bn,2k+1(q,X, Y, Z)=(X + qZ + q2 + · · ·+ q2k + q2k+1Z)Bn−1,2k+1(q,X, Y, Z)

+ q2k+1ZBn−1,2k(q,X, Y, Z)

+ (q2k+1Z + q2k+2 + · · ·+ q2n−2 + q2n−1Y Z)Bn−1,2k−1(q,X, Y, Z),

for n ≥ 2 and 0 ≤ 2k + 1 ≤ 2n− 1.

Theorem 3.1. The conditions (1), (2) and (3) in the previous definition are equivalent.

Proof. The equivalence (2) ⇔ (3) requires a lengthy but elementary algebraic
argument and will be omitted. The other equivalence (1)⇔ (2) involves a more elaborate
q-series technique, which is now developed. Let Gs(u) := Hs(u

2); then

G0(u) =
1

1− u2X
; G1(u) =

1− u2qZ(1− Y )

1− u2(X + qZ)
;
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and by (2.6)

G2s(u) =
1− u2(qZ(1− Y ) + q2 + q3Z + · · ·+ q2s−1Z + q2s)

1− u2(X + qZ + q2 + q3Z + · · ·+ q2s−1Z + q2s)
G2s−2(uq),

G2s+1(u) =
1− u2(qZ(1− Y )+q2+q3Z+· · ·+q2s+q2s+1Z)

1− u2(X + qZ + q2 + q3Z + · · ·+ q2s + q2s+1Z)
G2s−1(uq),

for s ≥ 1. Working with the series
∑

s≥0

tsGs(u) we obtain

∑

s≥0

t2sG2s(u)
(

1− u2
(

X +
Zq + q2

1− q2 −
q2s

1− q2 (Zq + q2)
)

)

+
∑

s≥0

t2s+1G2s+1(u)
(

1− u2
(

X +
Zq + q2

1− q2 −
q2s+2

1− q2 (Zq + 1)
)

)

= 1 + t(1− u2qZ(1− Y ))

+
∑

s≥1

t2sG2s−2(qu)
(

1− u2
(

−qZY +
Zq + q2

1− q2 −
q2s

1− q2 (Zq + q2)
)

)

+
∑

s≥1

t2s+1G2s−1(qu)
(

1− u2
(

−qZY +
Zq + q2

1− q2 −
q2s+2

1− q2 (Zq + 1)
)

)

,

which may be rewritten as
∑

s≥0

tsGs(u)
(

1− u2
(

X +
Zq + q2

1− q2
)

)

= 1 + t(1− u2qZ(1− Y ))

+
∑

s≥0

ts+2Gs(qu)
(

1− u2
(

−qZY +
Zq + q2

1− q2
)

)

−
∑

s≥0

(tq)2s
(

G2s(u)− t2q2G2s(qu)
)

u2Zq + q2

1− q2

−
∑

s≥0

(tq)2s+1
(

G2s+1(u)− t2q2G2s+1(qu)
)

u2q
Zq + 1

1− q2 .

Now let
∑

n≥0bn(t)u2n :=
∑

s≥0t
sGs(u). This gives:

∑

n≥0

bn(t)u2n
(

1− u2
(

X +
Zq + q2

1− q2
)

)

= 1 + t(1− u2qZ(1− Y ))

+
∑

n≥0

bn(t)t2q2nu2n
(

1− u2
(

−qZY +
Zq + q2

1− q2
)

)

−
∑

n≥0

bn(tq) + bn(−tq)
2

(1− t2q2n+2)u2n+2Zq + q2

1− q2

−
∑

n≥0

bn(tq)− bn(−tq)
2

(1− t2q2n+2)u2n+2q
Zq + 1

1− q2 .
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We then have b0(t) =
1

1− t , b1(t) =
X + tqY Z

(1− t)(1− t2q2) and for n ≥ 2

bn(t)(1− t2q2n) =
(

X +
Zq + q2

1− q2 + t2q2n−1ZY − t2q2n−2Zq + q2

1− q2
)

bn−1(t)

− bn−1(tq)

2(1− q2) (1− t2q2n)q(1 + q)(1 + Z) +
bn−1(−tq)
2(1− q2) (1− t2q2n)q(1− q)(1− Z).

Because of the presence of the factors of the form (1 − t2q2n) we are led to introduce
the coefficients Cn(t, q, X, Y, Z) := bn(t)(t2; q2)n+1 (n ≥ 0). By multiplying the latter
equation by (t2; q2)n we get for n ≥ 2

(3.5) (1− q2)Cn(t, q, X, Y, Z)

=
(

X(1− q2) + (Zq + q2)(1− t2q2n−2) + t2q2n−1(1− q2)ZY
)

Cn−1(t, q, X, Y, Z)

− 1

2
(1− t2)q(1 + q)(1 + Z)Cn−1(tq, q,X, Y, Z)

+
1

2
(1− t2)q(1− q)(1− Z)Cn−1(−tq, q,X, Y, Z),

while C0(t, q, X, Y, Z) = 1 + t, C1(t, q, X, Y, Z) = (1 + t)(X + tqY Z).
Finally, with Cn(t, q, X, Y, Z) := (1 + t)Bn(t, q, X, Y, Z) (n ≥ 0) we get the recur-

rence formula (3.3), knowing that the factorial generating function for the polynomials
Cn(t, q, X, Y, Z) = (1+ t)Bn(t, q, X, Y, Z) is given by (3.1). As all the steps are perfectly
reversible, the equivalence holds.

4. The MacMahon Verfahren

Now having three equivalent definitions for the record-signed-Euler-Mahonian
polynomial Bn(t, q, X, Y, Z), our next task is to prove the identity

(4.1) fmajBn(t, q, X, Y, Z) = Bn(t, q, X, Y, Z).

Let N
n (resp. NIW(n)) be the set of all the words (resp. all the nonincreasing

words) of length n, whose letters are nonnegative integers. As we have seen in section 2
(Theorem 2.2), we know how to calculate the generating function for words by a certain
four-variable statistic. The next step is to map each pair (b, w) ∈ NIW(n) × Bn onto
c ∈ N

n in such a way that the geometry on w can be derived from the latter statistic
on c.

For the construction we proceed as follows. Write the signed permutation w as the
linear word w = x1x2 . . . xn, where xk is the image of the integer k (1 ≤ k ≤ n). For
each k = 1, 2, . . . , n let zk be the number of descents in the right factor xkxk+1 . . . xn

and ǫk be equal to 0 or 1 depending on whether xk is positive or negative. Next, form
the words z = z1z2 . . . zn and ǫ = ǫ1ǫ2 . . . ǫn.
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Now, take a nonincreasing word b = b1b2 . . . bn and define ak := bk + zk,
c′k := 2ak + ǫk (1 ≤ k ≤ n), then a := a1a2 . . . an and c′ := c′1c

′
2 . . . c

′
n. Finally, form the

two-matrix

(

c′1 c′2 . . . c′n
|x1| |x2| . . . |xn|

)

. Its bottom row is a permutation of 1 2 . . . n; rearrange

the columns in such a way that the bottom row is precisely 1 2 . . . n. Then the word
c = c1c2 . . . cn which corresponds to the pair (b, w) is defined to be the top row in the
resulting matrix.

Example. Start with the pair (b, w) below and calculate all the necessary ingredi-
ents:

b = 1 1 1 0 0 0 0
w = 6 5 4 1 7 3 2
z = 2 1 1 1 1 0 0
ǫ = 0 1 1 0 0 1 1
a = 3 2 2 1 1 0 0
c′ = 6 5 5 2 2 1 1
c = 2 1 1 5 5 6 2

Theorem 4.1. For each nonnegative integer r the above mapping is a bijection of
the set of all the pairs (b, w) = (b1b2 . . . bn, x1x2 . . . xn) ∈ NIW(n) × Bn such that
2b1 + fdesw = r onto the set of the words c = c1c2 . . . cn ∈ N

n such that max c = r.
Moreover,

(4.2) 2b1 + fdesw = max c; 2 tot b+ fmajw = tot c;

(4.3) lowerpw = evenlower c; lowernw = oddlower c; negw = odd c.

Before giving the proof of Theorem 4.1 we derive its analytic consequences. First,
it is q-routine to prove the three identities, where b1 is the first letter of b,

1

(u; q)N
=
∑

n≥0

[

N + n− 1

n

]

q

un;(4.4)

[

N + n

n

]

q

=
∑

b∈NIW(N), b1≤n

qtot b;(4.5)

1

(u; q)N+1
=
∑

n≥0

un
∑

b∈NIW(N), b1≤n

qtot b.(4.6)

We then consider

1 + t

(t2; q2)n+1

fmajBn(t, q, X, Y, Z),

where
fmajBn(t, q, X, Y, Z) :=

∑

w∈Bn

tfdes wqfmaj wX lowerpwY lowern wZneg w,
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which we rewrite as

∑

r′≥0

(t2r′

+ t2r′+1)

[

n+ r′

r′

]

q2

fmajBn(t, q, X, Y, Z) [by (4.4)]

=
∑

r≥0

tr
[

n+ ⌊r/2⌋
⌊r/2⌋

]

q2

fmajBn(t, q, X, Y, Z) [and by (4.5)]

=
∑

r≥0

tr
∑

b∈NIW(n), 2b1≤r

q2 tot b
∑

w∈Bn

tfdes wqfmaj wX lowerp wY lowern wZneg w

=
∑

s≥0

ts
∑

b∈NIW(n), w∈Bn

2b1+fdes w≤s

q2 tot b+fmaj wX lowerpwY lowern wZneg w.

By Theorem 4.1 the set {(b, w) : b ∈ NIW(n), w ∈ Bn, 2b1 + fdesw ≤ s} is in bijection
with the set {0, 1, . . . , s}n and (4.2) and (4.3) hold. Hence,

1 + t

(t2; q2)n+1

fmajBn(t, q, X, Y, Z) =
∑

s≥0

ts
∑

c∈{0,...,s}n

qtot cXevenlower cY oddlower cZodd c.

Now use Theorem 2.2:
∑

s≥0

tsHs(u) =
∑

s≥0

ts
∑

c∈{0,1,...,s}∗

u|c|qtot cXevenlower cY oddlower cZodd c

=
∑

n≥0

un
∑

s≥0

ts
∑

c∈{0,1,...,s}n

qtot cXevenlower cY oddlower cZodd c

=
∑

n≥0

(1 + t) fmajBn(t, q, X, Y, Z)
un

(t2; q2)n+1
.

Thus, identity (4.1) is proved, as well as Theorem 1.1.
Let us now complete the proof of Theorem 4.1. First, max c = c′1 = 2a1 + ǫ1 =

2b1+2z1 +ǫ1 = 2b1+fdesw; also tot c = tot c′ = 2 tota+tot ǫ = 2 tot b+2 tot z+tot ǫ =
2 tot b+ fmajw. Hence (4.2) holds.

Next, prove that (b, w) 7→ c is bijective. As both sequences b and z are nonincreasing,
a = b + z is also nonincreasing. If xk > xk+1, then zk = zk+1 + 1 and ak ≥ ak+1 + 1,
then c′k = 2ak + ǫk ≥ 2ak+1 + 2 + ǫk ≥ 2ak+1 + 2 > 2ak+1 + ǫk+1 = c′k+1. Thus,

(4.7) xk > xk+1 ⇒ c′k > c′k+1.

To construct the reverse bijection we proceed as follows. Start with a sequence
c = c1c2 . . . cn; form the word δ = δ1δ2 . . . δn, where δi := χ(ci even) − χ(ci odd)
(1 ≤ i ≤ n) and the two-row matrix

(

c1 c2 . . . cn
1δ1 2δ2 . . . nδn

)

.
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Rearrange the columns in such a way that
(

ci

i

)

occurs to the left of
(

cj

j

)

, if either ci > cj ,
or ci = cj , i < j. The bottom of the new matrix is a signed permutation w. After those
two transformations the new matrix reads

(

c′

w

)

=

(

c′1 c′2 . . . c
′
n

x1 x2 . . . xn

)

.

The sequences ǫ and z are defined as above, as well as the sequence a := (c′− ǫ)/2.
As the sequence c′ is nonincreasing, the inequality c′k − ǫk ≥ c′k+1 − ǫk+1 holds if ǫk = 0
or if ǫk = ǫk+1 = 1. It also holds when ǫk = 1 and ǫk+1 = 0, because in such a case c′k
is odd and c′k+1 even and then c′k ≥ 1 + c′k+1. Hence, a is also nonincreasing.

Finally, define b := a − z. Because of (4.7) we have zk = zk+1 + 1 ⇒ c′k > c′k+1.
If c′k and c′k+1 are of the same parity, then c′k > c′k+1 ⇒ ak > ak+1. If c′k > c′k+1

holds and the two terms are of different parity, then c′k is even and c′k+1 odd. Hence,
ak = c′k/2 > (c′k+1 − ǫk+1)/2 = ak+1. Thus zk = zk+1 + 1 ⇒ ak > ak+1. As zn = 0, we
conclude by a decreasing induction that bk = ak − zk ≥ ak+1 − zk+1 = bk+1, so that b
is a nonincreasing sequence of nonnegative integers.

There remains to prove (4.3). First, the letter cj of c is odd, if and only if j occurs
with the minus sign in w, so that negw = odd c. Next, suppose that xj is a positive
lower record of w = x1x2 . . . xn. For j < i we have xj < |xi|. Hence, the following
implications hold: |xi| < xj ⇒ i < j ⇒ c′i ≥ c′j ⇒ c|xj | ≤ c|xi| and cxi

is an even lower
record of c. If xj is a negative lower record of w, then j < i ⇒ −xj < |xi|, so that
|xi| < −xj ⇒ i < j ⇒ c′i > c′j ⇒ c|xj | < c|xi| and c|xi| is an odd lower record of c.

5. The Insertion Method

Another method for proving identity (4.1) is to make use of the insertion method.
Each signed permutation w′ = x′1 . . . x

′
n−1 of order (n − 1) gives rise to 2n signed

permutations of order n when n or −n is inserted to the left or to the right w′, or between
two letters of w′. Assuming that w′ has a flag descent number equal to fdesw′ = k, our
duty is then to watch how the statistics “fmaj”, “lowerp”, “lowern”, “neg” are modified
after the insertion of n or −n into the possible n slots. Such a method has already
been used by Adin et al. [ABR01], Chow and Gessel [ChGe04], Haglund et al. [HLR04],
for “fmaj” only. They all have observed that for each j = 0, 1, . . . , 2n− 1 there is one
and only one signed permutation of order n derived by the insertion of n or −n whose
flag-major index is increased by j.

In our case we observe that the number of positive (resp. negative) lower records
remains alike, except when n (resp. −n) is inserted to the right of w′, where it increases
by 1. The number of negative letters increases only when −n is inserted. For controlling
“fdes” we make a distinction between the signed permutations having an even flag
descent number and those having an odd one. For the former ones the first letter
is positive. When n (resp. −n) is inserted to the left of w′, the flag descent number
increases by 2 (resp. by 1). For the latter ones the first letter is negative. When n (resp.
−n) is inserted to the left of w′, the flag descent number increases by 1 (resp. remains
invariant).
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For n ≥ 2, 0 ≤ k ≤ 2n− 1 let

fmajBn,k :=
∑

w∈Bn, fdes w=k

qfmaj wX lowerp wY lowern wZneg w,

and fmajB0,0 := 1, fmajB0,k := 0 when k 6= 0; fmajB1,0 = X , fmajB1,1 = qY Z. Making use
of the observations above we easily see that the polynomials fmajBn,k satisfy the same
recurrence relation, displayed in (3.4), as the Bn,k(q, Y, Y, Z).

Remark. How to compare the MacMahon Verfahren and the insertion method?
Recurrence relations may be difficult to be truly verified. The first procedure has the
advantage of giving both a new identity on ordinary words (Theorem 2.1) and a closed
expression for the factorial generating function for the polynomials fmajBn(t, q, X, Y, Z)
(formula (1.8)).

6. Specializations

When a variable has been deleted in the following specializations of the polynomials
Bn(t, q, X, Y, Z), this means that the variable has been given the value 1. For instance,
Bn(q,X, Y, Z) := Bn(1, q, X, Y, Z).

When s tends to infinity, then Hs(u) tends to H∞(u) given in (1.1). Hence, when
identity (3.1) is multiplied by (1 − t) and t is replaced by 1, identity (3.1) specializes
into

(6.1)
∑

n≥0

Bn(q,X, Y, Z)
un

(q2; q2)n
=H∞(u)=

(

uq
( Z + q

1− q2 − ZY
)

; q2
)

∞
(

u
(q(Z + q)

1− q2 +X
)

; q2
)

∞

.

Now expand H∞(u) by means of the q-binomial theorem [GaRa90, chap.1]. We get:

H∞(u) =
∑

n≥0

(q
( Z + q

1− q2 − Y Z
)

q(Z + q)

1− q2 +X

; q2

)

n

(

u
(q(Z + q)

1− q2 +X
))n/

(q2; q2)n.

By identification

Bn(q,X, Y, Z) =

(q
( Z + q

1− q2 − Y Z
)

q(Z + q)

1− q2 +X

; q2

)

n

(q(Z + q)

1− q2 +X
)n

,

which can also be written as

(6.2) Bn(q,X, Y, Z) = (X + qZ + q2 + q3Z + · · ·+ q2n−2 + Y Zq2n−1)

· · · × (X + qZ + q2 + q3Z + q4 + q5Y Z)(X + qZ + q2 + q3Y Z)(X + qY Z),

or, by induction,

(6.3) Bn(q,X, Y, Z) = (X + qZ + q2 + q3Z + · · ·+ q2n−2 + Y Zq2n−1)Bn−1(q,X, Y, Z)

for n ≥ 2 and B1(q,X, Y, Z) = X + qY Z.
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In particular, the polynomial fmajBn(q,X, Y ) defined in the introduction is equal
to

(6.4) Bn(q,X, Y ) = (X + q + q2 + q3 + · · ·+ q2n−2 + Y q2n−1)

· · · × (X + q + q2 + q3 + q4 + q5Y )(X + q + q2 + q3Y )(X + qY ).

Finally, when X = Y = Z := 1, identity (6.4) reads

(6.5)
∑

n≥0

(1 + t)Bn(t, q)
un

(t2; q2)n+1
=
∑

s≥0

ts
1

1− u(1 + q + q2 + · · ·+ qs)
,

an identity derived by several authors (Adin et al. [ABR01], Chow & Gessel [ChGe04],
Haglund et al. [HLR04]) with ad hoc methods. Also notice that for X = Y = Z := 1
formula (6.2) yields Bn(q) = (q2; q2)n/(1− q)n.

For Z = 0 we get

fmajBn(t, q, X, Y, 0) =
∑

w∈Sn

tfdes wqfmaj wX lowerpw,

since the monomials corresponding to signed permutations having negative letters
vanish. The summation is then over the ordinary permutations. Also notice that
fmajBn(t, q, X, Y, 0) = fmajBn(t, q, X, 0, 0). Moreover, for each ordinary permutation w
we have: fdesw = 2 desw and fmajw = 2 majw. When Y = Z = 0 we also have

H2+1(u) = H2s(u) =

( uq2

1− q2 + uq2(s+1)
; q2
)

s+1
(

u
X(1− q2) + q2

1− q2 + uq2(s+1)
; q2
)

s+1

and
∑

n≥0

(1 + t) fmajBn(t, q, X, 0, 0)
un

(t2; q2)n+1
=
∑

s≥0

(t2s + t2s+1)H2s(u).

With An(t, q, X) := fmajBn(t1/2, q1/2, X, 0, 0) =
∑

w∈Sn

tdes wqmaj wX lowerp w we obtain the
identity

(6.7)
∑

n≥0

An(t, q, X)
un

(t; q)n+1
=
∑

s≥0

ts

( uq

1− q + uqs+1
; q
)

s+1
(

u
X(1− q) + q

1− q + uqs+1
; q
)

s+1

,

apparently a new identity for the generating function for the symmetric groups Sn by
the three-variable statistic (des,maj, lowerp), as well as the following one obtained by
multiplying the identity by (1− t) and letting t go to infinity:

(6.8)
∑

n≥0

An(q,X)
un

(q; q)n
=

( uq

1− q ; q
)

∞
(

uX +
uq

1− q ; q
)

∞

.
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7. Lower Records and Flag-inversion Number

The purpose of this section is prove Theorem 1.2. We proceed as follows. For each
(ordinary) permutation σ = σ1σ2 . . . σn of order n and for each i = 1, 2, . . . , n let bi(σ)
denote the number of letters σj to the left of σi such that σj < σi. On the other hand,
for each signed permutation w = x1x2 . . . xn of order n let absw denote the (ordinary)
permutation |x1| |x2| . . . |xn|. It is straightforward to see that another expression for the
flag-inversion number (or the length function), finvw, of w is the following

(7.1) finvw = inv absw +
∑

1≤i≤n

(2bi(absw) + 1)χ(xi < 0).

The generating polynomial finvBn(q,X, Y ) can be derived as follows. Let Lower σ denote
the set of the (necessarily positive) records of the ordinary permutation σ. By (7.1) we
have

finvBn(q,X, Y, Z) =
∑

w∈Bn

qfinv wX lowerp wY lowern wZneg w

=
∑

σ∈Sn

∑

abs w=σ

qfinv wX lowerpwY lowern wZneg w

=
∑

σ∈Sn

qinv σ
∏

σi∈Lower σ

(X + Y Zq2bi(σ)+1)
∏

σi 6∈Lower σ

(1 + Zq2bi(σ)+1)

:=
∑

σ∈Sn

f(σ),

showing that finvBn(q,X, Y, Z) is simply a generating polynomial for the group Sn itself.
But Sn can be generated from Sn−1 by inserting the letter n into the possible n

slots of each permutation of order n− 1. Let σ′ = σ′1σ
′
2 . . . σ

′
n−1 be such a permutation.

Then

f(σ′1σ
′
2 . . . σ

′
n−2σ

′
n−1n) = f(σ′)(X + Y Zq2n−1);

f(σ′1σ
′
2 . . . σ

′
n−2nσ

′
n−1) = f(σ′)q(1 + Zq2n−3);

· · · · · ·
f(σ′1nσ

′
2 . . . σ

′
n−2σ

′
n−1) = f(σ′)qn−2(1 + Zq3);

f(nσ′1σ
′
2 . . . σ

′
n−2σ

′
n−1) = f(σ′)qn−1(1 + Zq).

Hence, finvBn(q,X, Y, Z) = finvBn−1(q,X, Y, Z)(X+q+ · · ·+qn−1 +qnZ+ · · ·+q2n−2Z+
q2n−1Y Z) (n ≥ 2). As finvB1(q,X, Y, Z) = X + qY Z, we get the expression displayed in
(1.9).

Comparing (6.2) with (1.9) we see that the two polynomials finvBn(q, Z) and
Bn(q, Z) are different as soon as n ≥ 2, while finvBn(q,X, Y ) = Bn(q,X, Y ) for all n.
This means that any bijection Ψ of the group Bn onto itself having the property that

fmajw = finv Ψ(w)

does not leave the number of negative letters “neg” invariant. It was, in particular, the
case for the bijection constructed in our previous paper [FoHa05].
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Remark 1. Instead of considering lower records from right to left we can introduce
lower records from left to right. Let lowerp′ w and lowern′ w denote the numbers of such
records, positive and negative, respectively and introduce

finvBn(q,X, Y,X ′, Y ′):=
∑

w∈Bn

qfinv wX lowerp wY lowern wX ′ lowerp′ wY ′ lowern′ w.

Using the method developed in the proof of the previous theorem we can calculate this
polynomial in the form

finvBn(q,X, Y,X ′, Y ′)

= (X + q + · · ·+ qn−2 + qn−1X ′ + qnY ′ + qn+1 + · · ·+ q2n−2 + q2n−1Y )

· · · × (X + q + q2X ′ + q3Y ′ + q4 + q5Y )(X + qX ′ + q2Y ′ + q3Y )(XX ′ + qY Y ′).

Remark 2. The same method may be used for ordinary permutations. For each
permutation σ let upperσ denote the number of its upper records from right to left and
define:

invAn(q,X, V ) :=
∑

σ∈Sn

qinv σX lowerpσV upper σ.

Then
invAn(q,X, V ) = XV (X + qV )(X + q + q2V ) · · · (X + q + q2 + · · ·+ qn−1V ),

an identity which can be put into the form

(7.2)
∑

n≥0

invAn(q,X, V )
un

(q; q)n
= 1− XV

X + V − 1
+

XV

X + V − 1

( u

1− q − ux; q
)

∞
(

uX +
uq

1− q ; q
)

∞

,

which specializes into

(7.3)
∑

n≥0

invAn(q,X)
un

(q; q)n
=

( uq

1− q ; q
)

∞
(

uX +
uq

1− q ; q
)

∞

;

(7.4)
∑

n≥0

invAn(q, V )
un

(q; q)n
=

( u

1− q − uV ; q
)

∞
( u

1− q ; q
)

∞

.

Comparing (7.3) with (6.8) we then see that An(q,X) = invAn(q,X). In other words, the
generating polynomial for Sn by (maj, lowerp) is the same as the generating polynomial
by (inv, lowerp). A combinatorial proof of this result is due to Björner and Wachs
[BjW88], who have made use of the transformation constructed in [Fo68]. Finally, the
expression of invAn(q,X, V ) for q = 1 was derived by David and Barton ([DaBa62],
chap. 10).
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SIGNED WORDS AND PERMUTATIONS, III;

THE MACMAHON VERFAHREN

Dominique Foata and Guo-Niu Han

Glory to Viennot,
Wizard of Bordeaux,
A prince in Physics,
In Mathematics,
Combinatorics,
Even in Graphics,
Sure, in Viennotics.
He builds bijections,
Top calculations.

No one can beat him.
Only verbatim
Can we follow him.
He has admirers,
Who have got down here.
They all celebrate
Such a happy fate.
Sixty years have gone,
He still is our don.

Dedicated to Xavier.
Lucelle, April 2005.

Abstract. The MacMahon Verfahren is fully exploited to derive further
multivariable generating functions for the hyperoctahedral group Bn

and for rearrangements of signed words. Using the properties of the
fundamental transformation the generating polynomial for Bn by the flag-
major and inverse flag-major indices can be derived, and also by the length
function, associated with the flag-descent number.

1. Introduction

To paraphrase Leo Carlitz [Ca56], the present paper could have been
entitled “Expansions of certain products,” as we want to expand the
product

(1.1) K∞(u) :=
∏

i≥0,j≥0

1

(1− uZijq
i
1q

j
2)
,

in its infinite version, and

(1.2) Kr,s(u) :=
∏

0≤i≤r, 0≤j≤s

1

(1− uZijqi
1q

j
2)
,

in its graded version, where

Zij :=

{

Z, if i and j are both odd;
1, if i and j are both even;
0, if i and j have different parity.
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DISTRIBUTIONS ON WORDS AND q-CALCULUS

The second pair under study, which depends on r variables u1, . . . , ur,
reads

(1.3) L∞(u1, . . . , ur) :=
∏

1≤i≤r

1

(ui; q2)∞

1

(uiqZ; q2)∞
,

(1.4) Ls(u1, . . . , ur) :=
∏

1≤i≤r

1

(ui; q2)⌊s/2⌋+1

1

(uiqZ; q2)⌊(s+1)/2⌋
.

In those expressions we have used the usual notations for the q-
ascending factorial

(a; q)n :=

{

1, if n = 0;
(1− a)(1− aq) . . . (1− aqn−1), if n ≥ 1;

(1.5)

in its finite form and

(a; q)∞ := limn(a; q)n =
∏

n≥0

(1− aqn);(1.6)

in its infinite form.
All those products will be the basic ingredients for deriving the distri-

butions of various statistics attached to signed permutations and words.
By signed word we understand a word w = x1x2 . . . xm, whose letters are
integers, positive or negative. If m = (m1, m2, . . . , mr) is a sequence of
nonnegative integers such that m1 +m2 + · · ·+mr = m, let Bm be the set
of rearrangements w = x1x2 . . . xm of the sequence 1m12m2 . . . rmr , with
the convention that some letters i (1 ≤ i ≤ r) may be replaced by their
opposite values −i. For typographical reasons we shall use the notation
i := −i in the sequel. When m1 = m2 = · · · = mr = 1, the class Bm

is simply the hyperoctahedral group Bm (see [Bo68], p. 252-253) of the
signed permutations of order m (m = r).

Using the χ-notation that maps each statement A onto the value
χ(A) = 1 or 0 depending on whether A is true or not, we recall that
the usual inversion number, invw, of each signed word w = x1x2 . . . xn is
defined by

invw :=
∑

1≤j≤n

∑

i<j

χ(xi > xj).

It also makes sense to introduce

invw :=
∑

1≤j≤n

∑

i<j

χ(xi > xj),

and define the flag-inversion number of w by

finvw := invw + invw + negw,

where negw :=
∑

1≤j≤n

χ(xj < 0). As noted in our previous paper

[FoHa05a], the flag-inversion number coincides with the traditional length
function ℓ, when applied to each signed permutation.
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The flag-major index “fmaj” and the flag descent number “fdes”, which
were introduced by Adin and Roichman [AR01] for signed permutations,
are also valid for signed words. They read

fmajw := 2 majw + negw;

fdesw := 2 desw + χ(x1 < 0);

where majw :=
∑

j j χ(xj > xj+1) denotes the usual major index of w
and desw the number of descents desw :=

∑

j χ(xj > xj+1). Finally, for

each signed permutation w let w−1 denote the inverse of w and define
ifdesw := fdesw−1 and ifmaj := fmajw−1.

Notations. In the sequel Bn (resp. Bm) designates the hyperocta-
hedral group of order n (resp. the set of signed words of multiplicity
m = (m1, m2, . . . , mr)), as defined above. Each generating polynomial
for Bn (resp. for Bm) by some k-variable statistic will be denoted by
Bn(t1, . . . , tk) (resp. Bm(t1, . . . , tk)). When the variable ti is missing in
the latter expression, it means that the variable ti is given the value 1.

The main two results of this paper corresponding to the two pairs of
products earlier introduced can be stated as follows.

Theorem 1.1. Let

(1.7) Bn(t1, t2, q1, q2, Z) :=
∑

w∈Bn

tfdes w
1 tifdesw

2 qfmaj w
1 qifmaj w

2 Zneg w

be the generating polynomial for the group Bn by the five-variable statistic
(fdes, ifdes, fmaj, ifmaj, neg). Then,

(1.8)
∑

n≥0

un

(t21; q
2
1)n+1(t22; q

2
2)n+1

(1 + t1)(1 + t2)Bn(t1, t2, q1, q2, Z)

=
∑

r≥0,s≥0

tr1t
s
2Kr,s(u),

where Kr,s(u) is defined in (1.2).

Theorem 1.2. For each sequence m = (m1, . . . , mr) let

(1.9) Bm(t, q, Z) :=
∑

w∈Bm

tfdes wqfmaj wZneg w

be the generating polynomial for the class Bm of signed words by the
three-variable statistic (fdes, fmaj, neg). Then

(1.10)
∑

m

(1 + t)Bm(t, q, Z)
um1

1 · · ·umr
r

(t2; q2)1+|m|
=
∑

s≥0

tsLs(u1, . . . , ur),

where |m| := m1 + · · ·+mr and Ls(u1, . . . , ur) is defined in (1.4).
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It is worth noticing that Reiner [Re93a] has calculated the generating
polynomial for Bn by another 5-variable statistic involving each signed per-
mutation and its inverse. The bibasic series he has used are normalized by
products of the form (t1; q1)n+1(t2; q2)n instead of (t21; q

2
1)n+1(t

2
2; q

2
2)n+1.

Using the properties of the fundamental transformation on signed
words described in our first paper [FoHa05a] we obtain the following
specialization of Theorem 1.1. Let

(1.11) finvBn(t, q) :=
∑

w∈Bn

tfdes wqfinv w

be the generating polynomial for the group Bn by the pair (fdes, finv).
Then, the q-factorial generating function for the polynomials finvBn(t, q)
(n ≥ 0) has the following form:

(1.12)
∑

n≥0

vn

(q2; q2)n

finvBn(t, q)

=
1− t

−t2 + (v(1− t2); q)∞
(

t+ (v(1− t2)q; q2)∞
)

.

From identity (1.12) we deduce the generating function for the polynomials
dessBn(t, q) :=

∑

w∈Bn
tdess wqfinv w, where “dess” is the traditional number

of descents for signed permutations defined by

dessw := desw + χ(x1 < 0) instead of fdesw := 2 desw + χ(x1 < 0)

and recover Reiner’s identity [Re93a]

(1.13)
∑

n≥0

un

(q2; q2)n

dessBn(t, q) =
1− t

1− t eq(u(1− t))
1

(v(1− t); q2)∞
,

where eq(v(1 − t2)) = 1/(v(1 − t2); q)∞ is the traditional q-exponential.
This is done in section 4.

As in our second paper [FoHa05b] we make use of the MacMahon Ver-
fahren technique to prove the two theorems, which consists of transferring
the topology of the signed permutations or words measured by the var-
ious statistics, “fdes”, “fmaj”, to a set of pairs of matrices with integral
entries in the case of Theorem 1.1 and a set of plain words in the case of
Theorem 1.2 for which the calculation of the associated statistic is easy.
Each time there is then a combinatorial bijection between signed permu-
tations (resp. words) and pairs of matrices (resp. plain words) that has the
adequate properties. This is the content of Theorem 3.1 and Theorem 4.1.

In all our results we have tried to include the variable Z that takes the
number “neg” of negative letters of each signed permutation or word into
account. This allows us to re-obtain the classical results on the symmetric
group and sets of words.
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In the next section we recall the MacMahon Verfahren technique, which
was developed in our previous paper [FoHa05b] for signed permutations.
Notice that Reiner [Re93a, Re93b, Re93c, Re95a, Re95b], extending
Stanley’s [St72] (P, ω)-partition approach, has successfully developed a
(P, ω)-partition theory for the combinatorial study of the hyperoctahedral
group, which could have been used in this paper. Section 3 contains the
proof of Theorem 1.1, whose specializations are given in Section 4. We end
the paper with the proof of Theorem 1.2 and its specializations. Noticeably,
the generating polynomial for the class Bm of signed words by the two-
variable statistic (fdes, fmaj) is completely explicit, in the sense that we
derive the factorial generating function for those polynomials and also a
recurrence relation, while only the generating function given by (1.10) has
a simple form when the variable Z is kept.

2. The MacMahon Verfahren

Let N
n (resp. NIW(n)) be the set of words (resp. nonincreasing words)

of length n, whose letters are nonnegative integers. As done in [FoHa05b]
the MacMahon Verfahren consists of mapping each pair (b, w) ∈ NIW(n)×
Bn onto a word c ∈ N

n as follows. Write the signed permutation w as
the linear word w = x1x2 . . . xn, where xk is the image of the integer k
(1 ≤ k ≤ n). For each k = 1, 2, . . . , n let zk be the number of descents
in the right factor xkxk+1 . . . xn and ǫk be equal to 0 or 1 depending on
whether xk is positive or negative. Next, form the words z(w) := z1z2 . . . zn

and ǫ(w) := ǫ1ǫ2 . . . ǫn.
Now, take a nonincreasing word b = b1b2 . . . bn and define ak := bk +zk,

c′k := 2ak + ǫk (1 ≤ k ≤ n), then a(b, w) := a1a2 . . . an and c′(b, w) :=

c′1c
′
2 . . . c

′
n. Finally, form the two-row matrix

(

c′1 c′2 . . . c′n
|x1| |x2| . . . |xn|

)

. Its

bottom row is a permutation of 1 2 . . . n; rearrange the columns in
such a way that the bottom row is precisely 1 2 . . . n. Then the word
c(b, w) = c1c2 . . . cn which corresponds to the pair (b, w) is defined to be
the top row in the resulting matrix.

Example. Start with the pair (b, w) below and calculate all the neces-
sary ingredients:

b = 4 2 2 1 1 0 0
w = 3 5 1 6 7 4 2
z(w) = 2 1 1 1 1 0 0
ǫ(w) = 0 1 1 0 0 1 0
a(b, w) = 6 3 3 2 2 0 0
c′(b, w) = 12 7 7 4 4 1 0
c(b, w) = 7 0 12 1 7 4 4
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For each c = c1 . . . cn ∈ N
n and let tot c := c1 + · · · + cn, max c :=

max{c1, . . . , cn} and let odd c denote the number of odd letters in c . The
proof of the following theorem can be found in [FoHa05b, Theorem 4.1].

Theorem 2.1. For each nonnegative integer s the above mapping is a
bijection (b, w) 7→ c(b, w) of the set of pairs

(b, w) = (b1b2 . . . bn, x1x2 . . . xn) ∈ NIW(n)×Bn

such that 2b1 + fdesw = s onto the set of words c = c1c2 . . . cn ∈ N
n such

that max c = s. Moreover,

(2.1) 2b1 + fdesw = max c(b, w); 2 tot b+ fmajw = tot c(b, w);

negw = odd c(b, w).

We end this section by quoting the following classical identity, where
b1 is the first letter of b.

(2.2)
1

(u; q)n+1
=
∑

s≥0

us
∑

b∈NIW(n), b1≤s

qtot b.

3. Proof of Theorem 1.1

We apply the MacMahon Verfahren just described to the two pairs
(b, w) and (β, w−1), where b and β are two nonincreasing words. The pair
(b, w) (resp. (β, w−1)) is mapped onto a word c := c(b, w) = c1c2 . . . cn
(resp. C := c(β, w−1) = C1C2 . . . Cn) of length n, with the properties

(3.1) 2b1 + fdesw = max c; 2 tot b+ fmajw = tot c;

(3.2) 2β1 + ifdesw = maxC; 2 totβ + ifmajw = totC.

There remains to investigate the relation between the two words c and C
before pursuing the calculation. Form the two-row matrix

(

c′

C

)

=

(

c′1 c′2 . . . c′n
C1 C2 . . . Cn

)

,

where c′ = c′1c
′
2 . . . c

′
n designates the nonincreasing rearrangement of the

word c. The following two properties can be readily verified:

(i) for each i = 1, 2, . . . , n the letters c′i and Ci are of the same parity;
(ii) if c′i = c′i+1 is even (resp. is odd), then Ci ≥ Ci+1 (resp. Ci ≤ Ci+1).

Conversely, the following property holds:

(iii) if
(

c′

C

)

is a two-row matrix of length n having properties (i) and (ii),
there exists one and only one signed permutation w and two nonincreasing
words b, β satisfying (3.1) and (3.2).
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Example. We take the same example for w as in the previous section,
but we also calculate C = c(β, w−1).

b = 4 2 2 1 1 0 0
w = 3 5 1 6 7 4 2
z(w) = 2 1 1 1 1 0 0
ǫ(w) = 0 1 1 0 0 1 0
a(b, w) = 6 3 3 2 2 0 0

c′ := c′(b, w) = 12 7 7 4 4 1 0
c := c(b, w) = 7 0 12 1 7 4 4

β = 3 2 1 1 0 0 0
w−1 = 3 7 1 6 2 4 5
z(w−1) = 2 2 1 0 0 0 0
ǫ(w−1) = 1 0 0 1 1 0 0
a(β, w−1) = 5 4 2 1 0 0 0

C′ := c′(β, w−1) = 11 8 4 3 1 0 0
C := c(β, w−1) = 4 1 11 0 0 3 8

(

c′

C

)

=

(

12 7 7 4 4 1 0
4 1 11 0 0 3 8

)

.

Let (i1 < i1 < · · · < ir) (resp. (j1 < j2 < · · · < js)) be the increasing
sequence of the integers i (resp. the integers j) such that c′i is even (resp.
c′j is odd). Define (“e” for “even” and “o” for “odd”)

2de =

(

2fe

2ge

)

:=

(

c′i1 c′i2 . . . c′ir

Ci1 Ci2 . . . Cir

)

;

2do + 1 =

(

2fo + 1

2go + 1

)

:=

(

c′j1 c′j2 . . . c′js

Cj1 Cj2 . . . Cjs

)

;

so that the two two-row matrices

de =

(

fe

ge

)

:=

(

c′i1/2 c′i2/2 . . . c′ir
/2

Ci1/2 Ci2/2 . . . Cir
/2

)

,

do =

(

fo

go

)

:=

(

(c′j1 − 1)/2 (c′j2 − 1)/2 . . . (c′js
− 1)/2

(Cj1 − 1)/2 (Cj2 − 1)/2 . . . (Cjs
− 1)/2

)

,

may be regarded as another expression for the two-row matrix
(

c′

C

)

.
Define the integers imax and jmax by:

imax :=

{

(max c− 1)/2, if max c is odd;
max c/2, if max c is even;

jmax :=

{

(maxC − 1)/2, if maxC is odd;
maxC/2, if maxC is even.

Then, to the pair de, do there corresponds a pair of unique finite matrices
De = (de

ij), D
o = (do

ij) (0 ≤ i ≤ imax, 0 ≤ j ≤ jmax) (and no other pair
of smaller dimensions), where de

ij (resp. do
ij) is equal to the number of the

two-letters in de (resp. in do) that are equal to
(

i
j

)

.
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On the other hand, with |f | designating the length of the word f ,

tot c = tot 2fe + tot(2fo + 1) = 2 tot fe + 2 tot fo + |fo|
= 2

∑

i,j
i de

ij + 2
∑

i,j
i do

ij +
∑

i,j
do

ij ;

totC = tot 2ge + tot(2go + 1) = 2 tot ge + 2 tot go + |go|
= 2

∑

i,j

j de
ij + 2

∑

i,j

j do
ij +

∑

i,j

do
ij .

The following proposition follows from Theorem 2.1.

Proposition 3.1. For each pair of nonnegative integers (r, s) the map
(b, β, w) 7→ (De, Do) is a bijection of the triples (b, β, w) such that
2b1 + fdesw ≤ r, 2β1 + ifdesw ≤ s onto the pairs of matrices De = (de

i,j),
Do = (do

i,j) (0 ≤ i ≤ r, 0 ≤ j ≤ s). Moreover,

(3.3) 2 tot b+ fmajw = 2
∑

i,j

i de
ij + 2

∑

i,j

i do
ij +

∑

i,j

do
ij ;

(3.4) 2 totβ + ifmajw = 2
∑

i,j

j de
ij + 2

∑

i,j

j do
ij +

∑

i,j

do
ij ;

(3.5) negw =
∑

i,j

do
ij .

(3.6)
∑

i,j
de

ij +
∑

i,j
do

ij = |w|.

Again work with the same example as above. To the two-row matrix
(

c′

C

)

=

(

12 7 7 4 4 1 0
4 1 11 0 0 3 8

)

there corresponds the pair

de =

(

6 2 2 0
2 0 0 4

)

, do =

(

3 3 0
0 5 1

)

.

As max c = 12 is even (resp. maxC = 11 is odd), we have imax = 6,
jmax = 5 and

De =





















0 1 2 3 4 5

0 . . . . 1 .
1 . . . . . .
2 2 . . . . .
3 . . . . . .
4 . . . . . .
5 . . . . . .
6 . . 1 . . .





















; Do =





















0 1 2 3 4 5

0 . 1 . . .
1 . . . . . .
2 . . . . . .
3 1 . . . . 1
4 . . . . . .
5 . . . . . .
6 . . . . . .





















.

Also verify that 2 tot b+ fmajw = 35 = 2× (2 + 2 + 6) + 2× (3 + 3) + 3;
2 totβ + ifmajw = 27 = 2× (2 + 4) + 2× (1 + 5) + 3 and negw = 3.
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In the following summations b and β run over the set of nonincreasing
words of length n. By using identity (2.2) we have

∑

n≥0

un

(t21; q
2
1)n+1(t22; q

2
2)n+1

(1 + t1)(1 + t2)Bn(t1, t2, q1, q2, Z)

=
∑

n≥0

un(1 + t1)(1 + t2)Bn(t1, t2, q1, q2, Z)
∑

r′≥0, s′≥0
b,β,b1≤r′, β1≤s′

t2r′

1 t2s′

2 q2 tot b
1 q2 tot β

2

=
∑

n,r′,s′

un(t2r′

1 + t2r′+1
1 )(t2s′

2 + t2s′+1
2 )

×
∑

w∈Bn

b,β,b1≤r′, β1≤s′

tfdes w
1 tifdes w

2 qfmaj w+2 tot b
1 qifmaj w+2 tot β

2 Zneg w

=
∑

n,r′,s′

untr
′

1 t
s′

2

∑

w∈Bn

b,β,2b1≤r′, 2β1≤s′

tfdes w
1 tifdes w

2 qfmaj w+2 tot b
1 qifmaj w+2 tot β

2 Zneg w

=
∑

n,r,s

untr1t
s
2

∑

w∈Bn,b,β
2b1+fdes w≤r, 2β1+ifdes w≤s

qfmaj w+2 tot b
1 qifmaj w+2 tot β

2 Zneg w.

We can continue the calculation by using (3.3), (3.4), (3.5) the last
summation being over matrices De, Do of dimensions (r + 1) × (s + 1),
that is,

=
∑

n,r,s

untr1t
s
2

∑

De,Do

q
2Σ ide

ij+2Σ ido
ij+Σ do

ij

1 q
2Σ jde

ij+2Σ jdo
ij+Σ do

ij

2 ZΣ do
ij

=
∑

r,s

tr1t
s
2

∑

De

uΣ de
ijq

Σ(2i)de
ij

1 q
Σ(2j)de

ij

2

∑

Do

uΣ do
ij q

Σ(2i+1)do
ij

1 q
Σ (2j+1)do

ij

2 ZΣ do
ij

=
∑

r,s

tr1t
s
2

∑

De

∏

ij

(uq2i
1 q

2j
2 )de

ij

∑

Do

∏

ij

(uZq2i+1
1 q2j+1

2 )do
ij (0≤ i≤r, 0≤j≤s)

=
∑

r,s

tr1t
s
2

1
∏

ij

(1− uq2i
1 q

2j
2 )

1
∏

ij

(1− uZq2i+1
1 q2j+1

2 )
(0≤ i≤r, 0≤j≤s)

=
∑

r≥0,s≥0

tr1t
s
2

1
∏

0≤i≤r,0≤j≤s

(1− uZijq
i
1q

j
2)
.

4. Specializations and Flag-inversion number

First, when Z := 0 and t1, t2, q1, q2 are replaced by their square roots,
identity (1.8) becomes

(4.1)
∑

n≥0

un

(t1; q1)n+1(t2; q2)n+1
An(t1, t2, q1, q2)=

∑

r≥0,s≥0

tr1t
s
2

(u; q1, q2)r+1,s+1
,
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where An(t1, t2, q1, q2) is the generating polynomial for the symmetric
group Sn by the quadruple (des, ides,maj, imaj), an identity first derived
by Garsia and Gessel [GaGe78]. Other approaches can be found in [Ra79],
[DeFo85].

Remember that when a variable is missing in Bn(t1, t2, q1, q2, Z) it
means that the variable has been given the value 1. Multiply both sides
of (1.8) by (1− t2) and let t2 = 1. We get:

(4.2)
∑

n≥0

un

(t21; q
2
1)n+1(q

2
2 ; q

2
2)n

(1 + t1)Bn(t1, q1, q2, Z)

=
∑

r≥0

tr1
1

∏

0≤i≤r,j≥0

(1− uZijqi
1q

j
2)
.

Again multiply both sides by (1− t1) and let t1 = 1:

(4.3)
∑

n≥0

un

(q21 ; q
2
1)n(q22 ; q22)n

Bn(q1, q2, Z) =
1

∏

i≥0,j≥0

(1− uZijqi
1q

j
2)
.

Also the (classical) generating function for the polynomials An(q1, q2) can
be derived from identity (4.3) and reads:

∑

n≥0

un

(q1; q1)n(q2; q2)n
An(q1, q2) =

1

(u; q1, q2)∞,∞
.

With q1 = 1 the denominator of the fraction on the right side of identity
(4.2) becomes

{

(u; q22)
(r/2)+1
∞ (uq2Z; q22)

r/2
∞ , if r is even;

(u; q22)
(r+1)/2
∞ (uq2Z; q22)

(r+1)/2
∞ , if r is odd.

Hence,

∑

n≥0

un

(1− t21)n+1(q22 ; q
2
2)n

(1 + t1)Bn(t1, q2, Z)

=
∑

s≥0

t2s+1
1

((u; q22)∞(uq2Z; q22)∞)s+1
+
∑

s≥0

t2s
1

((u; q22)∞(uq2Z; q22)∞)s

1

(u; q22)∞
.

=
1

−t21 + (u; q22)∞(uq2Z; q22)∞

(

t1 + (uq2Z; q22)∞
)

.

Now replace u by v(1 − t21). This implies the following result stated as a
theorem.
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Theorem 4.1. Let Bn(t1, q2, Z) be the generating polynomial for the
group Bn by the triple (fdes, ifmaj, neg). Then,

(4.4)
∑

n≥0

vn

(q22 ; q22)n
Bn(t1, q2, Z)

=
1− t1

−t21 + (v(1− t21); q22)∞ (v(1− t21)q2Z; q22)∞

(

t1 + (v(1− t21)q2Z; q22)∞
)

.

Several consequences are drawn from Theorem 4.1. First, when Z = 0
and when t1, q2 are replaced by their square roots, we get

(4.5)
∑

n≥0

vn

(q2; q2)n
An(t1, q2) =

1− t1
−t1 + (v(1− t1); q2)∞

,

where An(t1, q2) is the generating polynomial for the group Sn by the pair
(des, imaj), but also by the pair (des, inv) (see [St76], [FoHa97]).

Let iw := w−1 denote the inverse of the signed permutation w. At this
stage we have to remember that the bijection Ψ of Bn onto itself that we
have constructed in our first paper [FoHa05a] preserves the inverse ligne
of route [FoHa05a, Theorem 1.2], so that the chain

w
i−−−→ w1

Ψ−−−→ w2
i−−−→ w3

(

fdes

ifmaj

) (

ifdes

fmaj

) (

ifdes

finv

) (

fdes

finv

)

shows that the four pairs (fdes, ifmaj), (ifdes, fmaj), (ifdes, finv) and
(fdes, finv) are all equidistributed over Bn. Therefore,
∑

w

tfdes wqifmaj w =
∑

w

tifdes wqfmaj w =
∑

w

tifdes wqfinv w =
∑

w

tfdes wqfinv w,

where w runs over Bn. The rightmost generating polynomial was des-
ignated by finvBn(t, q) in (1.11). Therefore we can derive a formula
for finvBn(t, q) by using its (fdes, ifmaj) interpretation. We have then
finvBn(t, q) = Bn(t1, q2, Z) with t1 = t, q2 = q and Z = 1. Let Z := 1
in (4.4); as (v(1− t21); q22)∞ (v(1− t21)q2; q22)∞ = (v(1− t21); q2)∞, identity
(4.4) implies identity (1.12).

To recover Reiner’s identity (1.13) we make use of (1.12) by sorting the
signed permutations according to the parity of their flag descent numbers:
Bn(t, q) =: B′n(t2, q) + t B′′n(t2, q), so that dessBn(t2, q) = B′n(t2, q) +
t2B′′n(t2, q). Hence

∑

n≥0

vn

(q2; q2)n

dessBn(t2, q)=
(v(1− t2)q; q2)∞ − t2
−t2 + (v(1− t2); q)∞

+ t2
1− (v(1− t2)q; q2)∞
−t2 + (v(1− t2); q)∞

=
1− t2

−t2 + (v(1− t2); q)∞
(v(1− t2)q; q2)∞.
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As 1/(v(1−t2); q)∞ can also be expressed as the q-exponential eq(v(1−t2)),
we then get identity (1.13).

5. The MacMahon Verfahren for signed words

Let w = x1x2 . . . xm be a signed word belonging to the class Bm,
where m = (m1, m2, . . . , mr) is a sequence of nonnegative integers such
that m1 + m2 + · · · + mr = m. Remember that this means that w is a
rearrangement of 1m12m2 . . . rmr , with the convention that some letters i
(1 ≤ i ≤ r) may be replaced by their opposite values i. Again, let
ǫ := ǫ(w) := ǫ1ǫ2 . . . ǫm be the binary word defined by ǫi = 0 or 1,
depending on whether xi is positive or negative.

The MacMahon Verfahren bijection for signed words is constructed as
follows. First, compute the word z = z1z2 . . . zm, where zk is equal to
the number of descents in the right factor xkxk+1 . . . xm, as well as the
word ǫ = ǫ1ǫ2 . . . ǫm mentioned above, so that, as in the case of signed
permutations,

(5.1) fmajw = 2 tot z + tot ǫ.

Next, define ak := bk + zk, c′k := 2ak + ǫk (1 ≤ k ≤ m), then
a := a1a2 . . . am and c′ := c′1c

′
2 . . . c

′
m. Finally, form the two-row matrix

(

c′

absw

)

=

(

c′1 c′2 . . . c′m
|x1| |x2| . . . |xm|

)

. Its bottom row is a rearrangement of

the word 1m12m2 . . . rmr .
Make the convention that two biletters

( c′k
|xk|

)

and
( c′l
|xl|

)

commute if

and only if |xk| and |xl| are different and rearrange the biletters of that
biword in such a way that the bottom row is precisely 1m12m2 . . . rmr .
The top row in the resulting two-row matrix is then the juxtaposition

product of r nonincreasing words b(1) = b
(1)
1 . . . b

(1)
m1 , b

(2) = b
(2)
1 . . . b

(2)
m2 ,

. . . , b(r) = b
(r)
1 . . . b

(r)
mr , of length m1, m2, . . . , mr, respectively. Moreover,

tot b(1) + tot b(2) + · · ·+ tot b(r) = tot c′ = 2 tot a+ tot ǫ

= 2 tot b+ 2 tot z + tot ǫ

= 2 tot b+ fmajw.(5.2)

On the other hand,

2b1 + fdesw = 2b1 + 2z1 + ǫ1 = c′1

= maxi b
(i)
1 (1 ≤ i ≤ r).(5.3)

As in the case of signed permutations, we can easily see that for each
nonnegative integer s the map (b, w) 7→ (b(1), b(2), . . . , b(r)) is a bijection of
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the set of pairs (b, w) ∈ NIW(m)×Rm such that 2b1+ fdesw=s onto the

set of juxtaposition products b(1)b(2) . . . b(r) such that maxi b
(i)
1 = s. The

reverse bijection is constructed in the same way as in the case of signed
permutations.

Example. Start with the pair (b, w), where w belongs to Bm with
m = (2, 2, 2, 2, 2, 2), r = 6, m = 12, the negative elements being overlined.

Id = 1 2 3 4 5 6 7 8 9 10 11 12
b = 4 4 4 4 4 4 4 2 2 1 1 1
w = 1 5 2 2 3 3 1 4 6 5 4 6

z = 3 2 2 2 1 1 1 1 0 0 0 0
ǫ = 0 1 1 0 1 1 1 0 1 1 0 0
a = 7 6 6 6 5 5 5 3 2 1 1 1
c′ = 14 13 13 12 11 11 11 6 5 3 2 2

absw = 1 5 2 2 3 3 1 4 6 5 4 6

b(1) . . . b(r) = 14 11 13 12 11 11 6 2 13 3 5 2

1m1 . . . rmr = 1 1 2 2 3 3 4 4 5 5 6 6

We verify that 2 tot b+fmajw = 2 tot b+2 tot z+tot ǫ = 2×35+2×13+7 =
103 = tot b(1) + · · · + tot b(6) and 2b1 + fdesw = 2b1 + 2z1 + ǫ1 =
2× 4 + 2× 3 + 0 = 14 = c′1 = maxi b

(i)
1 .

The combinatorial theorem for signed words that corresponds to The-
orem 2.1 is now stated.

Theorem 5.1. For each nonnegative integer s the above mapping is a
bijection of the set of pairs (b, w) = (b1b2 . . . bm, x1x2 . . . xm) ∈ NIW(m)×
Bm such that 2b1 + fdesw = s onto the set of juxtaposition products

b(1) . . . b(r) ∈ NIW(m1)×· · ·×NIW(mr) such that maxi b
(i)
1 = s. Moreover,

(5.2) and (5.3) hold, together with

(5.4) negw = odd(b(1) . . . b(r))

Relation (5.4) is obvious, as the negative letters of w are in bijection
with the odd letters of the juxtaposition product. Now consider the
generating polynomial Bm(t, q, Z), as defined in (1.9). Making use of (2.2)
and of the usual q-identities

1

(u; q)N
=
∑

n≥0

[

N + n− 1

n

]

q

un;

[

N + n

n

]

q

=
∑

b∈NIW(N), b1≤n

qtot b;
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we have

1 + t

(t2; q2)m+1
Bm(t, q, Z) =

∑

s′≥0

(t2s′

+ t2s′+1)

[

m+ s′

s′

]

q2

Bm(t, q)

=
∑

s′≥0

tr
[

m+ ⌊s′/2⌋
⌊s′/2⌋

]

q2

Bm(t, q, Z)

=
∑

s′≥0

ts
′
∑

b∈NIW(m),
2b1≤s′

q2 tot b
∑

w∈Bm

tfdes wqfmaj wZneg w

=
∑

s≥0

ts
∑

b∈NIW(m), w∈Bm

2b1+fdes w≤s

q2 tot b+fmaj wZneg w.

But using (5.2), (5.3), (5.4) we can write

1 + t

(t2; q2)m+1
Bm(t, q, Z) =

∑

s≥0

ts
∑

b(1),...,b(r),

maxi b
(i)
1 ≤s

qtot b(1)+···+tot b(r)

Zodd b(1)+···+odd b(r)

and
∑

m

(1+t)Bm(t, q, Z)
um1

1 · · ·umr
r

(t2; q2)1+|m|
=
∑

s≥0

ts
∏

1≤i≤r

∑

mi≥0

∑

b(i)

umi

i qtot b(i)

Zodd b(i)

,

using the notation: |m| := m1 + · · ·+mr.
There remains to evaluate

∑

m

∑

b u
mqtot bZodd b, where the second

sum is over all nonincreasing words b = b1 . . . bm of length m such that
b1 ≤ s. Let 1 ≤ i1 < · · · < ik ≤ m (resp. 1 ≤ j1 < · · · < jl ≤ m)
be the sequence of the integers i (resp. j) such that bi is even (resp. bj
is odd). Then, b is completely characterized by the pair (be, bo), where
be := (bi1/2) . . . (bik

/2) and bo := ((bj1 − 1)/2) . . . ((bjl
− 1)/2). Moreover,

tot b = 2 tot be + 2 tot bo + |bo|. Hence,

∑

m≥0

∑

b,|b|=m,b1≤s

umqtot bZodd b =
∑

b,b1≤s

u|b|qtot bZodd b

=
∑

be, 2be
1≤s

u|b
e|q2 tot be

∑

bo, 2bo
1≤s−1

(uqZ)|b
o|q2 tot bo

=
1

(u; q2)⌊s/2⌋+1

1

(uqZ; q2)⌊(s+1)/2⌋
.

This achieves the proof of Theorem 1.3.
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6. Specializations

As has been seen in this paper a graded form such as (1.10) has an
infinite version (again obtained by multiplying the formula by (1− t) and
letting t := 1) given by

∑

m

Bm(q, Z)
um1

1 · · ·umr
r

(q2; q2)|m|
=
∏

1≤i≤r

1

(ui; q2)∞

1

(uiqZ; q2)∞
(6.1)

=
∏

1≤i≤r

eq2(ui) eq2(uiqZ),

where eq2(u) denotes the usual q-exponential with basis q2 ([GaRa90],
p. 9).
The polynomial Bm(q, Z) is the generating polynomial for the class Bm

by the pair (fmaj, neg), namely

(6.2) Bm(q, Z) =
∑

w

qfmaj wZneg w (w ∈ Bm).

On the other hand, Let

(6.3) finvBm(q, Z) :=
∑

w∈Bm

qfinv wZneg w

be the generating polynomial for the classBm by the pair (finv, neg). Using
a different approach (the derivation is not reproduced in the paper), we
can prove the identity

finvBm(q, Z) = (−Zq; q)m1+···+mr

(q; q)m1+···+mr

(q; q)m1
· · · (q; q)mr

(6.4)

= (−Zq; q)m1+···+mr

[

m1 + · · ·+mr

m1, . . . , mr

]

q

,

using the traditional notation for the q-multinomial coefficient. In general,
Bm(q, Z) 6= finvBm(q, Z). This can be shown by means of a combinatorial
argument.

Let Z := 1 in (6.1) and make use of the q-binomial theorem (see [An76],
p. 17, or [GaRa90], chap. 1), on the one hand, and let Z := 1 in (6.4), on
the other hand. We get the evaluations

(6.5) Bm(q) = (−q; q)m1+···+mr

[

m1 + · · ·+mr

m1, . . . , mr

]

q

= finvBm(q).
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This shows that “fmaj” and “finv” are equidistributed over each class Bm,
a property proved “bijectively” in our first paper [FoHa05a].

Next, let q := 1 in (6.4). We obtain

(6.6) finvBm(Z) = (1 + Z)m1+···+mr

(

m1 + · · ·+mr

m1, . . . , mr

)

(

= Bm(Z)
)

,

an identity which is equivalent to

(6.7)
∑

m

Bm(Z)
um1

1 · · ·umr
r

|m|! =
∏

1≤i≤r

exp(ui) exp(uiZ).

Thus, the q-analog of (6.6) yields (6.4) with a combinatorial interpretation
in terms of the flag-inversion number “finv,” while (6.1) may be interpreted
as q2-analog of (6.7) with an interpretation in terms of the flag-maj index
number “fmaj.”

Finally, for Z = 0, formula (1.10) yields the identity

∑

m

Am(t, q)
um1

1 · · ·umr
r

(t; q)1+|m|
=
∑

s≥0

ts
∏

1≤i≤r

1

(ui; q)s+1
,

where Am(t, q) is the generating polynomial for the class of the rearrange-
ments of the word 1m12m2 . . . rmr by (des,maj). As done by Rawlings
[Ra79], [Ra80], the polynomials Am(t, q) can also be defined by a recur-
rence relation involving either the polynomials themselves, or their coeffi-
cients.

7. The Signed-Word-Euler-Mahonian polynomials

We end the paper by showing that the polynomials Bm(t, q) =
Bm(t, q, Z) |Z=1 can be calculated not only by their factorial generating
function given by (1.10) for Z := 1, but also by a recurrence formula.

Definition. A sequence
(

Bm(t, q) =
∑

k≥0

tkBm,k(q)
)

(m = (m1, . . . , mr);

m1 ≥ 0, . . . , mr ≥ 0)) of polynomials in two variables t, q, is said to
be signed-word-Euler-Mahonian, if one of the following four equivalent
conditions holds:

(1) The (t2, q2)-factorial generating function for the polynomials

(7.1) Cm(t, q) := (1 + t)Bm(t, q)

is given by identity (1.10) when Z = 1, that is,

∑

m

Cm(t, q)
um1

1 · · ·umr
r

(t2; q2)1+|m|
=
∑

s≥0

ts
∏

1≤i≤r

1

(ui; q)s+1
.(7.2)
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(2) For each multiplicity m we have:

(7.3)
Cm(t, q)

(t2; q2)1+|m|
=
∑

s≥0

ts
[

m1 + s

s

]

q

· · ·
[

mr + s

s

]

q

.

Let m + 1r := (m1, . . . , mr−1, mr + 1).

(3) The recurrence relation

(7.4) (1− qmr+1)Bm+1r
(t, q)

= (1− t2q2+2|m|)Bm(t, q)− qmr+1(1− t)(1 + tq)Bm(tq, q),

holds with B(0,...,0)(t, q) = 1.

(4) The following recurrence relation holds for the coefficients Bm,k(q)

(7.5) (1 + q + · · ·+ qmr)Bm+1r,k(q) = (1 + q + · · ·+ qmr+k)Bm,k(q)

+ qmr+kBm,k−1(q) + (qmr+k + qmr+k+1 + · · ·+ q2|m|+1)Bm,k−2(q),

while B(0,...,0),0(q) = 1 and B(0,...,0),k(q) = 0 for every k 6= 0.

Theorem 7.1. The conditions (1), (2), (3) and (4) in the previous
definition are equivalent.

Proof. The proofs of the equivalences [(1) ⇔ (2)] and [(3) ⇔ (4)]
are easy and therefore omitted. For proving the equivalence [(1) ⇔ (3)]
proceed as follows. Let C(t, q; u1, . . . , ur) denote the right side of (7.2) and
form the q-difference C(t, q; u1, . . . , ur)−C(t, q; u1, . . . , ur−1, urq) applied
to the sole variable ur. We get

(7.6) C(t, q; u1, . . . , ur)− C(t, q; u1, . . . , ur−1, urq)

=
∑

s≥0

ts

(u1; q)s+1 . . . (ur; q)s+1
−
∑

s≥0

ts

(u1; q)s+1 . . . (urq; q)s+1

=
∑

s≥0

ts

(u1; q)s+1 . . . (ur; q)s+1

[

1− 1− ur

1− urqs+1

]

= ur

∑

s≥0

ts

(u1; q)s+1 . . . (ur; q)s+1

[

1− qs+1 1− ur

1− urqs+1

]

= ur

(

C(t, q; u1, . . . , ur)− qC(tq, q; u1, . . . , ur−1, urq)
)

.

Now, let C(t, q; u1, . . . , ur) :=
∑

m
Cm(t, q)um1

1 · · ·umr
r /(t2; q2)1+|m| and

express each term C(. . .) occurring in identity (7.6) as a factorial series in
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the ui’s. We obtain
∑

m

(1− qmr+1)Cm+1r
(t, q)

um1
1 · · ·umr+1

r

(t2; q2)2+|m|

=
∑

m

(1− t2q2+2|m|)Cm(t, q)
um1

1 · · ·umr+1

(t2; q2)2+|m|

−
∑

m

qmr+1(1− t2)Cm(tq, q)
um1

1 · · ·umr+1

(t2; q2)2+|m|
.

Taking the coefficients of um1
1 . . . u

mr−1

r−1 umr+1
r yields

(1−qmr+1)Cm+1r
(t, q) = (1−t2q2+2|m|)Cm(t, q)−qmr+1(1−t2)Cm(tq, q),

which in its turn is equivalent to (7.6) in view of (7.1). All the steps of the
argument are reversible.

Remark 1. The fact that Bm(t, q) is the generating polynomial for the
class Bm by the pair (fdes, fmaj) can also be proved by the insertion
technique using (7.5). The argument has been already developed in
[ClFo95a, § 6] for ordinary words. Again let m := |m| = m1 + · · · + mr.
With each word from Bm+1r associate (mr + 1) new words obtained by
marking one and only one letter equal to r or r. Let B∗m+1r denote the
class of all those marked signed words. If w∗ = x1 . . . x

∗
i . . . xm+1 is such

a word, where the i-th letter is marked (accordingly, equal to either r
or r), let marki be the number of letters equal to r or r in the right factor
xi+1xi+2 . . . xm+1 and define:

fmaj∗w∗ := fmajw + markiw
∗.

On the other hand, let

Bm,k(q) :=
∑

w∈Bm, fdes w=k

qfmaj w.

Clearly,
∑

w∗∈B∗

m+1r , fdes w=k

qfmaj∗ w∗

= (1 + q + · · ·+ qmr)Bm+1r,k(q).

Now each word w from the class Bm gives rise to 2(m+1) distinct marked
signed words of length (m+ 1), when the marked letter r or r is inserted
between letters of w, as well as in the beginning of and at the end of the
word. As in the case of the signed permutations, we can verify that for
each j = 0, 1, . . . , 2m+1 there is one and only one marked signed word w∗

of length (m+ 1) derived by insertion such that fmaj∗w∗ = fmajw + j.
On the other hand, “fdes” is not modified if r is inserted to the right

of w, or if r or r is inserted into a descent xi > xi+1. Furthermore, “fdes”
increases by one, if x1 > 0 (resp. x1 < 0) and r (resp. r) is inserted to the
left of w. For all the other insertions “fdes” increases by 2.
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Hence, all the marked signed words w∗ from B∗
m+1r , such that fdesw∗ =

k are derived by insertion from three sources:
(i) the set {w ∈ Bm : fdesw = k} and the contribution is:

(1 + q + · · ·+ qmr+k)Bm,k(q);
(ii) the set {w ∈ Bm : fdesw = k − 1} and the contribution is:

qmr+kBm,k−1(q);
(iii) the set {w ∈ Bm : fdesw = k − 2} and the contribution is:

(qmr+k + · · ·+ q2|m|+1)Bm,k−2(q).

Remark 2. Let m := 1n and Bn(t, q) = Bm(t, q), so that Bn(t, q)
is now the generating polynomial for the set of signed permutations of
order n. Then (7.3), (7.4) and (7.5) become

(7.7)
(1 + t)Bn(t, q)

(t2; q2)n+1
=
∑

s≥0

ts(1 + q + · · ·+ qs)n

(7.8) (1− q)Bn(t, q) = (1− t2q2n)Bn−1(t, q)− q(1− t)(1 + tq)Bn−1(tq, q).

(7.9) Bn,k(q) = (1 + q + · · ·+ qk)Bn−1,k(q)

+ qkBn−1,k−1(q) + (qk + qk+1 + · · ·+ q2n−1)Bn−1,k−2(q).

The last three relations have been derived by Brenti et al. [ABR01], Chow
and Gessel [ChGe04], Haglund et al. [HLR04].

Concluding remarks. The statistical study of the hyperoctahedral
group Bn was initiated by Reiner ([Re93a], [Re93b], [Re93c], [Re95a],
[Re95b]). It had been rejuvenated by Adin and Roichman [AR01] with
their introduction of the flag-major index, which was shown [ABR01] to
be equidistributed with the length function. See also their recent papers on
the subject [ABR05], [ReRo05]. Another approach to Theorems 1.1 and 1.2
would be to make use of the Cauchy identity for the Schur functions, as
was done in [ClFo95b].
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7, rue René-Descartes
F-67084 Strasbourg, France

guoniu@math.u-strasbg.fr



 - 63 - 

2006/08/10

SIGNED WORDS AND PERMUTATIONS, IV;

FIXED AND PIXED POINTS

Dominique Foata and Guo-Niu Han

Von Jacobs hat er die Statur,
Des Rechnens ernstes Führen,
Von Lottärchen die Frohnatur
und Lust zu diskretieren.

To Volker Strehl, a dedication à la Goethe,
on the occasion of his sixtieth birthday.

Abstract

The flag-major index “fmaj” and the classical length function “ℓ” are used to
construct two q-analogs of the generating polynomial for the hyperoctahedral
group Bn by number of positive and negative fixed points (resp. pixed points).
Specializations of those q-analogs are also derived dealing with signed derange-
ments and desarrangements, as well as several classical results that were previ-
ously proved for the symmetric group.

1. Introduction

The statistical study of the hyperoctahedral group Bn, initiated by
Reiner ([Re93a], [Re93b], [Re93c], [Re95a], [Re95b]), has been rejuvenated
by Adin and Roichman [AR01] with their introduction of the flag-major

index, which was shown [ABR01] to be equidistributed with the length

function. See also their recent papers on the subject [ABR05], [ReRo05].
It then appeared natural to extend the numerous results obtained for the
symmetric group Sn to the groug Bn. Furthermore, flag-major index and
length function become the true q-analog makers needed for calculating
various multivariable distributions on Bn.

In the present paper we start with a generating polynomial for Bn by a
three-variable statistic involving the number of fixed points (see formula
(1.3)) and show that there are two ways of q-analogizing it, by using the
flag-major index on the one hand, and the length function on the other
hand. As will be indicated, the introduction of an extra variable Z makes
it possible to specialize all our results to the symmetric group. Let us first
give the necessary notations.

Let Bn be the hyperoctahedral group of all signed permutations of
order n. The elements of Bn may be viewed as words w = x1x2 · · ·xn,

2000 Mathematics Subject Classification. Primary 05A15, 05A30, 05E15.
Key words and phrases. Hyperoctahedral group, length function, flag-major index,

signed permutations, fixed points, pixed points, derangements, desarrangements, pixed
factorization.
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where each xi belongs to {−n, . . . ,−1, 1, . . . , n} and |x1||x2| · · · |xn| is a
permutation of 12 . . . n. The set (resp. the number) of negative letters
among the xi’s is denoted by Negw (resp. negw). A positive fixed point

of the signed permutation w = x1x2 · · ·xn is a (positive) integer i such
that xi = i. It is convenient to write i := −i for each integer i. Also,
when A is a set of integers, let A := {i : i ∈ A}. If xi = i with i positive,
we say that i is a negative fixed point of w. The set of all positive (resp.
negative) fixed points of w is denoted by Fix+ w (resp. Fix− w). Notice
that Fix− w ⊂ Negw. Also let

(1.1) fix+ w := # Fix+ w; fix− w := # Fix− w.

There are 2nn! signed permutations of order n. The symmetric group Sn

may be considered as the subset of all w from Bn such that Negw = ∅.
The purpose of this paper is to provide two q-analogs for the polyno-

mials Bn(Y0, Y1, Z) defined by the identity

(1.2)
∑

n≥0

un

n!
Bn(Y0, Y1, Z) =

(

1− u(1 + Z)
)−1 × exp(u(Y0 + Y1Z))

exp(u(1 + Z))
.

When Z = 0, the right-hand side becomes (1 − u)−1 exp(uY0)/ exp(u),
which is the exponential generating function for the generating polyno-
mials for the groups Sn by number of fixed points (see [Ri58], chap. 4).
Also, by identification, Bn(1, 1, 1) = 2nn! and it is easy to show (see The-
orem 1.1) that Bn(Y0, Y1, Z) is in fact the generating polynomial for the
group Bn by the three-variable statistic (fix+, fix−, neg), that is,

(1.3) Bn(Y0, Y1, Z) =
∑

w∈Bn

Y fix+w
0 Y fix−w

1 Zneg w.

Recall the traditional notations for the q-ascending factorials

(1.4) (a; q)n :=

{

1, if n = 0;
(1− a)(1− aq) · · · (1− aqn−1), if n ≥ 1;

(a; q)∞ :=
∏

n≥1

(1− aqn−1);

for the q-multinomial coefficients

(1.5)

[

n

m1, . . . , mk

]

q

:=
(q; q)n

(q; q)m1
· · · (q; q)mk

(m1 + · · ·+mk = n);

and for the two q-exponentials (see [GaRa90, chap. 1])

(1.6) eq(u) =
∑

n≥0

un

(q; q)n
=

1

(u; q)∞
; Eq(u) =

∑

n≥0

q(
n

2)un

(q; q)n
= (−u; q)∞.
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Our two q-analogs, denoted by ℓBn(q, Y0, Y1, Z) and Bn(q, Y0, Y1, Z),
are respectively defined by the identities:

(1.7)
∑

n≥0

un

(−Zq; q)n (q; q)n

ℓBn(q, Y0, Y1, Z)

=
(

1− u

1− q
)−1

× (u; q)∞

(

∑

n≥0

(−qY −1
0 Y1Z; q)n (uY0)

n

(−Zq; q)n (q; q)n

)

;

(1.8)
∑

n≥0

un

(q2; q2)n
Bn(q, Y0, Y1, Z)

=
(

1− u1 + qZ

1− q2
)−1

× (u; q2)∞
(uY0; q2)∞

(−uqY1Z; q2)∞
(−uqZ; q2)∞

.

Those two identities can be shown to yield (1.2) when q = 1.
There is also a graded form of (1.8) in the sense that an extra

variable t can be added to form a new polynomial Bn(t, q, Y0, Y1, Z) with
nonnegative integral coefficients that specializes into Bn(q, Y0, Y1, Z) for
t = 1. Those polynomials are defined by the identity

(1.9)
∑

n≥0

(1 + t)Bn(t, q, Y0, Y1, Z)
un

(t2; q2)n+1

=
∑

s≥0

ts
(

1−u
s
∑

i=0

qiZ
χ(i odd)

)−1

× (u; q2)⌊s/2⌋+1

(uY0; q2)⌊s/2⌋+1

(−uqY1Z; q2)⌊(s+1)/2⌋

(−uqZ; q2)⌊(s+1)/2⌋
,

where for each statement A we let χ(A) = 1 or 0 depending on whether A
is true or not. The importance of identity (1.9) lies in its numerous
specializations, as can be seen in Fig. 1.

The two q-extensions ℓBn(q, Y0, Y1, Z) and Bn(t, q, Y0, Y1, Z) being now
defined, the program is to derive appropriate combinatorial interpretations
for them. Before doing so we need have a second combinatorial interpreta-
tion for the polynomial Bn(Y0, Y1, Z) besides the one mentioned in (1.3).
Let w = x1x2 · · ·xn be a word, all letters of which are integers without any
repetitions. Say that w is a desarrangement if x1 > x2 > · · · > x2k and
x2k < x2k+1 for some k ≥ 1. By convention, xn+1 =∞. We could also say
that the leftmost trough of w occurs at an even position. This notion was
introduced by Désarménien [De84] and elegantly used in a subsequent
paper [DeWa88]. Notice that there is no one-letter desarrangement. By
convention, the empty word e is also a desarrangement.

Now let w = x1x2 · · ·xn be a signed permutation. Unless w is increasing,
there is always a nonempty right factor of w which is a desarrangement.
It then makes sense to define wd as the longest such a right factor.
Hence, w admits a unique factorization w = w−w+wd, called its pixed (1)

(1) “Pix,” of course, must not be taken here for the abbreviated form of “pictures.”
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factorization, where w− and w+ are both increasing, the letters of w−

being negative, those of w+ positive and where wd is the longest right
factor of w which is a desarrangement.

For example, the pixed factorizations of the following signed permuta-
tions are materialized by vertical bars: w = 52 | e | 3 4 1; w = 5 | e | 2 3 1 4;
w = 5 3 2 | 1 4 | e; w = 53 | 1 | 4 2; w = 5 3 | e | 4 1 2.

Let w = w−w+wd be the pixed factorization of w = x1x2 · · ·xn.
If w− = x1 · · ·xk, w+ = xk+1 · · ·xk+l, define Pix− w := {x1, . . . , xk},
Pix+w := {xk+1, . . . , xk+l}, pix− w := # Pix− w, pix+ w := # Pix+ w.

Theorem 1.1. The polynomial Bn(Y0, Y1, Z) defined by (1.2) admits the
following two combinatorial interpretations:

Bn(Y0, Y1, Z) =
∑

w∈Bn

Y fix+ w
0 Y fix− w

1 Zneg w =
∑

w∈Bn

Y pix+ w
0 Y pix− w

1 Zneg w.

Theorem 1.1 is proved in section 2. A bijection φ of Bn onto itself will be
constructed that satisfies (Fix−,Fix+,Neg)w = (Pix−,Pix+,Neg)φ(w).

Let “ℓ” be the length function of Bn (see [Bo68, p. 7], [Hu90, p. 12]
or the working definition given in (3.1)). As seen in Theorem 1.2,
“ℓ” is to be added to the three-variable statistic (pix+, pix−, neg) (and
not to (fix+, fix−, neg)) for deriving the combinatorial interpretation of
ℓBn(q, Y0, Y1, Z). This theorem is proved in section 3.

Theorem 1.2. For each n ≥ 0 let ℓBn(q, Y0, Y1, Z) be the polynomial
defined in (1.7). Then

(1.10) ℓBn(q, Y0, Y1, Z) =
∑

w∈Bn

qℓ(w) Y pix+ w
0 Y pix− w

1 Zneg w.

The variables t and q which are added to interpret our second extension
Bn(t, q, Y0, Y1, Z) will carry the flag-descent number “fdes” and the flag-
major index “fmaj.” For each signed permutation w = x1x2 · · ·xn the
usual number of descents “des” is defined by desw :=

∑n−1
i=1 χ(xi > xi+1),

the major index “maj” by majw :=
∑n−1

i=1 i χ(xi > xi+1), the flag descent

number “fdes” and the flag-major index “fmaj” by

(1.11) fdesw := 2 desw + χ(x1 < 0); fmajw := 2 majw + negw.

Theorem 1.3. For each n ≥ 0 let Bn(t, q, Y0, Y1, Z) be the polynomial
defined in (1.9). Then

(1.12) Bn(t, q, Y0, Y1, Z) =
∑

w∈Bn

tfdes w qfmaj w Y fix+ w
0 Y fix− w

1 Zneg w.
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Theorem 1.3 is proved in Section 5 after discussing the combinatorics
of the so-called weighted signed permutations in Section 4. Section 6
deals with numerous specializations of Theorem 1.2 and 1.3 obtained by
taking numerical values, essentially 0 or 1, for certain variables. Those
specializations are illustrated by the following diagram (Fig. 1). When
Z = 0, the statistic “neg” plays no role and the signed permutations
become plain permutations; the second column of the diagram is then
mapped on the third one that only involves generating polynomials for Sn

or subsets of that group.

-(fmaj,fix−,neg)
DB

n DB
n (q, Y1, Z)

?
fdes

Dn(q)

?
des

neg� �maj
Dn

DB
n (t, q, Y1, Z)

?
fix+

neg�

?

Dn(t, q)

fix+

Bn(t,q,Y0,Y1,Z)
neg

6
fdes

Bn(q, Y0, Y1, Z) An(q, Y0)

6
des

An(t, q, Y0)

-(fix+,fix−,neg)

(pix+,pix−,neg)
Bn Bn(Y0,Y1,Z)

6fmaj

An(Y0)

6maj

�fix+

pix+
Sn

?
inv

ℓBn(q,Y0,Y1,Z)
?

invAn(q, Y0)

ℓ

fix+

�

6pix+

ℓKB
n (q, Y1, Z)

pix+

invKn(q)-
(ℓ,pix−,neg)

KB
n

6

�inv

imaj
Kn

neg�

neg�

neg�

neg�

Fig. 1

The first (resp. fourth) column refers to specific subsets of Bn (resp.
of Sn):

(1.13)

Dn := {w ∈ Bn : Fix+w = Negw = ∅};
Kn := {w ∈ Bn : Pix+w = Negw = ∅};
DB

n := {w ∈ Bn : Fix+w = ∅};
KB

n := {w ∈ Bn : Pix+w = ∅}.

The elements of Dn are the classical derangements and provide the
most natural combinatorial interpretations of the derangement numbers
dn = #Dn (see [Co70], p. 9–12). By analogy, the elements of DB

n are called
signed derangements. They have been studied by Chow [Ch06] in a recent
note. The elements of Kn (resp. of KB

n ) are called desarrangements (resp.
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signed desarrangements) of order n. When Y0 = 0, the statistic fix+ (resp.
pix+) plays no role. We can then calculate generating functions for signed
and for plain derangements (resp. desarrangements), as shown in the first
two rows (resp. last row). The initial polynomial, together with its two
q-analogs are reproduced in boldface.

2. Proof of Theorem 1.1

As can be found in ([Co70], p. 9–12)), the generating function for the
derangement numbers dn (n ≥ 0) is given by

(2.1)
∑

n≥0

dn
un

n!
= (1− u)−1e−u.

An easy calculation then shows that the polynomials Bn(Y0, Y1, Z), intro-
duced in (1.2), can also be defined by the identity

(2.2) Bn(Y0, Y1, Z) =
∑

i+j+k+l=n

(

n

i, j, k, l

)

Y i
0 Y

j
1 Z

j+k dk+l (n ≥ 0).

For each signed permutation w = x1x2 · · ·xn let A := Fix+w, B :=
Fix− w, C := Negw \ Fix− w, D := [n] \ (A ∪ B ∪ C). Then (A,B,C,D)
is a sequence of disjoint subsets of integers, whose union is the interval
[n] := {1, 2, . . . , n}. Also the mapping τ defined by τ(j) = xj if j ∈ C
and τ(j) = xj if j ∈ D is a derangement of the set C + D. Hence, w is
completely characterized by the sequence (A,B,C,D, τ). The generating
polynomial for Bn by the statistic (fix+, fix−, neg) is then equal to the
right-hand side of (2.2). This proves the first identity of Theorem 1.1.

Each signed permutation w = x1x2 · · ·xn can be characterized, either
by the four-term sequence (Fix+ w,Fix−w,Negw, τ), as just described, or
by (Pix+ w,Pix−w,Negw,wd), where wd is the desarrangement occurring
as the third factor in its pixed factorization. To construct a bijection φ
of Bn onto Bn such that (fix−, fix+, neg)w = (pix−, pix+, neg)φ(w)
and accordingly prove the second identity of Theorem 1.1, we only
need a bijection τ 7→ f(τ), that maps each derangement τ onto a
desarrangement f(τ) by rearranging the letters of τ . But such a bijection
already exists. It is due to Désarménien (op. cit.). We describe it by means
of an example.

Start with a derangement τ =

(

1 2 3 4 5 6 7 8 9
9 7 4 3 8 2 6 5 1

)

and express it as a

product of its disjoint cycles: τ = (1 9)(2 7 6)(3 4)(5 8). In each cycle,
write the minimum in the second position: τ = (9 1)(6 2 7)(4 3)(8 5). Then,
reorder the cycles in such a way that the sequence of those minima, when
reading from left to right, is decreasing: τ = (8 5)(4 3)(6 2 7)(9 1). The
desarrangement f(τ) is derived from the latter expression by removing
the parentheses: f(τ) = 8 5 4 3 6 2 7 9 1.
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Let (Fix+w,Fix− w,Negw, τ) be the sequence associated with the
signed permutation w and let v− (resp. v+) be the increasing sequence
of the elements of Fix− w (resp. of Fix+w). Then, v− | v+ | f(τ) is the
pixed factorization of v−v+f(τ) and we may define φ(w) by

(2.3) φ(w) := v−v+f(τ).

This defines a bijection of Bn onto itself, which has the further property:

(2.4) (Fix−,Fix+,Neg)w = (Pix−,Pix+,Neg)φ(w).

For instance, with w =

(

1 2 3 4 5 6 7 8 9
3 2 8 4 5 1 9 6 7

)

we have v+ = 4 5, v− = 2,

τ =

(

1 3 6 7 8 9
3 8 1 9 6 7

)

= (9 7)(8 61 3) and f(τ) = 9 7 8 6 1 3. Hence, the pixed

factorization of φ(w) reads 2 | 4 5 | 9 7 8 6 1 3 and φ(w) = 2 4 5 9 7 8 61 3.

3. Proof of Theorem 1.2

The length function “ℓ” for Bn is expressed in many ways. We shall use
the following expression derived by Brenti [Br94]. Let w = x1x2 · · ·xn be
a signed permutation; its length ℓ(w) is defined by

ℓ(w) := invw +
∑

i

|xi|χ( xi < 0),(3.1)

where “inv” designates the usual number of inversions for words:

invw :=
∑

1≤i<j≤n

χ(xi > xj).

The generating polynomial for Kn (as defined in (1.13)) by “inv” (resp.
for Dn by “maj”) is denoted by Kn(q) := invKn(q) (resp. Dn(q)). As was
proved in [DeWa93] we have:

Kn(q) = Dn(q).(3.2)

Also
∑

n≥0

un

(q; q)n
Dn(q) =

(

1− u

1− q
)−1

× (u; q)∞,(3.3)

as shown by Wachs [Wa90] in an equivalent form. Another expression
for Dn(q) will be derived in section 6, Proposition 6.2.

If A is a finite set of positive integers, let totA denote the sum
∑

a
(a ∈ A). For the proof of Theorem 1.2 we make use of the following
classical result, namely that qN(N+1)/2

[

n
N

]

q
is equal to the sum

∑

qtot A,

where the sum is over all subsets A of cardinality N of the set [n].
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Remember that each signed permutation w = x1x2 . . . xn is charac-
terized by a sequence (A,B,C,D, τ), where A = Pix+ w, B = Pix− w,
C = Negw \ B, D = [n] \ (A ∪ B ∪ C) and τ is a desarrangement of
the set C + D. Let inv(B,C) be the number of pairs of integers (i, j)
such that i ∈ B, j ∈ C and i > j. As inv(B,C) = inv(C,B), we have
invw = inv(B,C) + inv(A,D) + #A ×#C + inv τ . From (3.1) it follows
that

ℓ(w) = invw +
∑

xi<0

|xi| = invw + totB + totC

= totB + totC + inv(C,B) + inv(A,D) + #A×#C + inv τ.

Denote the right-hand side of (1.10) by Gn := Gn(q, Y0, Y1, Z).
We will calculate Gn(q, Y0, Y1, Z) by first summing over all sequences
(A,B,C,D, τ) such that #A = i, #B = j, #C = k, #D = l. Accordingly,
τ is a desarrangement of a set of cardinality k + l. We may write:

Gn =
∑

i+j+k+l=n

∑

(A,B,C,D)

qtot B+tot C+inv(C,B)+inv(A,D)+i·k

× Y i
0Y

j
1 Z

j+k
∑

τ∈Kk+l

qinv τ

=
∑

m+p=n

∑

j+k=m,
i+l=p

∑

#E=m,
F=[n]\E

∑

C+B=E,
A+D=F

qtot E+inv(C,B)+inv(A,D)+i·k

× Y i
0 (Y1Z)jZkDk+l(q)

=
∑

m+p=n

∑

j+k=m,
i+l=p

Y i
0 (Y1Z)j(Zqi)kDk+l(q)

×
∑

#E=m,
F=[n]\E

qtot E
∑

C+B=E,
A+D=F

qinv(C,B)+inv(A,D)

=
∑

m+p=n

∑

j+k=m,
i+l=p

Y i
0 (Y1Z)j(Zqi)kDk+l(q)

× qm(m+1)/2

[

n

m

]

q

[

m

j, k

]

q

[

p

i, l

]

q

.

Thus

(3.4) Gn =
∑

i+j+k+l=n

[

n

i, j, k, l

]

q

q(
j+k+1

2 )Y i
0 (Y1Z)j(Zqi)kDk+l(q).

Now form the factorial generating function

G(q, Y0, Y1, Z; u) :=
∑

n≥0

un

(−Zq; q)n (q; q)n
Gn(q, Y0, Y1, Z).
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It follows from (3.4) that

G(q, Y0, Y1, Z; u) =
∑

n≥0

1

(−Zq; q)n

∑

i+j+k+l=n

q(
j+k+1

2 ) (uY0)
i

(q; q)i

(uY1Z)j

(q; q)j

× un−i−jDk+l(q)(Zq
i)k

(q; q)k(q; q)l
.

But
(

j+k+1
2

)

=
(

j+1
2

)

+ (j + 1)k +
(

k
2

)

. Hence

G(q, Y0, Y1, Z; u) =
∑

n≥0

1

(−Zq; q)n

n
∑

m=0

∑

i+j=m

q(
j+1
2 ) (uY0)

i

(q; q)i

(uY1Z)j

(q; q)j

× un−m

(q; q)n−m
Dn−m(q)

∑

k+l=n−m

[

n−m
k, l

]

q

(Zqm+1)kq(
k
2).

Now

(−Zqm+1; q)n−m =
∑

k+l=n−m

[

n−m
k, l

]

q

(Zqm+1)kq(
k

2);

and
(−Zq; q)n = (−Zq; q)m (−Zqm+1; q)n−m.

Hence

G(q, Y0, Y1, Z; u) =
∑

n≥0

n
∑

m=0

1

(−Zq; q)m

∑

i+j=m

(uY0)
i

(q; q)i
q(

j+1
2 ) (uY1Z)j

(q; q)j

× un−m

(q; q)n−m
Dn−m(q)

=
(

∑

n≥0

an u
n

(−Zq; q)n (q; q)n

)(

∑

n≥0

un

(q; q)n
Dn(q)

)

,

with

an =
∑

i+j=n

[

n

i, j

]

q

Y i
0 q

(j

2)(qY1Z)j

= Y n
0

∑

i+j=n

[

n

i, j

]

q

(qY −1
0 Y1Z)jq(

j

2)

= Y n
0 (−qY −1

0 Y1Z; q)n.

By taking (3.3) into account this shows that G(q, Y0, Y1, Z; u) is equal to
the right-hand side of (1.7) and then Gn(q, Y0, Y1, Z) = ℓBn(q, Y0, Y1, Z)
holds for every n ≥ 0. The proof of Theorem 1.2 is completed. By (3.4)
we also conclude that the identity

(3.5) ℓBn(q, Y0, Y1, Z) =
∑

i+j+k+l=n

[

n

i, j, k, l

]

q

q(
j+k+1

2 )Y i
0 (Y1Z)j(Zqi)kDk+l(q)
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is equivalent to (1.7). As its right-hand side tends to the right-hand side
of (2.2) when q → 1, we can then assert that (1.7) specializes into (1.2)
for q = 1.

4. Weighted signed permutations

We use the following notations: if c = c1c2 · · · cn is a word, whose
letters are nonnegative integers, let λ(c) := n be the length of c, tot c :=
c1 + c2 + · · · + cn the sum of its letters and odd c the number of its
odd letters. Furthermore, NIWn (resp. NIWn(s)) designates the set of all
nonincreasing words of length n, whose letters are nonnegative integers
(resp. nonnegative integers at most equal to s). Also let NIWe

n(s) (resp.
DWo

n(s)) be the subset of NIWn(s) of the nonincreasing (resp. strictly
decreasing) words all letters of which are even (resp. odd).

Next, each pair
(

c
w

)

is called a weighted signed permutation of order n
if the four properties (wsp1)–(wsp4) hold:

(wsp1) c is a word c1c2 · · · cn from NIWn;
(wsp2) w is a signed permutation x1x2 · · ·xn from Bn;
(wsp3) ck = ck+1 ⇒ xk < xk+1 for all k = 1, 2, . . . , n− 1;
(wsp4) xk is positive (resp. negative) whenever ck is even (resp. odd).

When w has no fixed points, either negative or positive, we say that
(

c
w

)

is a weighted signed derangement. The set of weighted signed permutations
(resp. derangements)

(

c
w

)

=
(

c1c2···cn

x1x2···xn

)

of order n is denoted by WSPn (resp.
by WSDn). The subset of all those weighted signed permutations (resp.
derangements) such that c1 ≤ s is denoted by WSPn(s) (resp. by WSDn(s)).

For example, the following pair

(

c

w

)

=





1 2 3 4 5 6 7 8 9 10 11 12 13
10 10 9 7 7 7 4 4 4 3 2 2 1
1 2 7 6 5 4 3 8 9 10 12 13 11





is a weighted signed permutation of order 13. It has four positive fixed
points (1, 2, 8, 9) and two negative fixed points (5, 10).

Proposition 4.1. With each weighted signed permutation
(

c
w

)

from the
set WSPn(s) can be associated a unique sequence (i, j, k,

(

c′

w′

)

, ve, vo) such
that

(1) i, j, k are nonnegative integers of sum n;

(2)
(

c′

w′

)

is a weighted signed derangement from the set WSDi(s);
(3) ve is a nonincreasing word with even letters from the set NIWe

j(s);
(4) vo is a decreasing word with odd letters from the set DWo

k(s);
having the following properties:

(4.1)
tot c = tot c′ + tot ve + tot vo; negw = negw′ + λ(vo);

fix+ w = λ(ve); fix− w = λ(vo).
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The bijection
(

c
w

)

7→ (
(

c′

w′

)

, ve, vo) is quite natural to define. Only its
reverse requires some attention. To get the latter three-term sequence from
(

c
w

)

proceed as follows:
(a) let l1, . . . , lα (resp. m1, . . . , mβ) be the increasing sequence of the

integers li (resp. mi) such that xli (resp. xmi
) is a positive (resp. negative)

fixed point of w;
(b) define: ve := cl1 · · · clα and vo := cm1

· · · cmβ
;

(c) remove all the columns
(

cl1
xl1

)

, . . . ,
(

clα

xlα

)

,
(

cm1
xm1

)

, . . . ,
(

cmβ
xmβ

)

from
(

c
w

)

and let c′ be the nonincreasing word derived from c after the removal;
(d) once the letters xl1 , . . . , xlα , xm1

, . . . , xmβ
have been removed from

the signed permutation w the remaining ones form a signed permutation
of a subset A of [n], of cardinality n− α− β. Using the unique increasing
bijection φ of A onto the interval [n − α − β] replace each remaining
letter xi by φ(xi) if xi > 0 or by −φ(−xi) if xi < 0. Let w′ be the signed
derangement of order n− α− β thereby obtained.

For instance, with the above weighted signed permutation we have:
ve = 10, 10, 4, 4 and vo = 7, 3. After removing the fixed point columns we
obtain:




3 4 6 7 11 12 13
9 7 7 4 2 2 1
7 6 4 3 12 13 11



 and then
(

c′

w′

)

=





1 2 3 4 5 6 7
9 7 7 4 2 2 1
4 3 2 1 6 7 5



 .

There is no difficulty verifying that the properties listed in (4.1)

hold. For reconstructing
(

c
w

)

from the sequence (
(

c′

w′

)

, ve, vo) consider the
nonincreasing rearrangement of the juxtaposition product vevo in the form
bh1
1 · · · bhm

m , where b1 > · · · > bm and hi ≥ 1 (resp. hi = 1) if bi is even

(resp. odd). The pair
(

c′

w′

)

being decomposed into matrix blocks, as shown
in the example, each letter bi indicates where the hi fixed point columns
are to be inserted. We do not give more details and simply illustrate the
construction with the running example.

With the previous example bh1
1 · · · bhm

m = 102 7 42 3. First, implement
102: 



1 2 3 4 5 6 7 8 9
10 10 9 7 7 4 2 2 1
1 2 6 5 4 3 8 9 7



 ;

then 7:




1 2 3 4 5 6 7 8 9 10
10 10 9 7 7 7 4 2 2 1
1 2 7 6 5 4 3 9 10 8



 ;

notice that because of condition (wsp3) the letter 7 is to be inserted in
second position in the third block;
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then insert 42:




1 2 3 4 5 6 7 8 9 10 11 12
10 10 9 7 7 7 4 4 4 2 2 1
1 2 7 6 5 4 3 8 9 11 12 10



 .

The implementation of 3 gives back the original weighted signed permu-
tation

(

c
w

)

.

5. Proof of Theorem 1.3

It is q-routine (see, e.g., [An76, chap. 3]) to prove the following identi-
ties, where v1 is the first letter of v:

1

(u; q)N
=
∑

n≥0

[

N + n− 1

n

]

q

un;

[

N + n

n

]

q

=
∑

v∈NIWn(N)

qtot v;

1

(u; q)N+1
=
∑

n≥0

un
∑

v∈NIWn(N)

qtot v =
1

1− u
∑

v∈NIWn

qtot vuv1 ;

(5.1)
1

(u; q2)⌊s/2⌋+1
=
∑

n≥0

un
∑

ve∈NIWe
n(s)

qtot ve

;

(5.2) (−uq; q2)⌊(s+1)/2⌋ =
∑

n≥0

un
∑

vo∈DWo
n(s)

qtot vo

.

The last two formulas and Proposition 4.1 are now used to calculate
the generating function for the weighted signed permutations. The symbols
NIWe(s), DWo(s), WSP(s), WSD(s) designate the unions for n ≥ 0 of the
corresponding symbols with an n-subscript.

Proposition 5.2. The following identity holds:

(5.3)
∑

n≥0

un
∑

(c

w)∈WSPn(s)

qtot cY fix+ w
0 Y fix− w

1 Zneg w

=
(u; q2)⌊s/2⌋+1

(uY0; q2)⌊s/2⌋+1

(−uqY1Z; q2)⌊(s+1)/2⌋

(−uqZ; q2)⌊(s+1)/2⌋
×
∑

n≥0

un
∑

( c

w)∈WSPn(s)

qtot cZneg w .

Proof. First, summing over (we, wo,
(

c
w

)

) ∈ NIWe(s) × DWo(s) ×
WSP(s), we have

∑

we,wo,(c

w)

uλ(we)qtot we × (uZ)λ(wo)qtot wo × uλ(c)qtot cY fix+ w
0 Y fix− w

1 Zneg w

(5.4) =
(−uqZ; q2)⌊(s+1)/2⌋

(u; q2)⌊s/2⌋+1
×
∑

(c

w)

uλ(c)qtot cY fix+ w
0 Y fix− w

1 Zneg w
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by (5.1) and (5.2). Now, Proposition 4.1 implies that the initial expression

can also be summed over five-term sequences (
(

c′

w′

)

, ve, vo, we, wo) from
WSD(s)× NIWe(s)× DWo(s)× NIWe(s)× DWo(s) in the form

∑

(c′

w′),ve,vo,we,wo

uλ(c′)qtot c′Zneg w′ × (uY0)
λ(ve)qtot ve × (uY1Z)λ(vo)qtot vo

× uλ(we)qtot we × (uZ)λ(wo)qtot wo

=
∑

ve,vo

(uY0)
λ(ve)qtot ve × (uY1Z)λ(vo)qtot vo

×
∑

(c′

w′),we,wo

uλ(c′)qtot c′Zneg w′ × uλ(we)qtot we × (uZ)λ(wo)qtot wo

.

The first summation can be evaluated by (5.1) and (5.2), while by
Proposition 4.1 again the second sum can be expressed as a sum over
weighted signed permutations

(

c
w

)

∈ WSP(s). Therefore, the initial sum is
also equal to

(5.5)
(−uqY1Z; q2)⌊(s+1)/2⌋

(uY0; q2)⌊s/2⌋+1
×
∑

( c

w)∈WSP(s)

uλ(c)qtot cZneg w.

Identity (5.3) follows by equating (5.4) with (5.5).

Proposition 5.3. The following identity holds:

(5.6)
∑

n≥0

un
∑

(c
w)∈WSPn(s)

qtot cZneg w =
(

1− u
s
∑

i=0

qiZ
χ(i odd)

)−1

.

Proof. For proving the equivalent identity

(5.7)
∑

( c
w)∈WSPn(s)

qtot cZneg w =
(

s
∑

i=0

qiZ
χ(i odd)

)n

(n ≥ 0)

it suffices to construct a bijection
(

c
w

)

7→ d of WSPn(s) onto {0, 1, . . . , s}n
such that tot c = tot d and negw = odd d. This bijection is one of the main
ingredients of the MacMahon Verfahren for signed permutations that has
been fully described in [FoHa05, § 4]. We simply recall the construction of
the bijection by means of an example.

Start with

(

c
w

)

=

(

10 9 7 4 4 2 2 1 1
1 4 3 2 5 6 8 9 7

)

. Then, form the two-matrix
(

10 9 7 4 4 2 2 1 1
1 4 3 2 5 6 8 9 7

)

, where the negative integers on the bottom row have
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been replaced by their opposite values. Next, rearrange its columns in such
a way that the bottom row is precisely 1 2 . . . n. The word d is defined

to be the top row in the resulting matrix. Here

(

d

Id

)

=

(

10 4 7 9 4 2 1 2 1
1 2 3 4 5 6 7 8 9

)

.

As d is a rearrangement of c, we have tot c = tot d and negw = oddd. For
reconstructing the pair

(

c
w

)

from d = d1d2 · · ·dn simply make a full use of
condition (wsp3).

Using the properties of this bijection we have:

∑

( c

w)∈WSPn(s)

qtot cZneg w =
∑

d∈{0,1,...,s}n

qtot dZodd d =
∑

d∈{0,1,...,s}n

n
∏

i=1

qdiZ
χ(di odd)

=
n
∏

i=1

∑

di∈{0,1,...,s}

qdiZχ(di odd) =
(

s
∑

i=0

qiZ
χ(i odd)

)n

.

Proposition 5.4. Let Gn := Gn(t, q, Y0, Y1, Z) denote the right-hand side
of (1.12) in the statement of Theorem 1.3. Then

(5.8)
1 + t

(t2; q2)n+1
Gn =

∑

s≥0

ts
∑

(c

w)∈WSPn(s)

qtot cY fix+ w
0 Y fix− w

1 Zneg w.

Proof. A very similar calculation has been made in the proof of
Theorem 4.1 in [FoHa05]. We also make use of the identities on the q-
ascending factorials that were recalled in the beginning of this section.
First,

1 + t

(t2; q2)n+1
=
∑

r′≥0

(t2r′

+ t2r′+1)

[

n+ r′

r′

]

q2

=
∑

r≥0

tr
[

n+ ⌊r/2⌋
⌊r/2⌋

]

q2

=
∑

r≥0

tr
∑

b∈NIWn(⌊r/2⌋)

q2 tot b.

Then,

1 + t

(t2; q2)n+1
Gn =

∑

r≥0

tr
∑

b∈NIWn,
2b1≤r

q2 tot b
∑

w∈Bn

tfdes wqfmaj wY fix+ w
0 Y fix− w

1 Zneg w

=
∑

s≥0

ts
∑

b∈NIWn, w∈Bn

2b1+fdes w≤s

q2 tot b+fmaj wY fix+ w
0 Y fix− w

1 Zneg w.

As proved in [FoHa05, § 4] to each
(

c
w

)

=
(

c1···cn

x1···xn

)

∈ WSPn(s) there
corresponds a unique b = b1 · · · bn ∈ NIWn such that 2b1 +fdesw = c1 and
2 tot b+fmajw = tot c. Moreover, the mapping

(

c
w

)

7→ (b, w) is a bijection
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of WSPn(s) onto the set of all pairs (b, w) such that b = b1 · · · bn ∈ NIWn

and w ∈ Bn with the property that 2b1 + fdesw ≤ s.
The word b is determined as follows: write the signed permutation w

as a linear word w = x1x2 . . . xn and for each k = 1, 2, . . . , n let zk be the
number of descents (xi > xi+1) in the right factor xkxk+1 · · ·xn and let ǫk
be equal to 0 or 1 depending on whether xk is positive or negative. Also
for each k = 1, 2, . . . , n define ak := (ck − ǫk)/2, bk := (ak − zk) and form
the word b = b1 · · · bn.

For example,
Id = 1 2 3 4 5 6 7 8 9 10
c = 9 7 7 4 4 4 2 2 1 1
w = 4 3 2 1 5 6 8 9 10 7
z = 1 1 1 1 1 1 1 1 0 0
ǫ = 1 1 1 0 0 0 0 0 1 1
a = 4 3 3 2 2 2 1 1 0 0
b = 3 2 2 1 1 1 0 0 0 0

Pursuing the above calculation we get (5.8).

We can complete the proof of Theorem 1.3:

∑

n≥0

(1 + t)Gn(t, q, Y0, Y1, Z)
un

(t2; q2)n+1

=
∑

s≥0

ts
∑

n≥0

un
∑

( c

w)∈WSPn(s)

qtot cY fix+ w
0 Y fix− w

1 Zneg w [by (5.8)]

=
∑

s≥0

ts
(u; q2)⌊s/2⌋+1

(uY0; q2)⌊s/2⌋+1

(−uqY1Z; q2)⌊(s+1)/2⌋

(−uqZ; q2)⌊(s+1)/2⌋

×
∑

n≥0

un
∑

(c

w)∈WSPn(s)

qtot cZneg w [by (5.3)]

=
∑

s≥0

ts
(

1− u
s
∑

i=0

qiZ
χ(i odd)

)−1

× (u; q2)⌊s/2⌋+1

(uY0; q2)⌊s/2⌋+1

(−uqY1Z; q2)⌊(s+1)/2⌋

(−uqZ; q2)⌊(s+1)/2⌋
[by (5.6)].

Hence, Gn(t, q, Y0, Y1, Z) = Bn(t, q, Y0, Y1, Z) for all n ≥ 0.

6. Specializations

For deriving the specializations of the polynomials ℓBn(q, Y0, Y1, Z)
and Bn(t, q, Y0, Y1, Z) with their combinatorial interpretations we refer
to the diagram displayed in Fig. 1. Those two polynomials are now re-
garded as generating polynomials for Bn by the multivariable statistics
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(ℓ, pix+, pix−, neg) and (fdes, fmaj, fix+, fix−, neg), their factorial generat-
ing functions being given by (1.7) and (1.9), respectively.

First, identity (1.8) is deduced from (1.9) by the traditional token that
consists of multiplying (1.9) by (1 − t) and making t = 1. Accordingly,
Bn(q, Y0, Y1, Z) occurring in (1.8) is the generating polynomial for the
group Bn by the statistic (fmaj, fix+, fix−, neg).

Now, let

(6.1) B(q, Y0, Y1, Z; u) :=
∑

n≥0

un

(q2; q2)n
Bn(q, Y0, Y1, Z).

The involution of Bn defined by w = x1x2 · · ·xn 7→ w := x1x2 · · ·xn has
the following properties:

fmajw + fmajw = n2; negw + negw = n;(6.2)

fix+w = fix− w; fix− w = fix+w.(6.3)

Consequently, the duality between positive and negative fixed points must
be reflected in the expression of B(q, Y0, Y1, Z; u) itself, as shown next.

Proposition 6.1. We have:

(6.4) B(q, Y0, Y1, Z; u) = B(q−1, Y1, Y0, Z
−1;−uq−1Z).

Proof. The combinatorial proof consists of using the relations written
in (6.2), (6.3) and easily derive the identity

(6.5) Bn(q, Y0, Y1, Z) = qn2

ZnBn(q−1, Y1, Y0, Z
−1).

With this new expression for the generating polynomial identity (6.1)
becomes

B(q, Y0, Y1, Z; u) =
∑

n≥0

(−uq−1Z)n

(q−2; q−2)n
Bn(q−1, Y1, Y0, Z

−1),

which implies (6.4).
The analytical proof consists of showing that the right-hand side of

identity (1.8) is invariant under the transformation

(q, Y0, Y1, Z, u) 7→ (q−1, Y1, Y0, Z
−1,−uq−1Z).

The factor 1 − u(1 + qZ)/(1 − q2) is clearly invariant. As for the other
two factors it suffices to expand them by means of the q-binomial theorem
([GaRa90], p. 7) and observe that they are simply permuted when the
transformation is applied.
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The polynomial DB
n (t, q, Y1, Z) := Bn(t, q, 0, Y1, Z) (resp. DB

n (q, Y1, Z)
:= Bn(q, 0, Y1, Z)) is the generating polynomial for the set DB

n of
the signed derangements by the statistic (fdes, fmaj, fix−, neg) (resp.
(fmaj, fix−, neg)). Their factorial generating functions are obtained by let-
ting Y0 = 0 in (1.9) and (1.8), respectively.

Let Y0 = 0, Y1 = 1 in (1.8). We then obtain the factorial generating
function for the polynomials DB

n (q, Z) :=
∑

qfmaj wZneg w (w ∈ DB
n ) in

the form

(6.6)
∑

n≥0

un

(q2; q2)n
DB

n (q, Z) =
(

1− u1 + qZ

1− q2
)−1

× (u; q2)∞.

It is worth writing the equivalent forms of that identity:

(6.7)
(q2; q2)n

(1− q2)n
(1 + qZ)n =

n
∑

k=0

[

n

k

]

q2

DB
k (q, Z) (n ≥ 0);

(6.8) DB
n (q, Z)=

n
∑

k=0

[

n

k

]

q2

(−1)kqk(k−1) (q2; q2)n−k

(1− q2)n−k
(1 + qZ)n−k (n ≥ 0);

(6.9) DB
0 (q, Z) = 1, and for n ≥ 0

DB
n+1(q, Z) = (1 + qZ)

1− q2n+2

1− q2 DB
n (q, Z) + (−1)n+1qn(n+1).

(6.10) DB
0 (q, Z) = 1, DB

1 (q, Z) = Zq, and for n ≥ 1

DB
n+1(q, Z) =

(1− q2n

1− q2 + qZ
1− q2n+2

1− q2
)

DB
n (q, Z)

+ (1 + qZ)q2n 1− q2n

1− q2 D
B
n−1(q, Z).

Note that (6.8) is derived from (6.6) by taking the coefficients of un on
both sides. Next, multiply both sides of (6.6) by the second q2-exponential
Eq2(−u) and look for the coefficients of un on both sides. This yields (6.7).
Now, write (6.6) in the form

(6.11) Eq2(−u) =
(

1− u1 + qZ

1− q2
)

∑

n≥0

un

(q2; q2)n
DB

n (q, Z)

and take the coefficients of un on both sides. This yields (6.9). Finally,
(6.10) is a simple consequence of (6.9).

When Z = 1, formulas (6.6), (6.8), (6.9) have been proved by Chow
[Ch06] with DB

n (q) =
∑

w q
fmaj w (w ∈ DB

n ).
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Now the polynomial KB
n (q, Y1, Z) := ℓBn(q, 0, Y1, Z) is the generating

polynomial for the set KB
n of the signed desarrangements by the statistic

(ℓ, pix−, neg). From (1.7) we get

(6.12)
∑

n≥0

un

(−Zq; q)n (q; q)n
KB

n (q, Y1, Z)

=
(

1− u

1− q
)−1

× (u; q)∞

(

∑

n≥0

q(
n+1

2 )(Y1Zu)
n

(−Zq; q)n (q; q)n

)

.

When the variable Z is given the zero value, the polynomials in the
second column of Fig. 1 are mapped on generating polynomials for the
symmetric group, listed in the third column. Also the variable Y1 vanishes.
Let An(t, q, Y0) := Bn(t1/2, q1/2, Y0, 0, 0). Then

(6.13) An(t, q, Y0) =
∑

σ∈Sn

tdes σqmaj σY fix σ
0 (fix := fix+).

Identity (1.9) specializes into

(6.14)
∑

n≥0

An(t, q, Y0)
un

(t; q)n+1
=
∑

s≥0

ts
(

1− u
s
∑

i=0

qi
)−1 (u; q)s+1

(uY0; q)s+1
,

an identity derived by Gessel and Reutenauer ([GeRe93], Theorem 8.4)
by means of a quasi-symmetric function technique. Note that they wrote
their formula for “1 + des” and not for “des.”

Multiply (6.14) by (1−t) and let t := 1, or let Z := 0 and q2 be replaced
by q in (1.8). Also, let An(q, Y0) :=

∑

σ q
maj σY fix σ (σ ∈ Sn); we get

(6.15)
∑

n≥0

un

(q; q)n
An(q, Y0) =

(

1− u

1− q
)−1 (u; q)∞

(uY0; q)∞
,

an identity derived by Gessel and Reutenauer [GeRe93] and also by Clarke
et al. [ClHaZe97] by means of a q-Seidel matrix approach.

We do not write the specialization of (6.14) when Y0 := 0 to obtain
the generating function for the polynomials Dn(t, q) :=

∑

σ∈Dn

tdes σqmaj σ.

As for the polynomial Dn(q) :=
∑

σ∈Dn

qmaj σ, it has several analytical

expressions, which can all be derived from (6.7)–(6.10) by letting Z := 0
and q2 being replaced by q. We only write the identity which corresponds
to (6.7)

(6.16) D0(q) = 1 and
(q; q)n

(1− q)n
=

n
∑

k=0

[

n

k

]

q

Dk(q) for n ≥ 1,

which is then equivalent to the identity

(6.17) eq(u)
∑

n≥0

un

(q; q)n
Dn(q) =

(

1− u

1− q
)−1

.
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The specialization of (6.8) for Z := 0 and q2 replaced by q was originally
proved by Wachs [Wa98] and again recently by Chen and Xu [ChXu06].
Those two authors make use of the now classical MacMahon Verfahren,
that has been exploited in several papers and further extended to the case
of signed permutation, as described in our previous paper [FoHa05].

In the next proposition we show that Dn(q) can be expressed as a
polynomial in q with positive integral coefficients. In the same manner,
the usual derangement number dn is an explicit sum of positive integers.
To the best of the authors’ knowledge those formulas have not appeared
elsewhere. In (6.19) we make use of the traditional notation for the
ascending factorial : (a)n = 1 if n = 0 and (a)n = a(a+ 1) · · · (a + n− 1)
if n ≥ 1.

Proposition 6.2. The following expressions hold:

Dn(q) =
∑

2≤2k≤n−1

1− q2k

1− q
(q2k+2; q)n−2k−1

(1− q)n−2k−1
q(

2k

2 ) + q(
n

2)χ(n even),(6.18)

dn =
∑

2≤2k≤n−1

(2k)(2k + 2)n−2k−1 + χ(n even).(6.19)

Proof. When q = 1, then (6.18) is transformed into (6.19). As for
(6.18), an easy q-calculation shows that its right-hand side satisfies (6.9)
when Z = 0 and q replaced by q1/2. As shown by Fu [Fu06], identity (6.18)
can also be directly derived from (6.17) by a simple q-calculation.

Now, let invAn(q, Y0) := ℓBn(q, Y0, 0, 0). Then

invAn(q, Y0) =
∑

σ∈Sn

qinv σ Y pix σ
0 (pix := pix+).(6.20)

Formula (1.7) specializes into
∑

n≥0

un

(q; q)n

invAn(q, Y0) =
(

1− u

1− q
)−1 (u; q)∞

(uY0; q)∞
;(6.21)

In view of (6.15) we conclude that

An(q, Y0) = invAn(q, Y0).(6.22)

For each permutation σ = σ(1) · · ·σ(n) let the ligne of route of σ be
defined by Ligneσ := {i : σ(i) > σ(i+ 1)} and the inverse ligne of route

by Iligneσ := Ligneσ−1. Notice that majσ =
∑

i i χ(i ∈ Ligneσ); we
also let imajσ :=

∑

i i χ(i ∈ Iligneσ). Furthermore, let i : σ 7→ σ−1.
If Φ designates the second fundamental transformation described in [Fo68],
[FoSc78], it is known that the bijection Ψ := iΦ i of Sn onto itself has the
following property: (Ligne, imaj) σ = (Ligne, inv) Ψ(σ). Hence

(pix, imaj) σ = (pix, inv) Ψ(σ)(6.23)
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and then An(q, Y0) has the other interpretation:

An(q, Y0) =
∑

σ∈Sn

qimaj σY pix σ
0 .(6.24)

Finally, let Kn(q) :=
∑

σ∈Kn

qinv σ. Then, with Y0 := 0 in (6.22) we have:

(6.25) Kn(q) = invAn(q, 0) = An(q, 0) = Dn(q).

However, it can be shown directly that Kn(q) is equal to the right-hand
side of (6.18), because the sum occurring in (6.18) reflects the geometry
of the desarrangements. The running term is nothing but the generating
polynomial for the desarrangements of order n whose leftmost trough is
at position 2k by the number of inversions “inv.”

The bijection Ψ also sends Kn onto itself, so that

(6.26)
∑

σ∈Kn

qinv σ =
∑

σ∈Kn

qimaj σ,

a result obtained in this way by Désarménien and Wachs [DeWa90, 93],
who also proved that for every subset E ⊂ [n− 1] we have

(6.27) #{σ ∈ Dn : Ligneσ = E} = #{σ ∈ Kn : Iligneσ = E}.
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SIGNED WORDS AND PERMUTATIONS, V;

A SEXTUPLE DISTRIBUTION

Dominique Foata and Guo-Niu Han

Abstract
We calculate the distribution of the sextuple statistic over the hyperoctahedral
group Bn that involves the flag-excedance and flag-descent numbers “fexc”
and “fdes,” the flag-major index “fmaj,” the positive and negative fixed point
numbers “fix+” and “fix−” and the negative letter number “neg.” Several
specializations are considered. In particular, the joint distribution for the pair
(fexc, fdes) is explicitly derived.

1. Introduction

As has been shown in our series of four papers ([FoHa07], [FoHa05],
[FoHa06], [FoHa07a]), the length function “ℓ” (see [Bo68], p. 7, or [Hu90],
p. 12) and the flag major index “fmaj” introduced by Adin and Roichman
[AR01] have become the true q-analog makers for the calculation of
various multivariable distributions on the hyperoctahedral group Bn of
the signed permutations. The elements of Bn may be viewed as words
w = x1x2 · · ·xn, where each xi belongs to the set {−n, . . . ,−1, 1, . . . , n}
and |x1||x2| · · · |xn| is a permutation of 12 . . . n. The set (resp. the number)
of negative letters among the xi’s is denoted by Negw (resp. negw).
A positive fixed point of the signed permutation w = x1x2 · · ·xn is a
(positive) integer i such that xi = i. It is convenient to write i := −i
for each integer i. If xi = i with i positive, we say that i is a negative

fixed point of w. The set of all positive (resp. negative) fixed points of w is
denoted by Fix+ w (resp. Fix− w). Notice that Fix− w ⊂ Negw. Also let

(1.1) fix+ w := # Fix+ w; fix− w := # Fix− w.

There are 2nn! signed permutations of order n. The symmetric group Sn

may be considered as the subset of all w from Bn such that Negw = ∅.
When w is an (ordinary) permutation from Sn, then Fix− w = ∅, so that
we define Fixw := Fix+w and fixw = # Fixw.

2000 Mathematics Subject Classification. Primary 05A15, 05A30, 05E15, 33D15.
Key words and phrases. Hyperoctahedral group, length function, flag-major index,

flag-excedance number, flag-descent number, signed permutations, fixed points, Lyndon
factorization, decreases, even decreases, q-series telescoping.
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Now, for each statement A let χ(A) = 1 or 0 depending on whether A is
true or not. Besides the integer-valued statistics “fix+,” “fix−” and “neg”
the now classical flag-descent number “fdes”, flag-major index “fmaj” and
flag-excedance number “fexc” are also needed in the following study. They
are defined for each signed permutation w = x1x2 · · ·xn by

fdesw := 2 desw + χ(x1 < 0);

fmajw := 2 majw + negw;

fexcw := 2 excw + negw;

where “des” is the number of descents desw :=
∑n−1

i=1 χ(xi > xi+1), “maj”

the major index majw :=
∑n−1

i=1 i χ(xi > xi+1) and “exc” the number of

excedances excw :=
∑n−1

i=1 χ(xi > i).
Our intention is to calculate the distribution of the sextuple statistic

(fexc, fdes, fmaj, fix+, fix−, neg) on the group Bn. This means that for each
n ≥ 0 the generating polynomial

(1.2) Bn(s, t, q, Y0, Y1, Z) :=
∑

w∈Bn

sfexc wtfdes w qfmaj w Y fix+ w
0 Y fix− w

1 Zneg w

can be considered and, with a suitable normalization, the generating
function for those polynomials be summed. Furthermore, the summation
is to yield an appropriate closed form. Finally, the calculation must be
compatible with the symmetric group Sn in the sense that when the
variable Z is given the zero value, earlier results derived for that group are
to be recovered. As is shown below, this goal will be achieved by working
in the algebra of q-series.

Our derivation has been motivated by the following recent statis-
tical studies on Bn and Sn. In [FoHa07a] and [FoHa07b] we have
respectively calculated the generating functions for the polynomials
Bn(1, t, q, Y0, Y1, Z) and An(s, t, q, Y0) , where

(1.3) An(s, t, q, Y ) :=
∑

σ∈Sn

sexc σtdes σqmaj σY fix σ

and shown that by giving certain variables specific values the former
statistical results on Sn and Bn could be reobtained. Note that, using the
previous definitions of “fexc,” “fdes” and “fmaj,” the latter polynomial is
nothing but Bn(s1/2, t1/2, q1/2, Y, 0, 0).

In the diagram of Fig. 1 the polynomials on the top (resp. bot-
tom) level are specializations of the polynomial Bn(s, t, q, Y0, Y1, Z) (resp.
An(s, t, q, Y )). Each vertical arrow is given a (Z = 0)-label. This means
that when Z is given the 0-value, each polynomial Bn(· · ·) is transformed
into the corresponding polynomial An(· · ·). The other arrows labelled s,
t and Z indicate that each target polynomial is mapped onto the source
polynomial when s (resp. t, resp. Z) is given the 1-value.
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Fig. 1

The polynomials appearing on the top are all generating polynomials
for the group Bn. Four of them are reproduced in boldface. Their factorial
generating polynomials are derived in the present paper. The generating
functions for the other six polynomials have been explicitly determined in
earlier papers: An(1, 1, q, Y ) and An(1, t, q, Y ) by Gessel and Reutenauer
[GeRe03], then An(s, 1, q, Y ) by Shareshian and Wachs [ShWa06], fur-
thermore An(s, t, q, Y ) in [FoHa07b], finally Bn(1, 1, q, Y0, Y1, Z) and
Bn(1, t, q, Y0, Y1, Z) in [FoHa07a].

The classical notation on q-series will be used. First, the q-ascending
factorials

(a; q)n :=

{

1, if n = 0;
(1− a)(1− aq) · · · (1− aqn−1), if n ≥ 1.

(a; q)∞ :=
∏

n≥1

(1− aqn−1);

then, the two q-exponentials (see [GaRa90, chap. 1])

eq(u) =
∑

n≥0

un

(q; q)n
=

1

(u; q)∞
; Eq(u) =

∑

n≥0

q(
n

2) un

(q; q)n
= (−u; q)∞.

The main purpose of this paper is to prove the following theorem.

Theorem 1.1. For each n ≥ 0 let Bn(s, t, q, Y0, Y1, Z) be the generating
polynomial for the hyperoctahedral group Bn by the six-variable statistic
(fexc, fdes, fmaj, fix+, fix−, neg) as defined in (1.2). Then, the factorial
generating function for the polynomials Bn(s, t, q, Y0, Y1, Z) is given by:

(1.4)
∑

n≥0

(1 + t)Bn(s, t, q, Y0, Y1, Z)
un

(t2; q2)n+1

=
∑

r≥0

tr
(u; q2)⌊r/2⌋+1

(uY0; q2)⌊r/2⌋+1

(−usqY1Z; q2)⌊(r+1)/2⌋

(−usqZ; q2)⌊(r+1)/2⌋
Fr(u; s, q, Z),
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where

(1.5) Fr(u; s, q, Z)

=
(us2q2; q2)⌊r/2⌋ (1− s2q2) (u; q2)⌊(r+1)/2⌋ (u; q

2)⌊r/2⌋

(u; q2)⌊r/2⌋+1

(

(u; q2)⌊(r+1)/2⌋

(

(u; q2)⌊r/2⌋ − s2q2 (us2q2; q2)⌊r/2⌋

)

+ sqZ (u; q2)⌊r/2⌋

(

(u; q2)⌊(r+1)/2⌋ − (us2q2; q2)⌊(r+1)/2⌋

)

)

.

The factorial generating functions for the other polynomials writ-
ten in boldface in the diagram of Fig. 1 are shown to be specializa-
tions of the factorial generating function for the six-variable polynomials
Bn(s, t, q, Y0, Y1, Z), as stated in the next three Corollaries.

Corollary 1.2. The factorial generating function for the polynomials
Bn(s, 1, q, Y0, Y1, Z) is given by

(1.6)
∑

n≥0

Bn(s, 1, q, Y0, Y1, Z)
un

(q2; q2)n
=
eq2(uY0)Eq2(usqY1Z)

Eq2(usqZ)

× (1− s2q2)
eq2(us2q2)− s2q2eq2(u) + sqZ(eq2

(

us2q2)− eq2(u)
) .

Corollary 1.3. The factorial generating function for the polynomials
Bn(s, t, q, Y0, Y1, 1) is given by

(1.7)
∑

n≥0

(1 + t)Bn(s, t, q, Y0, Y1, 1)
un

(t2; q2)n+1

=
∑

r≥0

tr
(u; q2)⌊r/2⌋+1

(uY0; q2)⌊r/2⌋+1

(−usqY1; q
2)⌊(r+1)/2⌋

(−usq; q2)⌊(r+1)/2⌋
Fr(u; s, q, 1),

where Fr(u; s, q, 1) is given by

(1.8) Fr(u; s, q, 1) =
(us2q2; q2)⌊r/2⌋

(u; q2)⌊r/2⌋+1

× (1− sq) (u; q2)⌊(r+1)/2⌋ (usq; q
2)⌊r/2⌋

(u; q2)⌊(r+1)/2⌋ (usq; q2)⌊r/2⌋ − sq (usq; q2)⌊(r+1)/2⌋ (us2q2; q2)⌊r/2⌋
.

Corollary 1.4. The factorial generating function for the polynomials
Bn(s, 1, q, Y0, Y1, 1) is given by

(1.9)
∑

n≥0

Bn(s, 1, q, Y0, Y1, 1)
un

(q2; q2)n

=
eq2(uY0)Eq2(usqY1)

Eq2(usq)

(1− sq)
eq2(us2q2)− sq eq2(u)

.
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The proof of Theorem 1.1 requires several steps. First, the factorial
generating function for the polynomials Bn(s, t, q, Y0, Y1, Z), as it appears
on the left-hand side of (1.4), is shown to be equal to a series

∑

r≥0

trar,
where each ar is the product of the rational function

(u; q2)⌊r/2⌋+1

(uY0; q2)⌊r/2⌋+1

(−usqY1Z; q2)⌊(r+1)/2⌋

(−usqZ; q2)⌊(r+1)/2⌋

by the generating series
∑

uλwsfexc wqtot cZneg w for the set WSP(r) of the
so-called weighted signed permutations by a certain four-variable statistic
(λ, tot, fexc, neg) (see Theorem 4.2). The combinatorics of the weighted
signed permutations was introduced in our previous paper [FoHa07a], but
this time the extra variable “s” is to be added to make the calculation. All
this derivation is developed in Sections 2 and 3. Noticeably, the variables Y0

and Y1 that carry the information on fixed points occur only in the above
fraction, but not in the latter generating series. Also, the positive fixed
point counter Y0 occurs in the denominator of that fraction, while the
negative fixed point counter Y1 only in the numerator.

The next step is to show that this generating series for weighted
signed permutations is also equal to the generating series for words,
whose letters belong to the interval [0, r], by another four-variable statistic
(λ, tot v, evdec+odd, odd). This is achieved by means of the construction
of a bijection of the set of weighted signed permutations onto the set of
those words having the adequate properties (see Theorem 5.1).

The crucial calculation is to evaluate the latter generating function and
show that it is equal to the expression Fr(u; s, q, Z) displayed in (1.5).
Two proofs are given, the first one using a V -word decomposition theorem
(see Theorem 6.1) derived in [FoHa07b] together with the traditional q-
series telescoping technique, the second one taking advantage of a word

factorization, which consists of cutting each word after every odd letter
(see Section 8).

Formula (1.6) (resp. (1.9)) is deduced from (1.4) (resp. from (1.7))
by the traditional token that consists of multiplying the latter one by
(1− t) and letting r tend to +∞, so that Corollaries 1.2 and 1.4 are easy
consequences of Theorem 1.1 and Corollary 1.3.

We prove Corollary 1.3 in two different ways: first, as a specialization
of Theorem 1.1 by an evaluation of the fraction Fr(u; s, q, Z) for Z = 1
(this requires some manipulations on q-series), second, by showing directly
that Fr(u; s, q, 1) is the generating function for words by the two-variable
statistic (tot, 2 evdec+odd), using a bijection constructed in our previous
paper [FoHa07b]. We end the paper by deriving several specializations of
Theorem 1.1, in particular, the joint distribution of the pair (fexc, fdes)
over the group Bn.
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2. Weighted signed permutations

This section will appear to be an updated version of Section 4 of our
previous paper [FoHa07a], where the notion of weighted signed permutation

was introduced. With the addition of “fexc” it was essential to ascertain
how that statistic behaved in the underlying combinatorial construction.

We use the following notations: if c = c1c2 · · · cn is a word, whose
letters are nonnegative integers, let λ(c) := n be the length of c, tot c :=
c1+c2+· · ·+cn the sum of its letters and odd c the number of its odd letters.
Furthermore, NIWn (resp. NIWn(r)) designates the set of all nonincreasing

monotonic words of length n, whose letters are nonnegative integers (resp.
nonnegative integers at most equal to r). Also let NIWe

n(r) (resp. DWo
n(r))

be the subset of NIWn(r) of the monotonic nonincreasing (resp. strictly
decreasing) words all letters of which are even (resp. odd).

Next, each pair
(

c
w

)

is called a weighted signed permutation of order n
if the four properties (wsp1)–(wsp4) hold:

(wsp1) c is a word c1c2 · · · cn from NIWn;
(wsp2) w is a signed permutation x1x2 · · ·xn from Bn;
(wsp3) ck = ck+1 ⇒ xk < xk+1 for all k = 1, 2, . . . , n− 1;
(wsp4) xk is positive (resp. negative) whenever ck is even (resp. odd).

When w has no fixed points, either negative or positive, we say that
(

c
w

)

is a weighted signed derangement. The set of weighted signed permutations
(resp. derangements)

(

c
w

)

=
(

c1c2···cn

x1x2···xn

)

of order n is denoted by WSPn (resp.
by WSDn). The subset of all those weighted signed permutations (resp.
derangements) such that c1 ≤ r is denoted by WSPn(r) (resp. by WSDn(r)).

For example, the following pair

(

c

w

)

=





1 2 3 4 5 6 7 8 9 10 11 12 13
10 10 9 7 7 7 4 4 4 3 2 2 1
1 2 7 6 5 4 3 8 9 10 12 13 11





is a weighted signed permutation of order 13. It has four positive fixed
points (1, 2, 8, 9), two negative fixed points (5, 10) and two excedances
(12, 13).

Proposition 2.1. With each weighted signed permutation
(

c
w

)

from the
set WSPn(r) can be associated a unique sequence (i, j, k,

(

c′

w′

)

, ve, vo) such
that

(1) i, j, k are nonnegative integers of sum n;

(2)
(

c′

w′

)

is a weighted signed derangement from the set WSDi(r);
(3) ve is a nonincreasing word with even letters from the set NIWe

j(r);
(4) vo is a decreasing word with odd letters from the set DWo

k(r);
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having the following properties:

(2.1)
tot c = tot c′ + tot ve + tot vo; negw = negw′ + λ(vo);

fix+ w = λ(ve); fix−w = λ(vo); fexcw = fexcw′ + λ(v0).

The bijection
(

c
w

)

7→ (
(

c′

w′

)

, ve, vo) is quite natural to define. Only its
reverse requires some attention. To get the latter three-term sequence from
(

c
w

)

proceed as follows:
(a) let l1, . . . , lα (resp. m1, . . . , mβ) be the increasing sequence of the

integers li (resp. mi) such that xli (resp. xmi
) is a positive (resp. negative)

fixed point of w;
(b) define: ve := cl1 · · · clα and vo := cm1

· · · cmβ
;

(c) remove all the columns
(

cl1
xl1

)

, . . . ,
(

clα

xlα

)

,
(

cm1
xm1

)

, . . . ,
(

cmβ
xmβ

)

from
(

c
w

)

and let c′ be the nonincreasing word derived from c after the removal;
(d) once the letters xl1 , . . . , xlα , xm1

, . . . , xmβ
have been removed from

the signed permutation w the remaining ones form a signed permutation
of a subset A of [n], of cardinality n− α− β. Using the unique increasing
bijection φ of A onto the interval [n − α − β] replace each remaining
letter xi by φ(xi) if xi > 0 or by −φ(−xi) if xi < 0. Let w′ be the signed
derangement of order n − α − β thereby obtained. There is no difficulty
verifying that the properties listed in (2.1) hold.

For instance, with the above weighted signed permutation we have:
ve = 10, 10, 4, 4 and vo = 7, 3. After removing the fixed point columns we
obtain:




3 4 6 7 11 12 13
9 7 7 4 2 2 1
7 6 4 3 12 13 11



 and then
(

c′

w′

)

=





1 2 3 4 5 6 7
9 7 7 4 2 2 1
4 3 2 1 6 7 5



 .

The signed permutation w (resp. w′) has two excedances 12, 13 (resp. 6, 7)
and six (resp. four) negative letters. Furthermore, v0 = 7, 3 is of length 2.
Hence fexcw = 2 excw + negw = 2 × 2 + 6 = 10 = 2 × 2 + 4 + 2 =
fexcw′ + λ(v0).

For reconstructing
(

c
w

)

from the sequence (
(

c′

w′

)

, ve, vo) consider the
nonincreasing rearrangement of the juxtaposition product vevo in the form
bh1
1 · · · bhm

m , where b1 > · · · > bm and hi ≥ 1 (resp. hi = 1) if bi is even

(resp. odd). The pair
(

c′

w′

)

being decomposed into matrix blocks, as shown
in the example, each letter bi indicates where the hi fixed point columns
are to be inserted. We do not give more details and simply illustrate the
construction with the running example.

With the previous example bh1
1 · · · bhm

m = 102 7 42 3. First, implement
102: 



1 2 3 4 5 6 7 8 9
10 10 9 7 7 4 2 2 1
1 2 6 5 4 3 8 9 7



 ;
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then 7:




1 2 3 4 5 6 7 8 9 10
10 10 9 7 7 7 4 2 2 1
1 2 7 6 5 4 3 9 10 8



 ;

notice that because of condition (wsp3) the letter 7 is to be inserted in
second position in the third block; then insert 42:





1 2 3 4 5 6 7 8 9 10 11 12
10 10 9 7 7 7 4 4 4 2 2 1
1 2 7 6 5 4 3 8 9 11 12 10



 .

The implementation of 3 gives back the original weighted signed permu-
tation

(

c
w

)

.

3. A summation on weighted signed permutations

For 0 ≤ k ≤ n let

[

n

k

]

q

:=
(q; q)n

(q; q)k (q; q)n−k
be the usual q-binomial

coefficient. It is q-routine (see, e.g., [An76, chap. 3]) to prove the following
identities, where v1 is the first letter of v:

1

(u; q)N
=
∑

n≥0

[

N + n− 1

n

]

q

un;

[

N + n

n

]

q

=
∑

v∈NIWn(N)

qtot v;

1

(u; q)N+1
=
∑

n≥0

un
∑

v∈NIWn(N)

qtot v =
1

1− u
∑

v∈NIWn

qtot vuv1 ;

(3.1)
1

(u; q2)⌊r/2⌋+1
=
∑

n≥0

un
∑

ve∈NIWe
n(r)

qtot ve

;

(3.2) (−uq; q2)⌊(r+1)/2⌋ =
∑

n≥0

un
∑

vo∈DWo
n(r)

qtot vo

.

The last two formulas and Proposition 2.1 are now used to calculate
the generating function for the weighted signed permutations. The symbols
NIWe(r), DWo(r), WSP(r), WSD(r) designate the unions for n ≥ 0 of the
corresponding symbols with an n-subscript.

Proposition 3.1. The following identity holds:

(3.3)
∑

n≥0

un
∑

( c

w)∈WSPn(r)

qtot csfexc wY fix+ w
0 Y fix− w

1 Zneg w

=
(u; q2)⌊r/2⌋+1

(uY0; q2)⌊r/2⌋+1

(−usqY1Z; q2)⌊(r+1)/2⌋

(−usqZ; q2)⌊(r+1)/2⌋
×
∑

n≥0

un
∑

(c

w)∈WSPn(r)

qtot csfexc wZneg w .
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Proof. First, summing over (we, wo,
(

c
w

)

) ∈ NIWe(r)×DWo(r)×WSP(r),
we have

∑

we,wo,(c

w)

uλ(we)qtot we×(usZ)λ(wo)qtot wo×uλ(c)qtot csfexc wY fix+ w
0 Y fix− w

1 Zneg w

(3.4) =
(−usqZ; q2)⌊(r+1)/2⌋

(u; q2)⌊r/2⌋+1
×
∑

(c

w)

uλ(c)qtot csfexc wY fix+ w
0 Y fix− w

1 Zneg w

by (3.1) and (3.2). As fexcw = fexcw′ + λ(vo), Proposition 2.1 implies
that the initial expression can also be summed over five-term sequences

(
(

c′

w′

)

, ve, vo, we, wo) from WSD(r)×NIWe(r)×DWo(r)×NIWe(r)×DWo(r)
in the form

∑

( c′

w′),ve,vo,we,wo

uλ(c′)qtot c′sfexc w′

Zneg w′ × (uY0)
λ(ve)qtot ve × (usY1Z)λ(vo)qtot vo

× uλ(we)qtot we × (usZ)λ(wo)qtot wo

=
∑

ve,vo

(uY0)
λ(ve)qtot ve × (usY1Z)λ(vo)qtot vo

×
∑

(c′

w′),we,wo

uλ(c′)qtot c′sfexc w′

Zneg w′ × uλ(we)qtot we × (usZ)λ(wo)qtot wo

.

The first summation can be evaluated by (3.1) and (3.2), while by
Proposition 2.1 again the second sum can be expressed as a sum over
weighted signed permutations

(

c
w

)

∈ WSP(r). Therefore, the initial sum is
also equal to

(3.5)
(−usqY1Z; q2)⌊(r+1)/2⌋

(uY0; q2)⌊r/2⌋+1
×
∑

( c

w)∈WSP(s)

uλ(c)qtot csfexc wZneg w.

Identity (3.3) follows by equating (3.4) with (3.5).

4. A further evaluation

Proposition 4.1. Let Bn(s, t, q, Y0, Y1, Z) denote the generating poly-
nomial for the group Bn by the statistic (fexc, fdes,maj, fix+, fix−, neg).
Then

(4.1)
1 + t

(t2; q2)n+1
Bn(s, t, q, Y0, Y1, Z)

=
∑

r≥0

tr
∑

(c

w)∈WSPn(r)

qtot csfexc wY fix+ w
0 Y fix− w

1 Zneg w.
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Proof. A very similar calculation has been made in the proof of
Theorem 4.1 in [FoHa05]. We also make use of the identities on the q-
ascending factorials that were recalled in the previous section. First,

1 + t

(t2; q2)n+1
=
∑

r′≥0

(t2r′

+ t2r′+1)

[

n+ r′

r′

]

q2

=
∑

r≥0

tr
[

n+ ⌊r/2⌋
⌊r/2⌋

]

q2

=
∑

r≥0

tr
∑

b∈NIWn(⌊r/2⌋)

q2 tot b.

Then,

1 + t

(t2; q2)n+1
Bn(s, t, q, Y0, Y1, Z)

=
∑

r≥0

tr
∑

b∈NIWn,
2b1≤r

q2 tot b
∑

w∈Bn

sfexc wtfdes wqfmaj wY fix+ w
0 Y fix− w

1 Zneg w

=
∑

r≥0

tr
∑

b∈NIWn, w∈Bn

2b1+fdes w≤r

sfexc wq2 tot b+fmaj wY fix+ w
0 Y fix− w

1 Zneg w.

As proved in [FoHa05, § 4] to each
(

c
w

)

=
(

c1···cn

x1···xn

)

∈ WSPn(s) there
corresponds a unique b = b1 · · · bn ∈ NIWn such that 2b1 +fdesw = c1 and
2 tot b+fmajw = tot c. Moreover, the mapping

(

c
w

)

7→ (b, w) is a bijection
of WSPn(r) onto the set of all pairs (b, w) such that b = b1 · · · bn ∈ NIWn

and w ∈ Bn with the property that 2b1 + fdesw ≤ r.
The word b is determined as follows: write the signed permutation w

as a linear word w = x1x2 . . . xn and for each k = 1, 2, . . . , n let zk be the
number of descents (xi > xi+1) in the right factor xkxk+1 · · ·xn and let ǫk
be equal to 0 or 1 depending on whether xk is positive or negative. Also
for each k = 1, 2, . . . , n define ak := (ck − ǫk)/2, bk := (ak − zk) and form
the word b = b1 · · · bn.

For example,
Id = 1 2 3 4 5 6 7 8 9 10
c = 9 7 7 4 4 4 2 2 1 1
w = 4 3 2 1 5 6 8 9 10 7
z = 1 1 1 1 1 1 1 1 0 0
ǫ = 1 1 1 0 0 0 0 0 1 1
a = 4 3 3 2 2 2 1 1 0 0
b = 3 2 2 1 1 1 0 0 0 0

Pursuing the above calculation we get (4.1).

The next theorem is then a consequence of Propositions 3.1 and 4.1.
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Theorem 4.2. The following identity holds:

(4.2)
∑

n≥0

(1 + t)Bn(s, t, q, Y0, Y1, Z)
un

(t2; q2)n+1

=
∑

r≥0

tr
(u; q2)⌊r/2⌋+1

(uY0; q2)⌊r/2⌋+1

(−usqY1Z; q2)⌊(r+1)/2⌋

(−usqZ; q2)⌊(r+1)/2⌋

∑

( c
w)∈WSP(r)

uλwqtot csfexc wZneg w.

In view of the statements of Theorems 1.1 and 4.2 we see that the former
theorem will be proved if we can show that the following identity holds:

(4.3)
∑

(c

w)∈WSP(r)

uλwqtot csfexc wZneg w = Fr(u; s, q, Z),

with Fr(u; s, q, Z) given by (1.5). In our paper [FoHa06a] the sum
∑

qtot cZneg w (
(

c
w

)

∈ WSPn(r)) has been calculated, by setting up a
bijection of WSPn(r) onto the set [0, r]n of the words of length n, whose
letters are taken from the interval [0, r]. Because of the presence of the
new statistic “fexc” another bijection is to be constructed. If v is the im-
age of

(

c
w

)

under the new bijection, then the statistic “fexc” on signed
permutations must have a counterpart on words. This role is played by
the so-called number of even decreases, as shown in the next section.

5. Even decreases on words

Say that a letter yi of a word v = y1y2 · · · yn from [0, r]n is a decrease

in v if 1 ≤ i ≤ n− 1 and yi ≥ yi+1 ≥ · · · ≥ yj > yj+1 for some j such that
i ≤ j ≤ n − 1. Let dec v (resp. evdec v) denote the number of decreases
(resp. of even decreases) in v. Notice that dec v ≥ des v (the number of
descents in v) and dec v = des v whenever v is a permutation (without
repetitions). Also, let odd v be the number of odd letters in v.

Recall that a nonempty word v = y1y2 · · · yn is a Lyndon word, if either
n = 1, or n ≥ 2 and, with respect to the lexicographic order, the inequality
y1y2 · · · yn > yiyi+1 · · · yny1 · · · yi−1 holds for every i such that 2 ≤ i ≤ n.
Let v, v′ be two nonempty primitive words (none of them can be written
as va

0 for a ≥ 2 and some word v0). We write v � v′ if and only if
va ≤ v′a with respect to the lexicographic order for an integer a large
enough. As shown for instance in [Lo83, Theorem 5.1.5] (also see [Ch58],
[Sch65]) each nonempty word v can be written uniquely as a product
l1l2 · · · lk, called its Lyndon factorization, where each li is a Lyndon word
and l1 � l2 � · · · � lk. In the example below the Lyndon factorization
of v has been materialized by vertical bars. The essential property of the
Lyndon factorization needed in the sequel is the following:

dec v = dec l1 + dec l2 + · · ·+ dec lk.
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Now, start with the Lyndon factorization l1l2 · · · lk of a word v from
[0, r]n. With such a v we associate a permutation σ from Sn by means of
a procedure developed by Gessel-Reutenauer [GeRe93]: each letter yi of v
belongs to a Lyndon word factor lh, so that lh = v′yiv

′′. Then, form the
infinite word A(yi) := yiv

′′v′yiv
′′v′ · · · If yi and yi′ are two letters of v,

say that yi precedes yi′ if A(yi) > A(yi′) for the lexicographic order, or if
A(yi) = A(yi′) and yi is to the right of yi′ in the word v. This precedence
determines a total order on the n letters of v. The letter that precedes
all the other ones is given label 1, the next one label 2, and so on. When
each letter yi of v is replaced by its label, say, lab(yi), each Lyndon word
factor lj becomes a new word τj . The essential property is that each τj
starts with its minimum element and those minimum elements read from
left to right are in decreasing order. We can then interpret each τj as the
cycle of a permutation and the (juxtaposition) product τ1τ2 · · · τk as the
(functional) product of disjoint cycles. This product, said to be written in

canonical form, defines a unique permutation σ from Sn ([Lo83], § 10.2).

For example,

v = 2 | 3 2 1 1 | 3 | 5 | 6 4 2 1 3 2 3 | 6 6 3 1 6 6 2 | 6
σ = 16 | 12 18 22 21 | 10 | 7 | 4 8 17 20 11 15 9 | 2 5 13 19 3 6 14 | 1

The labels on the second row are obtained as follows: read the letters
equal to 6 (the maximal letter) from left to right and form their as-
sociated infinite words: 64213236421 · · ·, 66316626631 · · ·, 6316621131 · · ·,
662663166 · · ·, 62663166 · · ·, 66666 · · · Those letters 6 read from left to
right will be given the labels 4, 2, 5, 3, 6, 1. We continue the labellings by
reading the letters equal to 5, then 4, . . . in the above word v.

No decrease yi in v can be the rightmost letter of a Lyndon word
factor lh. We have then lh = · · ·yiyi+1 · · · yjyj+1 · · · with yi ≥ yi+1 ≥
· · · ≥ yj > yj+1. Consequently, A(yi) > A(yi+1) and lab(yi) < lab(yi+1).
Conversely, if lab(yi) < lab(yi+1) and yi, yi+1 belong to the same Lyndon
factor, then yi is a decrease in v. To each decrease yi in v there corresponds
a unique cycle τh of σ and a pair lab(yi) lab(yi+1) of successive letters of τh
such that lab(yi) < lab(yi+1) and lab(yi+1) = σ(lab(yi)).

Consider the monotonic nonincreasing rearrangement c = c1c2 · · · cn
of v and form the three-row matrix

1 2 · · · n
c1 c2 · · · cn
σ(1) σ(2) · · · σ(n)

Then, if yi is a decrease in v, the lab(yi)-th column of the previous matrix
is of the form lab(yi)

yi

lab(yi+1)
with lab(yi) < lab(yi+1).
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At this stage we have dec v = excσ. We then have to transform σ
into a signed permutation w in such a way that only the excedances
corresponding to the even decreases of v are preserved. We proceed as
follows. The word c can be expressed as am1

1 am2
2 · · ·amk

k where a1 > a2 >
· · · > ak ≥ 0 and m1 ≥ 1, m2 ≥ 1, . . . , mk ≥ 1. We then define

x1 · · ·xm1
:=

{

σ(1) · · ·σ(m1), if a1 is even;
σ(m1) · · ·σ(1), if a1 is odd;

xm1+1 · · ·xm1+m2
:=

{

σ(m1 + 1) · · ·σ(m1 +m2), if a2 is even;
σ(m1 +m2) · · ·σ(m1 + 1), if a2 is odd;

· · · · · ·

xm1+···+mk−1+1 · · ·xn :=

{

σ(m1+· · ·+mk−1+1) · · ·σ(n), if ak is even;
σ(n) · · ·σ(m1+· · ·+mk−1+1), if ak is odd.

The word w := x1x2 · · ·xn is then a signed permutation. When going from
σ to w, the excedances lab(yi) < lab(yi+1) of σ such that yi is odd have
vanished. The other ones have been preserved. Hence, 2 evdec v+ odd v =
2 excw + negw = fexcw. Finally, as σ(i) > σ(i+ 1)⇒ ci > ci+1, the pair
(

c
w

)

is a weighted signed permutation. We then have the desired bijection

[0, r]n →
(

c
w

)

.

Theorem 5.1. The mapping v →
(

c
w

)

is a bijection of [0, r]n onto
WSPn(r) having the following properties:

tot c = tot v; fexcw = 2 evdec v + odd v; negw = odd v.

With the running example we have

Id =1 2 3 4 5 6 | 7 | 8 | 9 10 11 12 13 | 14 15 16 17 18 | 19 20 21 22
c =6 6 6 6 6 6 | 5 | 4 | 3 3 3 3 3 | 2 2 2 2 2 | 1 1 1 1
σ =1 5 6 8 13 14 | 7 | 17 | 4 10 15 18 19 | 2 9 16 20 22 | 3 11 12 21
w =1 5 6 8 13 14 | 7 | 17 | 19 18 15 10 4 | 2 9 16 20 22 | 21 12 11 3

The signed permutation w has eight excedances (reproduced in boldface)
and ten negative letters. Therefore, fexcw = 2 × 8 + 10 = 26. There
are eight even decreases of the word v: 2 → 1, 6 → 4, 4 → 2,
2 → 1, 6 → 6, 6 → 3, 6 → 6, 6 → 2. Moreover, odd v = 10. Hence
2 evdec v + odd v = 26 = fexcw and of course negw = odd v = 10.

In view of (4.3) and Theorem 5.1 the proof of Theorem 1.1 will be
completed if the identy

(5.1)
∑

v∈[0,r]∗

uλvqtot vs2 evdec v+odd vZodd v = Fr(u; s, q, Z)

holds, the sum being over all words whose letters are in [0, r].
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6. The calculation of the latter sum

As introduced in our previous paper [FoHa07b] a word w = x1x2 . . . xn

of length n ≥ 2 is said to be a V -word, if for some integer i such that
1 ≤ i ≤ n − 1 we have x1 ≥ x2 ≥ · · · ≥ xi > xi+1 and xi+1 ≤ xi+2 ≤
· · · ≤ xn < xi whenever i+ 1 < n. The pair (xi, xi+1) is called the critical

biletter of w. The V -word decomposition for permutations was introduced
by Kim and Zeng [KiZe01]. The following theorem is a simple consequence
of Theorem 3.4 proved in our previous paper [FoHa07b].

Theorem 6.1 (V -word decomposition). To each word v = y1y2 · · ·yn

whose letters are nonnegative integers there corresponds a unique sequence
(v0, v1, v2, . . . , vk), where v0 is a monotonic nondecreasing word and v1,
v2, . . . , vk are V -words with the further property that v0v1v2 · · · vk is a
rearrangement of v and

(6.1) evdec v = evdec v1 + evdec v2 + · · ·+ evdec vk.

Let X0, X1, . . . , Xr be (r+ 1) commuting variables. The even weight,
evweight v, of each word v = y1y2 . . . yn is defined to be

evweight v := Xy1
Xy2
· · ·Xyn

s2 evdec v.

Now, consider the infinite series:

U(l) :=
∏

l≤j≤r

(1− s2χ(j even)Xj)
−1, (1 ≤ l ≤ r);

M(k, l) :=
∏

k≤j≤l−1

(1−Xj)
−1, (0 ≤ k < l).

Then, the generating function for V -words, whose critical biletter is (l, k)
(0 ≤ k < l ≤ r), by “evweight” is equal to:

U(l) s2χ(l even)XlXk M(k, l).

The following theorem is then a consequence of Theorem 6.1.

Theorem 6.2. We have the identity:

∑

v

evweight v =
M(0, r + 1)

1− ∑

0≤k<l≤r

U(l) s2χ(l even)XlXk M(k, l)
,

where the sum is over all words whose letters belong to the interval [0, r].

Consider the homomorphism φ generated by:

φ(Xk) := uqk(sZ)χ(k odd) (0 ≤ k ≤ r).
If v = y1y2 · · · yn, then φ(evweight v) = uλvqtot vs2 evdec v+odd vZodd v.
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Also

φ(U(l)) =
∏

l≤j≤r

(1− uqjs2χ(j even)(sZ)χ(j odd))−1;

φ(M(k, l)) =
∏

k≤j≤l−1

(1− uqj(sZ)χ(j odd))−1.

Now define

(u)′k :=

{

1, if k = 0;
∏

0≤j≤k−1

(1− uqj(sZ)χ(j odd)), if k ≥ 1;

(u)′′l :=

{

1, if l = 0;
∏

1≤j≤l

(1− uqjs2χ(j even)(sZ)χ(j odd)), if l ≥ 1.

Then φ(U(l)) =
(u)′′l−1

(u)′′r
(1 ≤ l); φ(M(k, l)) =

(u)′k
(u)′l

(0 ≤ k < l).

Now, take the image of the identity of Theorem 6.2 under φ:

∑

w∈[0,r]∗

uλwqtot ws(2 evdec + odd) wZodd w =
∑

w∈[0,r]∗

φ(evweightw) =
1

(u)′r+1

1

S
,

where

S = 1−
∑

0≤k<l≤r

(u)′′l−1

(u)′′r
s2χ(l even)uql(sZ)χ(l odd)uqk(sZ)χ(k odd) (u)

′
k

(u)′l
.

As −uqk(sZ)χ(k odd)(u)′k = (u)′k+1 − (u)′k, we have:

S = 1 +
∑

1≤l≤r

(u)′′l−1

(u)′′r
s2χ(l even)uql(sZ)χ(l odd) 1

(u)′l
((u)′l − 1).

Now, −uqls2χ(l even)(sZ)χ(l odd)(u)′′l−1 = (u)′′l − (u)′′l−1. Hence,

S =
1

(u)′′r
− 1

(u)′′r

∑

1≤l≤r

(u)′′l−1

(u)′l
uqls2χ(l even)(sZ)χ(l odd).

We are then left to prove:

(6.2)
(u)′′r

(u)′r+1

(

1−
∑

1≤l≤r

(u)′′l−1

(u)′l
uqls2χ(l even)(sZ)χ(l odd)

)−1

= Fr(u; s, q, Z)
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We can also write:

(u)′r = (u; q2)⌊(r+1)/2⌋ (usqZ; q2)⌊r/2⌋,

(u)′′r = (usqZ; q2)⌊(r+1)/2⌋ (us
2q2; q2)⌊r/2⌋,

so that

(6.3)
(u)′′r

(u)′r+1

=
(us2q2; q2)⌊r/2⌋

(u; q2)⌊r/2⌋+1
and

(u)′′l−1

(u)′l
=

(us2q2; q2)⌊(l−1)/2⌋

(u; q2)⌊(l+1)/2⌋
.

Identity (6.2) may be rewritten as

(6.4)
(us2q2; q2)⌊r/2⌋

(u; q2)⌊r/2⌋+1
(1− T )−1 = Fr(u; s, q, Z),

where

T :=
∑

1≤l≤r

(us2q2; q2)⌊(l−1)/2⌋

(u; q2)⌊(l+1)/2⌋
uqls2χ(l even)(sZ)χ(l odd)

=
∑

0≤l≤⌊(r−1)/2⌋

(us2q2; q2)l

(u; q2)l+1
uq2lsqZ +

∑

0≤l≤⌊r/2⌋−1

(us2q2; q2)l

(u; q2)l+1
uq2ls2q2.

We can then introduce

G(m) :=
∑

0≤l≤m

(us2q2; q2)l

(u; q2)l+1
uq2l

and try to sum it. As

(us2q2; q2)l+1

(u; q2)l+1
− (us2q2; q2)l

(u; q2)l
=

(us2q2; q2)l

(u; q2)l+1
uq2l(1− s2q2),

we get

G(m) =
1

1− s2q2
((us2q2; q2)m+1

(u; q2)m+1
− 1
)

,

so that

T = sqZ G(⌊(r − 1)/2⌋) + s2q2G(⌊r/2⌋ − 1)

=
1

1− s2q2
(

sqZ
(us2q2; q2)⌊(r+1)/2⌋

(u; q2)⌊(r+1)/2⌋
− sqZ

+ s2q2
(us2q2; q2)⌊r/2⌋

(u; q2)⌊r/2⌋
− s2q2

)

.

By reporting this value of T into (6.4) we exactly find the expression of
Fr(u; s, q, Z) displayed in (1.5).
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7. Second proof of (5.1)

When Z = 0 in Bn(s, t, q, Y0, Y1, Z), then Y1 is also null. Furthermore,
each polynomial Bn(s, t, q, Y0, 0, 0) is a polynomial in s2, t2, q2, Y0. The
summation on the right-hand side of (1.6) only involves even powers of t.
We then have

(7.1) F2r(u; s, q, 0) =
(us2q2; q2)r (1− s2q2) (u; q2)r

(u; q2)r+1

(

(u; q2)r − s2q2 (us2q2; q2)r

)

and

(7.2)
∑

n≥0

Bn(s, t, q, Y0, 0, 0)
un

(t2; q2)n+1
=
∑

r≥0

t2r (u; q2)r+1

(uY0; q2)r+1
F2r(u; s, q, 0).

But Bn(s1/2, t1/2, q1/2, Y, 0, 0) is the generating polynomial An(s, t, q, Y )
for the symmetric group Sn by the statistic (exc, des,maj, fix) and it was
proved in our previous paper [FoHa06b] that

∑

n≥0

An(s, t, q, Y )
un

(t; q)n+1
=
∑

r≥0

tr
(u; q)r+1

(uY ; q)r+1

(usq; q)r (1− sq) (u; q)r

(u; q)r+1((u; q)r − sq(usq; q)r)
.

Accordingly, (1.4) holds when Z = 0 and consequently (5.1) holds when r
is even and Z null. To show that identity (5.1), which we shall rewrite as

(7.3)
∑

v∈[0,r]∗

EV(v) = Fr(u; s, q, Z),

is true for all values of r and when Z is not necessarily 0 we proceed as
follows.

Cut each word v ∈ [0, r]∗ in the (5.1) summation after every occurrence
of an odd letter. This defines a unique factorization:

(7.4) v = p0i0p1i1 · · · pkikpk+1

of v having the following properties
(C1) k ≥ 0,
(C2) p0, p1, . . . , pk, pk+1 all from P ∗r with Pr := {0, 2, 4, . . . , 2⌊r/2⌋},
(C3) i0, i1, . . . , ik all from Ir with Ir := {1, 3, 5, . . . , 2⌊(r+ 1)/2⌋ − 1}.

The following properties of this factorization are easy to verify:
(P1) tot v = tot(p0i0) + tot(p1i1) + · · ·+ tot(pkik) + tot(pk+1),
(P2) evdec v=evdec(p0i0)+evdec(p1i1)+· · ·+evdec(pkik)+evdec(pk+1),
(P3) odd v = odd(p0i0) + odd(p1i1) + · · ·+ odd(pkik) + odd(pk+1),
(P4) λv = λ(p0i0) + λ(p1i1) + · · ·+ λ(pkik) + λ(pk+1),
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(P5) EV(p0i0p1i1· · ·pkikpk+1)=EV(p0i0) EV(p1i1)· · ·EV(pkik) EV(pk+1),
(P6) EV(pi) = sqZ EV(p(i− 1)) for p ∈ P ∗r and i ∈ Ir,
(P7) EV(p(2k)) = uq2k EV(p) for p ∈ P ∗2k.

Hence

∑

v∈[0,r]∗

v =
(

1−
∑

p∈P ∗

r ,i∈Ir

pi
)−1 ∑

p∈P ∗

r

p;

∑

v∈[0,r]∗

EV(v) =
1

1−∑p∈P ∗

r ,i∈Ir
EV(pi)

∑

p∈P ∗

r

EV(p).(7.5)

On the other hand,
∑

p∈P ∗

r ,i∈Ir

EV(pi) = sqZ
∑

p∈P ∗

r ,i∈Ir

EV(p(i− 1)) = sqZ
∑

p∈P ∗

r ,j∈Pr−1

EV(pj).

If r = 2k + 1, then Pr = Pr−1 = P2k, so that

∑

p∈P ∗

r ,j∈Pr−1

EV(pj) =
∑

p∈P ∗

2k
,λ(p)≥1

EV(p) = F2k(u; s, q, 0)− 1,

because (7.3) holds for r even and Z = 0. It follows from (7.5) that

(7.6)
∑

v∈[0,2k+1]∗

EV(v) =
F2k(u; s, q, 0)

1− sqZ
(

F2k(u; s, q, 0)− 1
) .

If r = 2k, then Pr = P2k and Pr−1 = P2k−2, so that

∑

p∈P ∗

r ,j∈Pr−1

EV(pj) =
∑

p∈P ∗

2k
,j∈P2k−2

EV(pj)

=
∑

p∈P ∗

2k
,λ(p)≥1

EV(p)−
∑

p∈P ∗

2k

EV(p(2k))

= (F2k(u; s, q, 0)− 1)− uq2kF2k(u; s, q, 0)

= (1− uq2k)F2k(u; s, q, 0)− 1.

Hence (7.5) implies

(7.7)
∑

v∈[0,2k]∗

EV(v) =
F2k(u; s, q, 0)

1− sqZ
(

(1− uq2k)F2k(u; s, q, 0)− 1
) .

We can then report the value of F2k(u; s, q, 0) obtained in (7.1) in both
expressions (7.6) and (7.7). By combining them in a single formula we
exactly get the formula displayed in (1.5) for Fr(u; s, q, Z).
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8. Two proofs of Corollary 1.3

For the first proof we proceed as follows. Let Z = 1 in (1.5) and write
the formula as:

(us2q2; q2)⌊r/2⌋ (1− s2q2) (u; q2)⌊(r+1)/2⌋

(u; q2)⌊r/2⌋+1Fr(u; s, q, 1)

= (u; q2)⌊(r+1)/2⌋ − s2q2
(u; q2)⌊(r+1)/2⌋

(u; q2)⌊r/2⌋
(us2q2; q2)⌊r/2⌋

+ sq (u; q2)⌊(r+1)/2⌋ − sq(us2q2; q2)⌊(r+1)/2⌋.
We have

s2q2
(u; q2)⌊(r+1)/2⌋

(u; q2)⌊r/2⌋
(us2q2; q2)⌊r/2⌋ + sq(us2q2; q2)⌊(r+1)/2⌋

= sq(us2q2; q2)⌊r/2⌋

(

sq(1− uq2⌊(r−1)/2⌋) + 1− us2q2⌊(r−1)/2⌋+2
)

= sq(us2q2; q2)⌊r/2⌋(1 + sq)(1− usq2⌊(r−1)/2⌋+1)

= sq(us2q2; q2)⌊r/2⌋(1 + sq)
(usq; q2)⌊(r+1)/2⌋

(usq; q2)⌊r/2⌋
,

so that
(us2q2; q2)⌊r/2⌋ (1− s2q2) (u; q2)⌊(r+1)/2⌋

(u; q2)⌊r/2⌋+1Fr(u; s, q, 1)

= (1 + sq)
(

(u; q2)⌊(r+1)/2⌋ − sq(us2q2; q2)⌊r/2⌋

(usq; q2)⌊(r+1)/2⌋

(usq; q2)⌊r/2⌋
.

By dividing both sides by (1 + sq) we recover (1.8).

For the second proof we again use the notations introduced in Section 7,
namely,

(u)′r :=

{

1, if r = 0;
∏

0≤j≤r−1

(1− uqj(sZ)χ(j odd)), if r ≥ 1;

= (u; q2)⌊(r+1)/2⌋ (usqZ; q2)⌊r/2⌋,

and directly prove the identity

∑

v∈[0,r]n

qtot vs2 evdec v+odd v = Fr(u; s, q, 1),

where Fr(u; s, q, 1) is given by (1.8), an identity that may be rewritten as:

(8.1)
∑

v∈[0,r]n

qtot vs2 evdec v+odd v =
1

(u)′r+1

× (1− sq)(u)′r(usq)′r
(u)′r − sq(usq)′r

.
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For each r ≥ 0 let D(r) be the set of all pairs (w, i) such that
w ∈ NIW(r−1), 1 ≤ i ≤ λw−1, λw ≥ 2. In our previous paper ([FoHa07b],
Theorem 2.1) we have constructed a bijection mapping each word v onto
a sequence

(w0, (w1, i1), (w2, i2), . . . , (wk, ik)),

such that w0 ∈ NIW(r) and each pair (wl, il) ∈ D(r) (1 ≤ l ≤ k) and
w0w1 · · ·wk is a rearrangement of v. Furthermore, the bijection has the
following property:

(8.2) 2 evdec v+odd v = i1 + i2 + · · · ik +oddw0 +oddw1 + · · ·+oddwk.

Hence,
∑

v∈[0,r]n
qtot vs2 evdec v+odd v =

A

1−B , where A =
∑

w∈NIW(r)

qtot wsodd wuλw

and B =
∑

(w,i)∈D(r)

(sq)iqtot wsodd wuλw. But A =
1

(u)′r+1

and

B =
∑

(w,i)∈D(r)

(sq)iqtot wsodd wuλw

=
∑

n≥2

n−1
∑

i=1

(sq)i
∑

w∈NIWn(r−1)

qtot wsodd wuλw

=
∑

n≥2

sq − (sq)n

1− sq
∑

w∈NIWn(r−1)

qtot wsodd wuλw

=
sq

1− sq
∑

n≥2

∑

w∈NIWn(r−1)

qtot wsodd wuλw

+
1

1− sq
∑

n≥2

∑

w∈NIWn(r−1)

qtot wsodd w(usq)λw

=
sq

1− sq
( 1

(u)′r
− (1 + cu)

)

+
1

1− sq
( 1

(usq)′r
− (1 + cusq)

)

[where c is the coefficient of u in 1/(u)′r]

= 1 +
1

1− sq
( sq

(u)′r
− 1

(usq)′r

)

.

Finally,
∑

v∈[0,r]n

qtot vs2 evdec v+odd v =
A

1−B =
1

(u)′r+1

× (1− sq)(u)′r(usq)′r
(u)′r − sq(usq)′r

,

which is the expression written in (8.1).

Remark. The method used in the latter proof cannot be applied when
Z 6= 1. Although identity (8.2) always holds, we do not have

odd v = oddw0 + oddw1 + · · ·+ oddwk

in general.
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9. Specializations

In Section 7 we have seen that the generating function for the poly-
nomials An(s, t, q, Y ) can be derived from (1.6) by letting Z = 0 and
replace the triplet (s, t, q, Y0) by (s1/2, t1/2, q1/2, Y ). We just comment the
specializations s = 1 and Y0 = Y1 = Z = 1.

9.1. Case s = 1. We have

Fr(u; 1, q, Z)

=
(uq2; q2)⌊r/2⌋ (1− q2) (u; q2)⌊(r+1)/2⌋ (u; q

2)⌊r/2⌋

(u; q2)⌊r/2⌋+1

(

(u; q2)⌊(r+1)/2⌋

(

(u; q2)⌊r/2⌋ − q2 (uq2; q2)⌊r/2⌋

)

+ qZ (u; q2)⌊r/2⌋

(

(u; q2)⌊(r+1)/2⌋ − (uq2; q2)⌊(r+1)/2⌋

)

)

,

so that we can divide both numerator and denominator by the product
(u; q2)⌊(r+1)/2⌋ (u; q

2)⌊r/2⌋. We then get

Fr(u; 1, q, Z) =
1− q2
1− u

(

1− q2 1− uq2⌊r/2⌋

1− u + qZ − qZ 1− uq2⌊(r+1)/2⌋

1− u
)−1

=
(

1− u1− q2⌊r/2⌋+2

1− q2 − uqZ 1− q2⌊(r+1)/2⌋

1− q2
)−1

=
(

1− u
∑

0≤i≤r

qiZχ(i odd)
)−1

.

We then recover identity (1.9) from our paper [FoHa07a] in the form:

(9.1)
∑

n≥0

(1 + t)Bn(1, t, q, Y0, Y1, Z)
un

(t2; q2)n+1

=
∑

r≥0

tr
(u; q2)⌊r/2⌋+1

(uY0; q2)⌊r/2⌋+1

(−uqY1Z; q2)⌊(r+1)/2⌋

(−uqZ; q2)⌊(r+1)/2⌋

(

1− u
r
∑

i=0

qiZ
χ(i odd)

)−1

.

9.2. Case Y0 = Y1 = Z = 1. Identity (1.7) simply becomes

(9.2)
∑

n≥0

(1 + t)Bn(s, t, q, 1, 1, 1)
un

(t2; q2)n+1
=
∑

r≥0

trFr(u; s, q, 1),

where Fr(u; s, q, 1) is given by (1.8). Note that Bn(s, t, q, 1, 1, 1) is the
generating polynomial for the groupBn by (fexc, fdes, fmaj). WriteBn(s, t)
for Bn(s, t, 1, 1, 1, 1). From (9.2) we deduce

(9.3)
∑

n≥0

Bn(s, t)
un

(1− t2)n
=
∑

r≥0

( (1− s)(1− t)t2r

(1− u)r+1(1− us2)−r − s(1− u)

+
(1− s)(1− t)t2r+1

(1− u)r+1(1− us2)−r − s(1− us)
)

.
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To obtain the marginal distribution Bn(s, 1) =
∑

w∈Bn

sfexc w it is convenient
to specialize formula (1.9). We obtain

(9.4)
∑

n≥0

Bn(s, 1)
un

n!
=

1− s
−s+ exp(u(s2 − 1))

.

As for Bn(1, t) =
∑

w∈Bn

tfdes w we specialize (9.1) and find:

(9.5)
∑

n≥0

Bn(1, t)
un

(1− t2)n
=
∑

r≥0

tr
1− t

1− u(r + 1)
.

Hence, Bn(1, t)/(1− t2)n = (1− t) ∑
r≥0

tr(r + 1)n and

(9.6)
∑

n≥0

Bn(1, t)
un

n!
=

1− t
−t+ exp(u(t2 − 1))

.

It follows from (9.4) and (9.6) that Bn(s, 1) = Bn(1, s), so that “fexc”
and “fdes” are equally distributed on the group Bn. For k, n ≥ 0 let Bn,k

be the number of signed permutations w from Bn such that fdesw = k. In
our paper [FoHa06] we have derived the recurrence formula for the Bn,k’s
in a more general context. The recurrence reads as follows

B0,0 = 1, B0,k = 0 for all k 6= 0;

B1,0 = 1, B1,1 = 1, B1,k = 0 for all k 6= 0, 1;

Bn,k = (k + 1)Bn−1,k +Bn−1,k−1 + (2n− k)Bn−1,k−2;

for n ≥ 2 and 0 ≤ k ≤ 2n− 1. Let B′n,k := #{w ∈ Bn : fexcw = k}. The
coefficients B′n,k’s satisfy the same recurrence as the Bn,k’s. The induction
is easy, so that we can fabricate a bijection ψ of Bn onto itself such that
fexcw = fdesψ(w).

10. Concluding remarks

The statistical study of the group Bn and some other Weyl groups
has been initiated by Reiner ([Re93a], [Re93b], [Re93c], [Re95a], [Re95b])
and continued by the Roman school ([Br94], [Bi03], [BiCa04]). It has
been rejuvenated by Adin, Roichman [AR01] with their definition of
the flag major index for signed permutations and the first proof of
the fact that length function and flag-major index were equidistributed
over Bn ([ABR01], [ABR05], [ABR06]). In our series “Signed words and
permutations; I–V” we have tried to work out analytical expressions for the
multivariable distributions on the group Bn that were natural extensions of
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the expressions already derived for the symmetric group Sn. Other works
along those lines are due to Gessel and his school ([ChGe07], [Ch03]).
Further algebraic extensions have recently been done by the Minnesota
school [BRS07].

We should like to thank Christian Krattenthaler [Kr07] who urged us to
use the telescoping technique to shorten our q-calculations (see Section 6).
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7, rue René-Descartes
F-67084 Strasbourg, France

guoniu@math.u-strasbg.fr



 - 109 - 

2007/08/29/14:15

Fix-Mahonian Calculus, I: two transformations

Dominique Foata and Guo-Niu Han

Tu es Petrus, et super hanc petram,
aedificavisti Lacim Uqam tuam.

To Pierre Leroux, Montreal, Sept. 2006,
on the occasion of the LerouxFest.

ABSTRACT. We construct two bijections of the symmetric group Sn

onto itself that enable us to show that three new three-variable statistics
are equidistributed with classical statistics involving the number of fixed
points. The first one is equidistributed with the triplet (fix,des,maj),
the last two with (fix, exc,maj), where “fix,” “des,” “exc” and “maj”
denote the number of fixed points, the number of descents, the number of
excedances and the major index, respectively.

1. Introduction

In this paper Fix-Mahonian Calculus is understood to mean the study
of multivariable statistics on the symmetric group Sn, which involve the
number of fixed points “fix” as a marginal component. As for the two
transformations mentioned in the title, they make it possible to show that
the new statistics defined below are equidistributed with the classical ones.

The descent set, DESw, and rise set, RISEw, of a word w = x1x2 · · ·xn,
whose letters are nonnegative integers, are respectively defined as being
the subsets:

DESw := {i : 1 ≤ i ≤ n− 1, xi > xi+1};(1.1)

RISEw := {i : 1 ≤ i ≤ n, xi ≤ xi+1}.(1.2)

By convention, x0 = xn+1 = +∞. If σ = σ(1)σ(2) · · ·σ(n) is a permu-
tation of 12 · · ·n, we can then consider RISE σ, but also a new statistic
RIZE σ, which is simply the rise set of the word w derived from σ by re-
placing each fixed point σ(i) = i by 0. For instance, with σ = 3 2 5 4 1 hav-
ing the two fixed points 2, 4, we get w = 3 0 5 0 1, so that RISE σ = {2, 5}
and RIZEσ = RISEw = {2, 4, 5}. It is quite unexpected to notice that the
two set-theoretic statistics “RISE” and “RIZE” are equidistributed on each
symmetric group Sn. Such an equidistribution property, which is a conse-
quence of our Theorem 1.4, has become a powerful tool, as it has enabled
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Xin and the second author [HaXi07] to give an immediate proof of a con-
jecture of Stanley [St06] on alternating permutations. More importantly,
the equidistribution properties are proved by means of new transforma-
tions of the symmetric group, the bijections Φ and F3 introduced in the
sequel, whose properties will be fully exploited in our next paper [FoHa07].
Those transformations will be described not directly on Sn, but on classes
of shuffles, as now introduced.

Let 0 ≤ m ≤ n and let v be a nonempty word of length m, whose letters
are positive integers (with possible repetitions). Designate by Sh(0n−mv)
the set of all shuffles of the words 0n−m and v, that is, the set of
all rearrangements of the juxtaposition product 0n−mv, whose longest
subword of positive letters is v. Let w = x1x2 · · ·xn be a word from
Sh(0n−mv). It is convenient to write: Posw := v, Zerow := {i : 1 ≤
i ≤ n, xi = 0}, zerow := # Zerow (= n − m), so that w is completely
characterized by the pair (Zerow,Posw).

The major index of w is defined by

majw :=
∑

i≥1

i (i ∈ DESw),(1.3)

and a new integral-valued statistic “mafz” by

mafzw :=
∑

i∈Zero w

i−
zero w
∑

i=1

i+ majPosw.(1.4)

Note that the first three definitions are also valid for each arbitrary
word with nonnegative letters. The link of “mafz” with the statistic “maf”
introduced in [CHZ97] for permutations will be further mentioned.

We shall also be interested in shuffle classes Sh(0n−mv) when the word v
is a derangement of the set [m ] := {1, 2, . . . , m}, that is, when the word
v = y1y2 · · · ym is a permutation of 12 · · ·m and yi 6= i for all i. For
short, v is a derangement of order m. Let w = x1x2 · · ·xn a be word from
the shuffle class Sh(0n−mv). Then v = y1y2 · · · ym = xj1xj2 · · ·xjm

for a
certain sequence 1 ≤ j1 < j2 < · · · < jm ≤ n. Let “red” be the increasing
bijection of {j1, j2, . . . , jm} onto [m ]. Say that each positive letter xk of w
is excedent (resp. subexcedent) if and only if xk > red k (resp. xk < red k).
Another kind of rise set, denoted by RISE•w, can then be introduced as
follows.

Say that i ∈ RISE•w if and only if 1 ≤ i ≤ n and if one of the following
conditions holds (assuming that xn+1 = +∞):

(1) 0 < xi < xi+1;
(2) xi = xi+1 = 0;
(3) xi = 0 and xi+1 is excedent;
(4) xi is subexcedent and xi+1 = 0.
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Note that if xi = 0 and xi+1 is subexcedent, then i ∈ RISEw \ RISE• w,
while if xi is subexcedent and xi+1 = 0, then i ∈ RISE• w \ RISEw.

Example. Let v = 5 1 2 3 6 4 be a derangement of order 6. Its excedent
letters are 5, 6. Let w = 5 0 1 2 0 0 3 6 4 ∈ Sh(03v). Then, RISEw =
{2, 3, 5, 6, 7, 9} and RISE•w = {3, 4, 5, 7, 9}. Also mafzw = (2 + 5 + 6) −
(1 + 2 + 3) + maj(512364) = 7 + 6 = 13.

Theorem 1.1. For each derangement v of order m and each integer
n ≥ m the transformation Φ constructed in Section 2 is a bijection of
Sh(0n−mv) onto itself having the property that

(1.5) RISEw = RISE
•Φ(w)

holds for every w ∈ Sh(0n−mv).

Theorem 1.2. For each arbitrary word v of lengthm with positive letters
and each integer n ≥ m the transformation F3 constructed in Section 4 is
a bijection of Sh(0n−mv) onto itself having the property that

majw = mafzF3(w);(1.6)

Lw = LF3(w) (“L” for “last” or rightmost letter);(1.7)

hold for every w ∈ Sh(0n−mv).

We emphasize the fact that Theorem 1.1 is restricted to the case where v
is a derangement, while Theorem 1.2 holds for an arbitrary word v with
possible repetitions. In Fig. 1 we can see that “RISE” and “RISE•” (resp.
“maj” and “mafz”) are equidistributed on the shuffle class Sh(02312) (resp.
Sh(02121)).

RISEw w Φ(w) RISE•Φ(w)
1, 2, 4, 5 0 0 3 1 2 0 0 3 1 2 1, 2, 4, 5
1, 3, 4, 5 0 3 0 1 2 0 3 1 2 0 1, 3, 4, 5
1, 4, 5 0 3 1 0 2 0 3 0 1 2 1, 4, 5
1, 3, 5 0 3 1 2 0 0 3 1 0 2 1, 3, 5

2, 3, 4, 5 3 0 0 1 2 3 1 2 0 0 2, 3, 4, 5
2, 4, 5 3 0 1 0 2 3 0 0 1 2 2, 4, 5

3 1 2 0 0 3 1 0 2 0
2, 3, 5 3 0 1 2 0 3 0 1 0 2 2, 3, 5
3, 4, 5 3 1 0 0 2 3 0 1 2 0 3, 4, 5
3, 5 3 1 0 2 0 3 1 0 0 2 3, 5

Sh(02312)

majw w F3(w) mafzF3(w)
2 1 2 0 0 1 0 0 1 2 1 2
3 0 1 2 0 1 0 1 0 2 1 3
4 0 0 1 2 1 1 0 0 2 1 4

1 0 2 0 1 0 1 2 0 1
5 1 0 0 2 1 1 0 2 0 1 5

1 2 1 0 0 0 1 2 1 0
6 0 1 0 2 1 1 2 0 0 1 6

1 2 0 1 0 1 0 2 1 0
7 0 1 2 1 0 1 2 0 1 0 7
8 1 0 2 1 0 1 2 1 0 0 8

Sh(02121)
Fig. 1

Those two transformations are fully exploited once we know how to
map those shuffle classes onto the symmetric groups. The permutations
from the symmetric group Sn will be regarded as linear words σ =
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σ(1)σ(2) · · ·σ(n). If σ is such a permutation, let FIXσ denote the set
of its fixed points, i.e., FIX σ := {i : 1 ≤ i ≤ n, σ(i) = i} and let
fix σ := # FIXσ. Let (j1, j2, . . . , jm) be the increasing sequence of the
integers k such that 1 ≤ k ≤ n and σ(k) 6= k and “red” be the increasing
bijection of {j1, j2, . . . , jm} onto [m]. The word w = x1x2 · · ·xn derived
from σ = σ(1)σ(2) · · ·σ(n) by replacing each fixed point by 0 and each
other letter σ(jk) by red σ(jk) will be denoted by ZDer(σ). Also let

(1.8) Derσ := redσ(j1) redσ(j2) · · · red σ(jm),

so that Derσ is the word derived from ZDer(σ) by deleting all the zeros.
Accordingly, Derσ = Pos ZDer(σ).

It is important to notice that Derσ is a derangement of order m. Also
σ(jk) is excedent in σ (i.e. σ(jk) > jk) if and only redσ(jk) is excedent in
Derσ (i.e. red σ(jk) > red jk)

Recall that the statistics “DES,” “RISE” and “maj” are also valid for
permutations σ = σ(1)σ(2) · · ·σ(n) and that the statistics “des” (number

of descents) and “exc” (number of excedances) are defined by

desσ := # DESσ;(1.9)

excσ := #{i : 1 ≤ i ≤ n− 1, σ(i) > i}.(1.10)

We further define:
DEZσ := DES ZDer(σ);(1.11)

RIZE σ := RISE ZDer(σ);(1.12)

dezσ := # DEZσ = des ZDer(σ);(1.13)

mazσ := maj ZDer(σ);(1.14)

maf σ := mafz ZDer(σ).(1.15)

As the zeros of ZDer(σ) correspond to the fixed points of σ, we also have

(1.16) maf σ :=
∑

i∈FIX σ

i−
fix σ
∑

i=1

i+ majDerσ.

Example. Let σ = 82 1 356 4 9 7; then DESσ = {1, 2, 6, 8}, des σ = 4,
majσ = 17, excσ = 2. Furthermore, ZDer(σ) = w = 5 0 1 2 0 0 3 6 4 and
Posw = Derσ = 5 1 2 3 6 4 is a derangement of order 6. We have FIX σ =
{2, 5, 6}, fixσ = 3, DEZσ = {1, 4, 8}, RIZEw = {2, 3, 5, 6, 7, 9}, dez = 3,
mazσ = 13 and maf σ = (2+5+6)−(1+2+3)+maj(512364) = 7+6 = 13.

For each n ≥ 0 letDn be the set of all derangements of order n and S
Der
n

be the union: S
Der
n :=

⋃

m,v
Sh(0n−mv) (0 ≤ m ≤ n, v ∈ Dm).
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Proposition 1.3. The map ZDer is a bijection of Sn onto S
Der
n having

the following properties:

(1.17) RIZEσ = RISE ZDer(σ) and RISE σ = RISE
• ZDer(σ).

Proof. It is evident to verify that ZDer is bijective and to define
its inverse ZDer−1. On the other hand, we have RIZE = RISE ZDer by
definition. Finally, let w = x1x2 · · ·xn = ZDer(σ) and σ(i) < σ(i+ 1) for
1 ≤ i ≤ n− 1. Four cases are to be considered:

(1) both i and i+ 1 are not fixed by σ and 0 < xi < xi+1;
(2) both i and i+ 1 are fixed points and xi = xi+1 = 0;
(3) σ(i) = i and σ(i + 1) is excedent; then xi = 0 and xi+1 is also

excedent;
(4) σ(i) < i < i+ 1 = σ(i+ 1); then xi is subexcedent and xi+1 = 0.

We recover the four cases considered in the definition of RISE•. The case
i = n is banal to study.

We next form the two chains:

Φ : σ
ZDer7→ w

Φ7→ w′
ZDer−1

7→ σ′;(1.18)

F3 : σ
ZDer7→ w

F37→ w′′
ZDer−1

7→ σ′′.(1.19)

The next theorem is then a consequence of Theorems 1.1 and 1.2 and
Propositions 1.3.

Theorem 1.4. The mappings Φ, F3 defined by (1.18) and (1.19) are
bijections of Sn onto itself and have the following properties

(fix,RIZE,Der) σ = (fix,RISE,Der) Φ(σ);(1.20)

(fix,maz,Der) σ = (fix,maf,Der) F3(σ);(1.21)

(fix,maj,Der) σ = (fix,maf,Der) F3 ◦ Φ−1(σ);(1.22)

for every σ from Sn.

It is evident that if Derσ = Der τ holds for a pair of permutations
σ, τ of order n, then excσ = exc τ . Since DESσ = [n ] \ RISE σ and
DEZσ = [n ] \ RIZEσ it follows from (1.20) that

(fix,DEZ, exc) σ = (fix,DES, exc) Φ(σ);(1.23)

(fix, dez,maz, exc) σ = (fix, des,maj, exc) Φ(σ).(1.24)

On the other hand, (1.21) implies that

(1.25) (fix,maz, exc) σ = (fix,maf, exc) F3(σ).

As a consequence we obtain the following Corollary.
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Corollary 1.5. The two triplets (fix, dez,maz) and (fix, des,maj) are
equidistributed over Sn. Moreover, the three triplets (fix, exc,maz),
(fix, exc,maj) and (fix, exc,maf) are also equidistributed over Sn.

The distributions of (fix, des,maj) and (fix, exc,maj) have been calcu-
lated by Gessel-Reutenauer ([GeRe93], Theorem 8.4) and by Shareshian
and Wachs [ShWa06], respectively, using the algebra of the q-series (see,
e.g., Gasper and Rahman ([GaRa90], chap. 1). Let

An(s, t, q, Y ) :=
∑

σ∈Sn

sexc σtdes σqmaj σY fix σ (n ≥ 0).

Then, they respectively derived the identities:

(1.26)
∑

n≥0

An(1, t, q, Y )
un

(t; q)n+1

=
∑

r≥0

tr
(

1− u
r
∑

i=0

qi
)−1 (u; q)r+1

(uY ; q)r+1

;

(1.27)
∑

n≥0

An(s, 1, q, Y )
un

(q; q)n
=

(1− sq)eq(Y u)

eq(squ)− sqeq(u)
.

In our third paper [FoHa07a] we have shown that the factorial generating
function for the four-variable polynomials An(s, t, q, Y ) could be evaluated
under the form

(1.28)
∑

n≥0

An(s, t, q, Y )
un

(t; q)n+1

=
∑

r≥0

tr
(1− sq) (u; q)r (usq; q)r

((u; q)r − sq(usq; q)r)(uY ; q)r+1

,

the two identities (1.26) and (1.27) becoming simple specializations.
We then know the distributions over Sn of the triplets (fix, dez,maz),
(fix, exc,maz) and (fix, exc,maf) and also the distribution of the quadru-
plet (fix, dez,maz, exc). Note that the statistic “maf” was introduced by
Clarke et al. [CHZ97]. Although it was not explicitly stated, their bijection
“CHZ” of Sn onto itself satisfies identity (1.22) when F3 ◦Φ−1 is replaced
by “CHZ.”

As is shown in Section 2, the transformation Φ is described as a
composition product of bijections φl. The image φl(w) of each word w
from a shuffle class Sh(0n−mv) is obtained by moving its l-th zero, to the
right or to the left, depending on its preceding and following letters. The
description of the inverse bijection Ψ of Φ follows an analogous pattern.
The verification of identity (1.5) requires some attention and is made in
Section 3. The construction of the transformation F3 is given in Section 4.
Recall that F3 maps each shuffle class Sh(0n−mv) onto itself, the word v
being an arbitrary word with nonnegative letters. Very much like the
second fundamental transformation (see, e.g., [Lo83], p. 201, Algorithm
10.6.1) the construction of F3 is defined by induction on the length of the
words and preserves the rightmost letter.
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2. The bijection Φ

Let v be a derangement of order m and w = x1x2 · · ·xn be a word from
the shuffle class Sh(0n−mv) (0 ≤ n ≤ m), so that v = xj1xj2 · · ·xjm

for 1 ≤ j1 < j2 < · · · < jm ≤ n. Let “red” (“reduction”) be the
increasing bijection of {j1, j2, . . . , jm} onto the interval [m ]. Remember
that a positive letter xk of w is said to be excedent (resp. subexcedent)
if and only if xk > red k (resp. xk < red k). Accordingly, a letter is non-
subexcedent if it is either equal to 0 or excedent.

We define n bijections φl (1 ≤ l ≤ n) of Sh(0n−mv) onto itself in the
following manner: for each l such that n−m+ 1 ≤ l ≤ n let φl(w) := w.
When 1 ≤ l ≤ n−m, let xj denote the l-th letter of w, equal to 0, when w
is read from left to right. Three cases are next considered (by convention,
x0 = xn+1 = +∞):

(1) xj−1, xj+1 both non-subexcedent;
(2) xj−1 non-subexcedent, xj+1 subexcedent; or xj−1, xj+1 both

subexcedent with xj−1 > xj+1;
(3) xj−1 subexcedent, xj+1 non-subexcedent; or xj−1, xj+1 both

subexcedent with xj−1 < xj+1.

When case (1) holds, let φl(w) := w.
When case (2) holds, determine the greatest integer k ≥ j+1 such that

xj+1 < xj+2 < · · · < xk < red(k),

so that
w = x1 · · ·xj−1 0 xj+1 · · ·xk xk+1 · · ·xn

and define:

φl(w) := x1 · · ·xj−1 xj+1 · · ·xk 0 xk+1 · · ·xn.

When case (3) holds, determine the smallest integer i ≤ j−1 such that

red(i) > xi > xi+1 > · · · > xj−1,

so that
w = x1 · · ·xi−1 xi · · ·xj−1 0 xj+1 · · ·xn

and define:

φl(w) := x1 · · ·xi−1 0 xi · · ·xj−1 xj+1 · · ·xn.

It is important to note that φl has no action on the 0’s other than
the l-th one. Then the mapping Φ in Theorem 1.1 is defined to be the
composition product

Φ := φ1φ2 · · ·φn−1φn.
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Example. The following word w has four zeros, so that Φ(w) can be
reached in four steps:

Id = 1 2 3 4 5 6 7 8 9 10 11
w = 5 0 1 2 0 0 3 6 0 7 4 j = 9, apply φ4, case (1);

5 0 1 2 0 0 3 6 0 7 4 j = 6, apply φ3, case (2), k = 7;
5 0 1 2 0 3 0 6 0 7 4 j = 5, apply φ2, case (3), i = 4;
5 0 1 0 2 3 0 6 0 7 4 j = 2, apply φ1, case (2), k = 3;

Φ(w) = 5 1 0 0 2 3 0 6 0 7 4.

We have: RISEw = RISE•Φ(w) = {2, 3, 5, 6, 7, 9, 11}, as desired.

To verify that Φ is bijective, we introduce a class of bijections ψl, whose
definitions are parallel to the definitions of the φl’s. Let w = x1x2 · · ·xn ∈
Sh(0n−mv) (0 ≤ m ≤ n). For each l such that n − m + 1 ≤ l ≤ n let
ψl(w) := w. When 1 ≤ l ≤ n−m, let xj denote the l-th letter of w, equal
to 0, when w is read from left to right. Consider the following three cases
(remember that x0 = xn+1 = +∞ by convention):

(1′) = (1) xj−1, xj+1 both non-subexcedent;
(2′) xj−1 subexcedent, xj+1 non-subexcedent; or xj−1, xj+1 both

subexcedent with xj−1 > xj+1;
(3′) xj−1 non-subexcedent, xj+1 subexcedent; or xj−1, xj+1 both

subexcedent with xj−1 < xj+1.

When case (1′) holds, let ψl(w) := w.
When case (2′) holds, determine the smallest integer i ≤ j−1 such that

xi < xi+1 < · · · < xj−1 < red(j − 1),

so that

w = x1 · · ·xi−1 xi · · ·xj−1 0 xj+1 · · ·xn

and define:

ψl(w) := x1 · · ·xi−1 0 xi · · ·xj−1 xj+1 · · ·xn.

When case (3′) holds, determine the greatest integer k ≥ j+1 such that

red(j + 1) > xj+1 > xj+2 > · · · > xk,

so that

w = x1 · · ·xj−1 0 xj+1 · · ·xk xk+1 · · ·xn

and define:

ψl(w) := x1 · · ·xj−1 xj+1 · · ·xk 0 xk+1 · · ·xn.
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We now observe that when case (2) (resp. (3)) holds for w, then case (2′)
(resp. (3′)) holds for φl(w). Also, when case (2′) (resp. (3′)) holds for w,
then case (2) (resp. (3)) holds for ψl(w). Therefore

φlψl = ψlφl = Identity map

and the product Ψ := ψnψn−1 · · ·ψ2ψ1 is the inverse bijection of Φ.

3. Verification of RISEw = RISE•Φ(w)

Let us introduce an alternate definition for Φ. Let w belong to
Sh(0n−mv) and w′ be a nonempty left factor of w, of length n′. Let w′

have p′ letters equal to 0. If p′ ≥ 1, write

w′ = x1 · · ·xj−1 0hxj+hxj+h+1 · · ·xn′ ,

where 1 ≤ h ≤ p′, xj−1 6= 0 and where the right factor xj+hxj+h+1 · · ·xn′

contains no 0. By convention xj+h := +∞ if j + h = n′ + 1. If
xj+h is subexcedent let k be the greatest integer k ≥ j + h such that
xj+h < xj+h+1 < · · · < xk < red(k). If xj−1 is subexcedent let i be the
smallest integer i ≤ j − 1 such that red(i) > xi > xi+1 > · · · > xj−1.
Examine four cases:

(1) if xj−1 and xj+h are both excedent, let

u := x1 · · ·xj−1, u′ := 0hxj+hxj+h+1 · · ·xn′

and define

θ(u′) := u′.

(2) if xj−1 is excedent and xj+h subexcedent, or if xj−1, xj+h are both
subexcedent with xj−1 > xj+h, let

u := x1 · · ·xj−1, u′ := 0h xj+h · · ·xk xk+1 · · ·xn′

and define
θ(u′) := xj+h · · ·xk 0h xk+1 · · ·xn′ .

(3) if xj−1, xj+h are both subexcedent with xj−1 < xj+h, let

u := x1 · · ·xi−1, u′ := xi · · ·xj−10
hxj+h · · ·xk xk+1 · · ·xn′

and define

θ(u′) := 0 xi · · ·xj−1xj+h · · ·xk 0h−1 xk+1 · · ·xn′ .

(4) if xj−1 is subexcedent and xj+h excedent, let

u := x1 · · ·xi−1, u′ := xi · · ·xj−10
hxj+h · · ·xn′

and define

θ(u′) := 0 xi · · ·xj−1 0h−1 xj+h · · ·xn′ .
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By construction w′ = uu′. Call it the canonical factorization of w′. In the
four cases we evidently have:

RISE u′ = RISE
• θ(u′).(3.1)

Define Θ(w′) to be the three-term sequence:

Θ(w′) := (u, u′, θ(u′)).(3.2)

Let q be the length of u. Then q = j− 1 in cases (1) and (2) and q = i− 1
in cases (3) and (4).

Lemma 3.1. We have

RISE xqu
′ = RISE

• xqθ(u
′),(3.3)

RISE xqu
′ = RISE

• 0θ(u′), if xq is subexcedent.(3.4)

Proof. Let α (resp. β) be the leftmost letter of u′ (resp. of θ(u′)).
Because of (3.1) we only have to prove that RISE xqα = RISE• xqβ for
(3.3) and RISE xqα = RISE• 0β when xq is subexcedent for (3.4). Let us
prove identity (3.3). There is nothing to do in case (1). In case (2) we have
to verify RISE xj−10 = RISE• xj−1xj+h. When xj−1 is excedent and xj+h

subexcedent, then 1 6∈ RISE xj−10 and 1 6∈ RISE• xj−1xj+h. When xj−1,
xj+h are both subexcedent with xj−1 > xj+h, then 1 6∈ RISE xj−10 and
1 6∈ RISE• xj−1xj+h.

In cases (3) and (4) we have to verify RISE xi−1xi = RISE• xi−10. If
xi−1 = 0 (resp. excedent), then 1 ∈ RISE xi−1xi (resp. 1 6∈ RISE xi−1xi)
and 1 ∈ RISE• xi−10 (resp. 1 6∈ RISE• xi−10). When xi−1 is subexcedent,
then xi−1 < xi by definition of i. Hence 1 ∈ RISE xi−1xi and 1 ∈
RISE• xi−10.

We next prove identity (3.4). In case (1) xq is always excedent, so
that identity (3.4) need not be considered. In case (2) we have to verify
RISE xj−10 = RISE• 0xj+h. But if xj−1 is subexcedent, then xj+h is also
subexcedent, so that the above two sets are empty. In cases (3) and (4) we
have to verify RISE xi−1xi = RISE• 00 = {1}. But if xi−1 is subexcedent,
then xi−1 < xi by definition of i, so that 1 ∈ RISE xi−1xi.

Now, if w has p letters equal to 0 with p ≥ 1, it may be expressed as
the juxtaposition product

w = w1 0h1 w2 0h2 · · · wr 0hr wr+1,

where h1 ≥ 1, h2 ≥ 1, . . . , hr ≥ 1 and where the factors w1, w2, . . . , wr,
wr+1 contain no 0 and w2, . . . , wr are nonempty. We may define: Θ(w) :=
(ur, u

′
r, θ(u

′
r)), where w = uru

′
r is the canonical factorization of w. As ur
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is a left factor of w, we next define Θ(ur) := (ur−1, u
′
r−1, θ(u

′
r−1)), where

ur = ur−1u
′
r−1 is the canonical factorization of ur, and successively

Θ(ur−1) := (ur−2, u
′
r−2, θ(u

′
r−2)) with ur−1 = ur−2u

′
r−2, . . . , Θ(u2) :=

(u1, u
′
1, θ(u

′
1)) with u2 = u1u

′
1, so that w = u1u

′
1u
′
2 · · ·u′r and Φ(w) =

u1 θ(u
′
1)θ(u

′
2) · · · θ(u′r).

It can be verified that ur θ(u
′
r) = φp−hr+1 · · ·φp−1φp(w),

ur−1θ(u
′
r−1)θ(u

′
r) = φp−hr−hr−1+1 · · ·φp−1φp(w), etc.

With identities (3.1), (3.3) and (3.4) the proof of (1.5) is now completed.

Again, consider the word w of the preceding example

w = 5 0 1 2 0 0 3 6 0 7 4,

so that r = 3, h1 = 1, h2 = 2, h3 = 1, w1 = 5, w2 = 1 2 and w3 = 3 6,
w4 = 7 4. We have

Θ(w) = (u3, u
′
3, θ(u

′
3)) = (5 0 1 2 0 0 3 6; 0 7 4; 0 7 4); case (1)

Θ(u3) = (u2, u
′
2, θ(u

′
2)) = (5 0 1; 2 0 0 3 6; 0 2 3 0 6); case (3)

Θ(u2) = (u1, u
′
1, θ(u

′
1)) = (5; 0 1; 1 0); case (2)

Φ(w) = u1 θ(u
′
1)θ(u

′
2)θ(u

′
3) = 5 | 1 0 | 0 2 3 0 6 | 0 7 4.

4. The transformation F3

The bijection F3 we are now defining maps each shuffle class Sh(0n−mv)
with v an arbitrary word of length m (0 ≤ m ≤ n) onto itself. When
n = 1 the unique element of the shuffle class is sent onto itself. Also let
F3(w) = w when des(w) = 0. Let n ≥ 2 and assume that F3(w

′) has been
defined for all words w′ with nonnegative letters, of length n′ ≤ n − 1.
Further assume that (1.6) and (1.7) hold for all those words. Let w be a
word of length n such that des(w) ≥ 1. We may write

w = w′a0rb,

where a ≥ 1, b ≥ 0 and r ≥ 0. Three cases are considered:
(1) a ≤ b; (2) a > b, r ≥ 1; (3) a > b, r = 0.

In case (1) define: F3(w) = F3(w
′a0rb) := (F3(w

′a0r))b.
In case (2) we may write F3(w

′a0r) = w′′0 by Property (1.7). We then
define

γ F3(w
′a0r) := 0w′′;

F3(w) = F3(w
′a0rb) := (γF3(w

′a0r))b = 0w′′b.
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In short, add one letter “0” to the left of F3(w
′a0r), then delete the

rightmost letter “0” and add b to the right.
In case (3) remember that r = 0. Write

F3(w
′a) = 0m1x1v10

m2x2v2 · · ·0mkxkvk,

where m1 ≥ 0,m2, . . . , mk are all positive, then x1, x2, . . . , xk are positive
letters and v1, v2, . . . , vk are words with positive letters, possibly empty.
Then define:

δF3(w
′a) := x10

m1v1x20
m2v2x3 · · ·xk0mkvk;

F3(w) = F3(w
′ab) := (δF3(w

′a))b.

In short, move each positive letter occurring just after a 0-factor of F3(w
′a)

to the beginning of that 0-factor and add b to the right.

Example. w = 0 0 0 3 1 2 2 0 0 1 3

F3(0 0 0 3) = 0 0 0 3 no descent

F3(0 0 0 3 1) = δ(0 0 0 3)1 = 3 0 0 0 1 case (3)

F3(0 0 0 3 1 2 2) = 3 0 0 0 1 2 2 case (1)

F3(0 0 0 3 1 2 2 0) = δ(3 0 0 0 1 2 2)0 = 3 1 0 0 0 2 2 0 case (3)

F3(0 0 0 3 1 2 2 0 0) = γ(3 1 0 0 0 2 2 0)0 = 0 3 1 0 0 0 2 2 0 case (2)

F3(0 0 0 3 1 2 2 0 0 1) = γ(0 3 1 0 0 0 2 2 0)1 = 0 0 3 1 0 0 0 2 2 1 case (2)

F3(0 0 0 3 1 2 2 0 0 1 3) = 0 0 3 1 0 0 0 2 2 1 3.

We have: majw = maj(0 0 0 3 1 2 2 0 0 1 3) = 4 + 7 = 11 and mafzF3(w) =
mafz(0 0 3 1 0 0 0 2 2 1 3) = (1+2+5+6+7)−(1+2+3+4+5)+(1+4) = 11.

By construction the rightmost letter is preserved by F3. To prove
(1.6) proceed by induction. Assume that mafzw′a0r = mafzF3(w

′a0r)
holds. In case (1) “maj” and “mafz” remain invariant when b is jux-
taposed at the end. In case (2) we have majw = maj(w′a0rb) =
maj(w′a0r), but mafz γF3(w

′a0r) = mafzF3(w
′a0r) − |w′a0r|≥1 and

mafz (γ F3(w
′a0r))b = mafz γ F3(w

′a0r) + |w′a0r|≥1, where |w′a0r|≥1 de-
notes the number of positive letters in w′a0r. Hence (1.6) holds. In case (3)
remember r = 0. We have maj(w′ab) = maj(w′a) + |w′a|, where |w′a| de-
notes the length of the word w′a. But mafz δF3(w

′a) = mafzF3(w
′a) +

zero(w′a) and mafz(δF3(w
′a))b = mafz δF3(w

′a) + |w′a|≥1. The equality
holds for b = 0 and b ≥ 1, as easily verified. As zero(w′a)+|w′a|≥1 = |w′a|,
we have mafzF3(w) = mafz (δF3(w

′a))b = mafzF3(w
′a) + |w′a| =

majw′ab = majw. Thus (1.6) holds in the three cases.
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To define the inverse bijection F−1
3 of F3 we first need the in-

verses γ−1(w) and δ−1(w) for each word w. Let w = 0w′ be a word,
whose first letter is 0. Define γ−1(w) to be the word derived from w by
deleting the first letter 0 and adding one letter “0” to the right of w.
Clearly, γ−1γ = γγ−1 is the identity map.

Next, let w be a word, whose first letter is positive. Define δ−1(w) to
be the word derived from w by moving each positive letter occurring just
before a 0-factor of w to the end of that 0-factor. Again δ−1δ = δδ−1 is
the identity map.

We may write
w = cw′a0rb,

where a ≥ 1, b ≥ 0, c ≥ 0 and r ≥ 0. Three cases are considered:
(1) a ≤ b; (2) a > b, c = 0; (3) a > b, c ≥ 1.
In case (1) define: F−1

3 (w) := (F−1
3 (cw′a0r))b.

In case (2) define: F−1
3 (w) := (γ−1(F−1

3 (cw′a0r)))b.
In case (3) define: F−1

3 (w) := (δ−1(F−1
3 (cw′a0r)))b.

We end this section by proving a property of the transformation F3,
which will be used in our next paper [FoHa07].

Proposition 4.1. Let w, w′′ be two words with nonnegative letters, of
the same length. If Zerow = Zerow′′ and DES Posw = DES Posw′′, then
ZeroF3(w) = ZeroF3(w

′′).

Proof. To derive F3(w) (resp. F3(w
′′)) from w (resp. w′′) we have to

consider one of the three cases (1), (2) or (3), described above, at each
step. Because of the two conditions Zerow = Zerow′′ and DES Posw =
DES Posw′′, case (i) (i = 1, 2, 3) is used at the j-th step in the calculation
of F3(w), if and only if the same case is used at that j-th step for the
calculation of F3(w

′′). Consequently the letters equal to 0 are in the same
places in both words F3(w) and F3(w

′′).

By the very definition of Φ : σ
ZDer7→ w

Φ7→ w′
ZDer−1

7→ σ′, given in (1.18)

and of F3 : σ
ZDer7→ w

F37→ w′′
ZDer−1

7→ σ′′, given in (1.19) we have Φ(σ) = σ
and F3(σ) = σ if σ is a derangement. In the next two tables we have
calculated Φ(σ) = σ′ and F3(σ) = σ′′ for the fifteen non-derangement
permutations σ of order 4.
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fixσ Derσ RIZEσ σ w w′ σ′ RISEσ′ Derσ′ fixσ′

4 e 1, 2, 3, 4 1234 0000 0000 1234 1, 2, 3, 4 e 4
1, 2, 4 1243 00 2 1 00 2 1 1243 1, 2, 4
1, 4 1324 0 2 10 0 20 1 1432 1, 4

1, 3, 4 1432 0 2 0 1 0 2 1 0 1324 1, 3, 4
2 21 3, 4 2134 2 100 20 1 0 3214 3, 4 21 2

2, 4 3214 20 10 200 1 4231 2, 4
2, 3, 4 4231 200 1 2 1 00 2134 2, 3, 4
1, 2, 4 1342 0 2 3 1 0 2 3 1 1342 1, 2, 4
1, 4 2314 2 3 10 2 3 0 1 2431 1, 4

1 231 1, 3, 4 2431 2 3 0 1 2 3 10 2314 1, 3, 4 231 1
2, 4 3241 20 3 1 20 3 1 3241 2, 4

1, 3, 4 1423 0 3 1 2 0 3 1 2 1423 1, 3, 4
1 312 2, 4 3124 3 1 20 3 1 0 2 4132 2, 4 312 1

3, 4 4132 3 1 0 2 30 1 2 4213 3, 4
2, 3, 4 4213 30 1 2 3 1 20 3124 2, 3, 4

Calculation of σ′ = Φ(σ)

fixσ Derσ mazσ σ w w′′ σ′′ maf σ′′ Derσ′′ fixσ′′

4 e 0 1234 0000 0000 1234 0 e 4
3 1243 00 2 1 2 00 1 4231 3
5 1324 0 2 1 0 2 100 2134 5
2 1432 0 20 1 0 2 0 1 1432 2

2 21 3 2134 2 1 00 0 2 10 1324 3 21 2
4 3214 20 1 0 2 0 10 3214 4
1 4231 200 1 00 2 1 1243 1
3 1342 0 2 3 1 2 0 3 1 3241 3
5 2314 2 3 1 0 2 3 1 0 2314 5

1 231 2 2431 2 30 1 0 2 3 1 1342 2 231 1
4 3241 2 0 3 1 2 30 1 2431 4
2 1423 0 3 1 2 3 0 1 2 4213 2

1 312 4 3124 3 1 2 0 3 1 2 0 3124 4 312 1
3 4132 3 10 2 3 10 2 4213 3
1 4213 3 0 1 2 0 3 1 2 3124 1

Calculation of σ′′ = F3(σ)
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Fix-Mahonian Calculus, II: further statistics

Dominique Foata and Guo-Niu Han

ABSTRACT. Using classical transformations on the symmetric group
and two transformations constructed in Fix-Mahonian Calculus I, we show
that several multivariable statistics are equidistributed either with the
triplet (fix,des,maj), or the pair (fix,maj), where “fix,” “des” and “maj”
denote the number of fixed points, the number of descents and the major
index, respectively.

1. Introduction

First, recall the traditional notations for the q-ascending factorials

(a; q)n :=

{

1, if n = 0;
(1− a)(1− aq) · · · (1− aqn−1), if n ≥ 1;

(a; q)∞ :=
∏

n≥1

(1− aqn−1);

and the q-exponential (see [GaRa90, chap. 1])

eq(u) =
∑

n≥0

un

(q; q)n
=

1

(u; q)∞
.

Furthermore, let (An(Y, t, q)) and (An(Y, q)) (n ≥ 0) be the sequences of
polynomials respectively defined by the factorial generating functions

∑

n≥0

An(Y, t, q)
un

(t; q)n+1
:=
∑

s≥0

ts
(

1− u
s
∑

i=0

qi
)−1 (u; q)s+1

(uY ; q)s+1
;(1.1)

∑

n≥0

An(Y, q)
un

(q; q)n
:=
(

1− u

1− q
)−1 (u; q)∞

(uY ; q)∞
.(1.2)

Of course, (1.2) can be derived from (1.1) by letting the variable t
tend to 1, so that An(Y, q) = An(Y, 1, q). The classical combinatorial
interpretation for those classes of polynomials has been found by Gessel
and Reutenauer [GeRe93] (see Theorem 1.1 below). For each permutation
σ = σ(1)σ(2) · · ·σ(n) from the symmetric group Sn let i σ := σ−1 denote



 - 126 - 

DISTRIBUTIONS ON WORDS AND q-CALCULUS

the inverse of σ; then let its set of fixed points, FIX σ, descent set, DESσ,
idescent set, IDESσ, be defined as the subsets:

FIX σ := {i : 1 ≤ i ≤ n, σ(i) = i};
DESσ := {i : 1 ≤ i ≤ n− 1, σ(i) > σ(i+ 1)};

IDESσ := DESσ−1.

Note that IDESσ is also the set of all i such that i+ 1 is on the left of i in
the linear representation σ(1)σ(2) · · ·σ(n) of σ. Also let fixσ := # FIX σ
(the number of fixed points), desσ := # DESσ (the number of descents),
majσ :=

∑

i i (i ∈ DESσ) (the major index), imajσ :=
∑

i i (i ∈ IDESσ)
(the inverse major index).

Theorem 1.1 (Gessel, Reutenauer). For each n ≥ 0 the generating
polynomial for Sn by (fix, des,maj) (resp. by (fix,maj)) is equal to
An(Y, t, q) (resp. to An(Y, q)). Accordingly,

An(Y, t, q) =
∑

σ∈Sn

Y fix σtdes σqmaj σ;(1.3)

An(Y, q) =
∑

σ∈Sn

Y fix σqmaj σ.(1.4)

The purpose of this paper is to show that there are several other three-
variable (resp. two-variable) statistics on Sn, whose distribution is given
by the generating polynomial An(Y, t, q) (resp. An(Y, q)). For proving that
those statistics are equidistributed with (fix, des,maj) (resp. (fix,maj)) we
make use the properties of the classical bijections Floc

2 , F′2, CHZ, DWglo,
DWloc, plus two transformations F3, Φ, constructed in our previous paper
[FoHa07], finally a new transformation F′3 described in Section 3.

All those bijections appear as arrows in the diagram of Fig. 1. The
nodes of the diagram are pairs or triplets of statistics, whose definitions
have been, or will be, given in the paper. The integral-valued statistics are
written in lower case, such as “fix” or “maj”, while the set-valued ones
appear in capital letters, such as “FIX” or “DES”. We also introduce two
mappings “Der” and “Desar” of Sn into Sm with m ≤ n.

Each arrow goes from one node to another node with the following
meaning that we shall explain by means of an example: the vertical
arrow (fix,maz,Der)

F3−−−→ (fix,maf,Der) (here rewritten horizontally for
typographical reasons!) indicates that the bijection F3 maps Sn onto itself
and has the property: (fix,maz,Der) σ = (fix,maf,Der) F3(σ) for all σ.
The remaining statistics are now introduced together with the main two
decompositions of permutations: the fixed and pixed decompositions.
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(FIX,maf) (PIX,mag)

(fix,maj,Der)

(fix,DES)

(PIX, inv)

(pix, inv)

(fix,maz,Der)

(fix,maf,Der)

(fix,DEZ)

(FIX,DEZ)

(pix, imaj) (pix, imaj,Desar)

(pix,mag,Desar)

(pix, IDES)

(PIX, IDES)

DWloc

−−−−−−−→

CHZ
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−−−−−−−−→
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Fig. 1

1.1. The fixed decomposition. Let σ = σ(1)σ(2) · · ·σ(n) be a permu-
tation and let (i1, i2, . . . , in−m) (resp. (j1, j2, . . . , jm)) be the increasing
sequence of the integers k (resp. k′) such that 1 ≤ k ≤ n and σ(k) = k
(resp. 1 ≤ k′ ≤ n and σ(k′) 6= k′). Also let “red” denote the increasing
bijection of {j1, j2, . . . , jm} onto [m ]. Let ZDer(σ) = x1x2 · · ·xn be the
word derived from σ = σ(1)σ(2) · · ·σ(n) by replacing each fixed point
σ(ik) by 0 and each other letter σ(jk′) by redσ(jk′). As “DES,” “des” and
“maj” can also be defined for arbitrary words with nonnegative letters,
we further introduce:

DEZσ := DES ZDer(σ);(1.5)

dezσ := des ZDer(σ), mazσ := maj ZDer(σ);(1.6)

Derσ := redσ(j1) redσ(j2) · · · redσ(jm);(1.7)

maf σ :=

n−m
∑

k=1

(ik − k) + maj ◦Derσ.(1.8)

The subword Derσ of ZDer(σ) can be regarded as a permutation from Sm

(with the above notations). It is important to note that FIX Derσ = ∅, so
that Derσ is a derangement of order m. Also note that σ is fully charac-
terized by the pair (FIX σ,Derσ), which is called the fixed decomposition
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of σ. Finally, we can rewrite maf σ as

(1.9) maf σ :=
∑

i∈FIX σ

i−
fix σ
∑

i=1

i+ maj ◦Derσ.

Example. With σ =

(

12 3 456 7 8 9
82 1 356 4 9 7

)

we have red =

(

1 3 4 7 8 9
1 2 3 4 5 6

)

,

ZDer(σ) = 5 0 1 2 0 0 3 6 4, DEZσ = {1, 4, 8}, dez σ = 3, mazσ = 13,
Derσ = 5 1 2 3 6 4, FIX σ = {2, 5, 6} and maf σ = (2 − 1) + (5 − 2) +
(6− 3) + maj(5 1 2 3 6 4) = 7 + 6 = 13.

1.2. The pixed decomposition. Let w = y1y2 · · · yn be a word having
no repetitions, without necessarily being a permutation of 12 · · ·n. Say
that w is a desarrangement if y1 > y2 > · · · > y2k and y2k < y2k+1

for some k ≥ 1. By convention, yn+1 = ∞. We could also say that the
leftmost trough of w occurs at an even position. This notion was introduced
by Désarménien [De84] and elegantly used in a subsequent paper [DW88].
A further refinement is due to Gessel [Ge91].

Let σ = σ(1)σ(2) · · ·σ(n) be a permutation. Unless σ is increasing,
there is always a nonempty right factor of σ which is a desarrangement. It
then makes sense to define σd as the longest such a right factor. Hence, σ
admits a unique factorization σ = σpσd, called the pixed factorization,
where σp is increasing and σd is the longest right factor of σ which is a
desarrangement. The set (resp. number) of the letters in σp is denoted by
PIXσ (resp. pixσ).

If σd = σ(n−m+1)σ(n−m+2) · · ·σ(n) and if “red” is the increasing
bijection mapping the set {σ(n − m + 1), σ(n − m + 2), . . . , σ(n)} onto
{1, 2, . . . , m}, define

Desarσ := redσ(n−m+ 1) redσ(n−m+ 2) . . . red σ(n);(1.10)

mag σ :=
∑

i∈PIXσ

i−
pix σ
∑

i=1

i+ imaj ◦Desarσ.(1.11)

Note that Desarσ is a desarrangement and belongs to Sm, for short, a
desarrangement of order m. Also note that σ is fully characterized by the
pair (PIXσ,Desarσ), which will called the pixed decomposition of σ. Form
the inverse (Desarσ)−1 = y1y2 · · · ym of Desarσ and define ZDesar(σ) to
be the unique shuffle x1x2 · · ·xn of 0n−m and y1y2 · · · ym, where xi = 0 if
and only if i ∈ PIXσ.

Example. With σ = 3 5 7 4 2 8 1 9 6, then σp = 3 5 7, σd = 4 2 8 1 9 6,
PIXσ = {3, 5, 7}, pix σ = 3. Also, Desarσ = 3 2 5 1 6 4, imaj ◦Desarσ =
1 + 2 + 4 = 7, (Desarσ)−1 = 4 2 1 6 3 5, ZDesarσ = 4 2 0 1 0 6 0 3 5 and
mag σ = (3 + 5 + 7)− (1 + 2 + 3) + 7 = 16.
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Referring to the diagram in Fig. 1 the purpose of this paper is to prove
the next two theorems.

Theorem 1.2. In each of the following four groups the pairs of statistics
are equidistributed on Sn:

(1) (fix,maj), (fix,maf), (fix,maz), (pix,mag), (pix, inv), (pix, imaj);
(2) (FIX,maf), (PIX,mag), (PIX, inv);
(3) (fix,DEZ), (fix,DES), (pix, IDES);
(4) (FIX,DEZ), (PIX, IDES).

Theorem 1.3. In each of the following two groups the triplets of statistics
are equidistributed on Sn:

(1) (fix,maf,Der) and (fix,maz,Der);
(2) (pix,mag,Desar) and (pix, imaj,Desar).

Furthermore, the following diagram, involving the bijections DWloc, F3

and F′3 is commutative.

SnSn

SnSn

-

DW
loc

−−−−−−→

DW
loc

F
′
3

F3

�
���

�
���ZDesar

66 6

66

S
Der
n

S
Der
n S

Desar
n

S
Desar
n

-

-

�
��

�
��

ZDer

ZDer

ZDesar

F3 F3

dw

dw

Fig. 2

2. The bijections

2.1. The transformations Φ and “ CHZ”. In our preceding paper
[FoHa07] we have given the constructions of two bijections Φ, F3 of Sn

onto itself. The latter one will be re-studied and used in Section 3. As
was shown in our previous paper [FoHa07], the first one has the following
property:

(2.1) (fix,DEZ,Der) σ = (fix,DES,Der) Φ(σ) (σ ∈ Sn).

This shows that over Sn the pairs (fix,maz) and (fix,maj) are equidis-
tributed over Sn, their generating polynomial being given by the poly-
nomial An(Y, q) introduced in (1.2). Also the triplets (fix, dez,maz) and
(fix, des,maj) are equidistributed, with generating polynomial An(Y, t, q)
introduced in (1.1).
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In [CHZ97] the authors have constructed a bijection, here called “CHZ”,
satisfying

(2.2) (fix,maf,Der) σ = (fix,maj,Der) CHZ(σ) (σ ∈ Sn).

2.2. The Désarménien-Wachs bijection. For each n ≥ 0 let Dn denote
the set of permutations σ from Sn such that FIXσ = ∅. The elements
of Dn are referred to as the derangements of order n. Let Kn be the set of
permutations σ from Sn such that PIXσ = ∅. The class Kn was introduced
by Désarménien [De84], who called its elements desarrangements of
order n. He also set up a one-to-one correspondence between Dn and Kn.
Later, by means of a symmetric function argument Désarménien and
Wachs [DW88] proved that for every subset J ⊂ [n− 1] the equality

(2.3) #{σ ∈ Dn : DESσ = J} = #{σ ∈ Kn : IDESσ = J}

holds. In a subsequent paper [DW93] they constructed a bijection DW :
Dn → Kn having the expected property, that is,

(2.4) IDES ◦DW(σ) = DESσ.

Although their bijection is based on an inclusion-exclusion argument,
leaving the door open to the discovery of an explicit correspondence, we
use it as such in the sequel. For the very definition of “DW” we refer the
reader to their original paper [DW93].

We now make a full use of the fixed and pixed decompositions intro-
duced in §§ 1.1 and 1.2. Let τ ∈ Sn and consider the chain

τ 7→ (FIX τ,Der τ) 7→ (FIX τ,DW ◦Der τ) 7→ σ,(2.5)

where σ is the permutation defined by

(PIXσ,Desarσ) := (FIX τ,DW ◦Der τ).(2.6)

Then, the mapping DWloc defined by

DW
loc(τ) := σ,(2.7)

is a bijection of Sn onto itself satisfying FIX τ = PIXσ and DES ◦Der τ =
IDES ◦Desarσ. In particular, fix τ = pixσ. Taking the definitions of “maf”
and “mag” given in (1.9) and (1.11) into account we have:

maf τ =
∑

i∈FIXτ

i−
fix τ
∑

i=1

i+ maj ◦Der τ

=
∑

i∈PIXσ

i−
pix σ
∑

i=1

i+ imaj ◦Desarσ = mag σ.

We have then proved the following proposition.
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Proposition 2.1. Let σ := DWloc(τ). Then

(2.8) FIX τ = PIXσ, DES ◦Der τ = IDES ◦Desarσ, maf τ = mag σ.

Corollary 2.2. The pairs (FIX,maf) and (PIX,mag) are equidistributed
over Sn.

Example. Assume that the bijection “DW” maps the derangement
512364 onto the desarrangement 623145. On the other hand, the fixed
decomposition of τ = 182453697 is equal to ({1, 4, 5}, 512364) and
({1, 4, 5}, 623145) is the pixed decomposition of the permutation σ =
145936278. Hence DWloc(182453697) = 145936278.

We verify that DES ◦Der τ = DES(512364) = {1, 5} = IDES(623145) =
IDES ◦Desarσ. Also maf τ = (1+4+5)−(1+2+3)+(1+5) = 10 = mag σ.

Proposition 2.3. Let σ := DWloc(τ). Then

(FIX,DEZ) τ = (PIX, IDES) σ;(2.9)

(fix,maz) τ = (pix, imaj) σ.(2.10)

Proof. It suffices to prove (2.9) and in fact only DEZ τ = IDESσ. Let
σpσd be the pixed factorization of σ. Then σp is the increasing sequence
of the elements of PIXσ = FIX τ . We have i ∈ DEZ τ if and only if τ(i) 6= i
and one of the following conditions holds:

(1) τ(i) > τ(i+ 1) and τ(i+ 1) 6= i+ 1;
(2) τ(i+ 1) = i+ 1.

In case (1) the letters red τ(i) and red τ(i+1) are adjacent letters in Der τ
and red τ(i) > red τ(i + 1). As DES ◦Der τ = IDES ◦Desarσ, the letter
red(i + 1) is to the left of the letter red(i) in Desarσ and then (i + 1) is
to the left of i is σ, so that i ∈ IDESσ.

In case (2) we have (i+1) ∈ FIX τ = PIXσ and red i is a letter of Desarσ.
Again i ∈ IDESσ.

Corollary 2.4. The pairs (FIX,DEZ) and (PIX, IDES) are equidistributed
over Sn.

Using the same example as above we have: τ = 182453697, FIX τ =
{1, 4, 5}, ZDer τ = 082003697, so that DEZ τ = {2, 3, 8}. Moreover,
σ = DWloc(182453697) = 145 | 936278. Hence 2, 8 ∈ IDESσ (case (1))
and 3 ∈ IDESσ (case (2)).

2.3. The second fundamental transformation. As described in [Lo83,
p. 201, Algorithm 10.6.1] by means of an algorithm, the second fundamen-
tal transformation, further denoted by F2, can be defined on permutations
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as well as on words. Here we need only consider the case of permutations.
As usual, the number of inversions of a permutation σ = σ(1)σ(2) · · ·σ(n)
is defined by inv σ := #{(i, j) | 1 ≤ i < j ≤ n, σ(i) > σ(j)}. Its construc-
tion was given in [Fo68]. Further properties have been proved in [FS78],
[BjW88]. Here we need the following result.

Theorem 2.5 [FS78]. The transformation F2 defined on the symmetric
group Sn is bijective and the following identities hold for every permuta-
tion σ ∈ Sn: inv F2(σ) = majσ; IDES F2(σ) = IDESσ.

Using the composition product F′2 := i ◦ F2 ◦ i we therefore have:

(2.11) inv F′2(σ) = imajσ; DES F′2(σ) = DESσ

for every σ ∈ Sn.
As the descent set “DES” is preserved under the transformation F′2, each

desarrangement is mapped onto another desarrangement. It then makes
sense to consider the chain:

σ 7→ (PIXσ,Desarσ) 7→ (PIXσ,F′2 ◦Desarσ) 7→ ρ,

where (PIX ρ,Desar ρ) := (PIXσ,F′2 ◦ Desarσ). The mapping Floc
2 : σ 7→ ρ

is a bijection of Sn onto itself. Moreover, PIXσ = PIX ρ, imaj ◦Desarσ =
inv ◦Desar ρ and DES ◦Desarσ = DES ◦Desar ρ. Hence,

mag σ =
∑

i∈PIX σ

i−
pix σ
∑

i=1

i+ imaj ◦Desarσ

=
∑

i∈PIX ρ

i−
pix ρ
∑

i=1

i+ inv ◦Desar ρ

= #{(i, j) : 1 ≤ i ≤ pix ρ < j ≤ n, ρ(i) > ρ(j)}
+ #{(i, j) : pix ρ < i < j ≤ n, ρ(i) > ρ(j)}

= inv ρ.

We have then proved the following proposition.

Proposition 2.6. Let ρ := Floc
2 (σ). Then

(2.12) (PIX,mag) σ = (PIX, inv) ρ.

Corollary 2.7. The pairs (PIX,mag) and (PIX, inv) are equidistributed
over Sn.

Finally, go back to Properties (2.11) and let ξ := F′2(ρ). Also let ξpξd

and ρpρd be the pixed factorizations of ξ and ρ, respectively. We do not
have ξp = ρp necessarily, but as ρ and ξ have the same descent set, the
factors ξp and ρp have the same length, i.e., pix ξ = pix ρ. Let us state this
result in the next proposition.
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Proposition 2.8. Let ξ := F′2(ρ). Then

(2.13) (pix, inv) ξ = (pix, imaj) ρ.

Corollary 2.9. The pairs (pix, inv) and (pix, imaj) are equidistributed
over Sn.

Finally, DWglo attached to the unique oblique arrow in Fig. 1 refers
to the global bijection constructed by Désarménien and Wachs ([DW93],
§ 5). It has the property: (fix,DES) DWglo(σ) = (pix, IDES) σ for all σ
in Sn. The big challenge is to find two explicit bijections f and g,
replacing DWglo and DWloc, such that (fix,DES) g(σ) = (pix, IDES) σ and
(PIX, IDES) f(σ) = (FIX,DEZ) σ, which would make the bottom triangle
commutative, that is, Φ = g ◦ f .

3. The bijections F3 and F′3

Let 0 ≤ m ≤ n and let v be a nonempty word of length m, whose letters
are positive integers (with possible repetitions). Designate by Sh(0n−mv)
the set of all shuffles of the words 0n−m and v, that is, the set of
all rearrangements of the juxtaposition product 0n−mv, whose longest
subword of positive letters is v. Let w = x1x2 · · ·xn be a word from
Sh(0n−mv). It is convenient to write: Posw := v, Zerow := {i : 1 ≤
i ≤ n, xi = 0}, zerow := # Zerow (= n − m), so that w is completely
characterized by the pair (Zerow,Posw). Besides the statistic “maj” we
will need the statistic “mafz” that associates the number

(3.1) mafzw :=
∑

i∈Zero w

i−
zero w
∑

i=1

i+ majPosw.

with each word from Sh(0n−mv). In ([FoHa07], §4) we gave the construc-
tion of a bijection F3 of Sh(0n−mv) onto itself having the following prop-
erty:

(3.2) majw = mafzF3(w) (w ∈ Sh(0n−mv)).

The bijection F3 is now applied to each shuffle class Sh(0n−mv), when
v is a derangement, or the inverse of a desarrangement. Let

S
Der
n :=

⋃

m,v

Sh(0n−mv) (0 ≤ m ≤ n, v ∈ Dm);

S
Desar
n :=

⋃

m,v

Sh(0n−mv) (0 ≤ m ≤ n, v−1 ∈ Km).
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As already seen in § 1.1, the mapping ZDer is a bijection of Sn onto S
Der
n

satisfying

(3.3)
FIX σ = Zero ZDer(σ); Derσ = Pos ZDer(σ);

maf σ = mafz ZDer(σ); DEZσ = DES ZDer(σ).

Example 3.2. Let σ = 1 7 3 5 2 6 4. Then w := ZDer(σ) = 0 4 0 3 1 0 2.
We have FIX σ = Zerow = {1, 3, 6}; Derσ = Posw = 4 3 1 2; maf σ =
mafzw = (1+3+6)−(1+2+3)+(1+2+3) = 10, DEZσ = DESw = {2, 4, 5}.

Now define the bijection F3 of Sn onto itself by the chain

(3.4) F3 : σ
ZDer7→ w

F37→ w′
ZDer−1

7→ σ′.

Then, by (3.2),

(fix,maz,Der) σ = (zero,maj,Pos)w

= (zero,mafz,Pos)w′

= (fix,maf,Der) σ′,

(fix,maz,Der) σ = (fix,maf,Der) F3(σ).(3.5)

The map “Desar” has been defined in (1.10) and it was noticed that
each permutation σ was fully characterized by the pair (PIXσ,Desarσ).
Another way of deriving ZDesar(σ) introduced in §1.2 is to form the inverse
σ−1 = σ−1(1)σ−1(2) · · ·σ−1(n) of σ. As σ−1(i) ≥ pixσ + 1 if and only if
i ∈ [n ] \ PIXσ, we see that ZDesar(σ) is also the word w = x1x2 · · ·xn,
where

xi :=

{

0, if i ∈ PIXσ;
σ−1(i)− pixσ, if i ∈ [n ] \ PIXσ.

The word σ−1 contains the subword 1 2 · · · pixσ. We then have: i ∈
IDESσ ⇔ i ∈ DESσ−1 ⇔ σ−1(i) ≥ pixσ + 1 and σ−1(i) > σ−1(i + 1) ⇔
xi ≥ 1 and xi > xi+1 ⇔ i ∈ DESw, so that IDESσ = DESw.

On the other hand, as PIXσ = Zerow and (Desarσ)−1 = Posw, we
also have, by (1.11)

mag σ =
∑

i∈PIX σ

i−
pix σ
∑

i=1

i+ imaj ◦Desarσ

=
∑

i∈Zero w

i−
zero w
∑

i=1

i+ maj ◦Posw = mafzw.

As a summary,

(3.6)
PIXσ = ZeroZDesar(σ); Desarσ = Pos ZDesar(σ);

mag σ = mafz ZDesar(σ); IDESσ = DES ZDesar(σ).
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Example 3.3. Let σ = 1 3 6 5 4 7 2. Then σ−1 = 1 7 2 5 4 3 6; w :=
ZDesar(σ) = 0 4 0 2 1 0 3, PIXσ = Zerow = {1, 3, 6}; Desarσ = 3 2 4 1,
(Desarσ)−1 = Posw = 4 2 1 3; mag σ = mafzw = (1 + 3 + 6) − (1 + 2 +
3) + (1 + 2) = 7, IDESσ = DESw = {2, 4, 5}.

Next define the bijection F′3 of Sn onto itself by the chain

(3.7) F′3 : σ
ZDesar7→ w

F37→ w′
ZDesar−1

7→ σ′.

Then, by (3.2),

(pix, imaj,Desar) σ = (zero,maj,Pos)w

= (zero,mafz,Pos)w′

= (pix,mag,Desar) σ′,

(pix, imaj,Desar) σ = (pix,mag,Desar) F′3(σ).(3.8)

With (3.5) and (3.8) the first part of Theorem 1.3 is proved.

The second part of Theorem 1.3 is proved as follows. Remember that,
if zerow = n−m, the pair (Zerow,Posw) uniquely determines the shuffle
of (n−m) letters equal to 0 into the letters of Posw. The bijection “dw”
defined by dw := ZDesar ◦DWloc ◦ZDer−1 can also be derived by the chain

(3.9) dw : w 7→ (Zerow,Posw)

7→ (Zerow, (DW ◦Posw)−1) = (Zerow′,Posw′) 7→ w′,

where DW denotes the Désarménien-Wachs bijection. It maps S
Der
n onto

S
Desar
n . In particular,

Pos ◦ dww = (DW ◦Posw)−1; Zero ◦ dw(w) = Zerow.

Because of (2.4) we also have DES ◦Posw = DES ◦Posw′. As shown in our
previous paper ([FoHa07], Proposition 4.1), the latter property implies
that

Zero ◦F3(w) = Zero ◦F3(w
′).

Furthermore,

Pos ◦F3(w) = Posw, Pos ◦F3(w
′) = Posw′,

since F3 maps each shuffle class onto itself. Hence,

Zero ◦ dw ◦F3(w) = Zero ◦F3(w);

Pos ◦ dw ◦F3(w) = (DW ◦PosF3(w))−1 = (DW ◦Posw)−1;

Zero ◦F3 ◦ dw(w) = Zero ◦F3(w);

Pos ◦F3 ◦ dw(w) = Pos ◦ dw(w) = (DW ◦Posw)−1.
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The word dw ◦F3(w) is characterized by the pair

(Zero ◦ dw ◦F3(w),Pos ◦ dw ◦F3(w)),

which is equal to the pair

(Zero ◦F3 ◦ dw(w),Pos ◦F3 ◦ dw(w)),

which corresponds itself to the word F3(w) ◦ dw(w). Hence,

(3.10) dw ◦F3 = F3 ◦ dw .

This shows that the top square in Fig. 2 is a commutative diagram, so is
the bottom one.

Example 3.4. Noting that DW(4 3 1 2) = 3 2 4 1 we have the commuta-
tive diagram

3 5 6 4 2 7 1

1 3 6 5 4 7 2

7 4 3 1 5 6 2

1 7 3 5 2 6 4

DWloc

−−−−−−→

DWloc

−−−−−−→

F′

3

x







F3

x
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FIX-MAHONIAN CALCULUS III;

A QUADRUPLE DISTRIBUTION

Dominique Foata and Guo-Niu Han

Abstract

A four-variable distribution on permutations is derived, with two dual combi-
natorial interpretations. The first one includes the number of fixed points “fix”,
the second the so-called “pix” statistic. This shows that the duality between de-
rangements and desarrangements can be extended to the case of multivariable
statistics. Several specializations are obtained, including the joint distribution
of (des, exc), where “des” and “exc” stand for the number of descents and ex-
cedances, respectively.

1. Introduction

Let

(a; q)n :=

{

1, if n = 0;
(1− a)(1− aq) · · · (1− aqn−1), if n ≥ 1;

(a; q)∞ :=
∏

n≥0

(1− aqn),

be the traditional notation for the q-ascending factorial. For each r ≥ 0
form the rational fraction

(1.1) C(r; u, s, q, Y ) :=
(1− sq) (u; q)r (usq; q)r

((u; q)r − sq(usq; q)r)(uY ; q)r+1

in four variables u, s, q, Y and expand it as a formal power series in u:

(1.2) C(r; u, s, q, Y ) =
∑

n≥0

unCn(r; s, q, Y ).

It can be verified that each coefficient Cn(r; s, q, Y ) is actually a polyno-
mial in three variables with nonnegative integral coefficients. For r, n ≥ 0
consider the setWn(r) = [0, r]n of all finite words of length n, whose letters

2000 Mathematics Subject Classification. Primary 05A15, 05A30, 05E15.
Key words and phrases. major index, excedance number, descent number, permuta-

tions, fixed points, pixed points, derangements, desarrangements, Lyndon factorization,
H-factorization, V -decomposition, decreases.
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are taken from the alphabet [0, r] = {0, 1, . . . , r}. The first purpose of this
paper is to show that Cn(r; s, q, Y ) is the generating polynomial for Wn(r)
by two three-variable statistics (dec, tot, single) and (wlec, tot,wpix), re-
spectively, defined by means of two classical word factorizations, the Lyn-

don factorization and the H-factorization. See Theorems 2.1 and 2.3 there-
after and their corollaries.

The second purpose of this paper is to consider the formal power series

∑

r≥0

tr
(1− sq) (u; q)r (usq; q)r

((u; q)r − sq(usq; q)r)(uY ; q)r+1
=
∑

r≥0

trC(r; u, s, q, Y )(1.3)

=
∑

r≥0

tr
∑

n≥0

unCn(r; s, q, Y ),

expand it as a formal power series in u, but normalized by denominators
of the form (t; q)n+1, that is,

(1.4)
∑

r≥0

tr
(1− sq) (u; q)r (usq; q)r

((u; q)r − sq(usq; q)r)(uY ; q)r+1
=
∑

n≥0

An(s, t, q, Y )
un

(t; q)n+1
,

and show that each An(s, t, q, Y ) is actually the generating polynomial for
the symmetric group Sn by two four-variable statistics (exc, des,maj, fix)
and (lec, ides, imaj, pix), respectively. The first (resp. second) statistic
involves the number of fixed points “fix” (resp. the variable “pix”) and is
referred to as the fix-version (resp. the pix-version). Several specializations
of the polynomials An(s, t, q, Y ) are then derived with their combinatorial
interpretations. In particular, the joint distribution of the two classical
Eulerian statistics “des” and “exc” is explicitly calculated.

The fix-version statistic on Sn, denoted by (exc, des,maj, fix), contains
the following classical integral-valued statistics: the number of excedances

“exc,” the number of descents “des,” the major index “maj,” the number

of fixed points “fix,” defined for each permutation σ = σ(1)σ(2) · · ·σ(n)
from Sn by

excσ := #{i : 1 ≤ i ≤ n− 1, σ(i) > i};
des σ := #{i : 1 ≤ i ≤ n− 1, σ(i) > σ(i+ 1)};
majσ :=

∑

i

i (1 ≤ i ≤ n− 1, σ(i) > σ(i+ 1));

fix σ := #{i : 1 ≤ i ≤ n, σ(i) = i}.

As was introduced by Désarménien [5], a desarrangement is defined to
be a word w = x1x2 · · ·xn, whose letters are distinct positive integers
such that the inequalities x1 > x2 > · · · > x2j and x2j < x2j+1 hold
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for some j with 1 ≤ j ≤ n/2 (by convention: xn+1 = +∞). There is no
desarrangement of length 1. Each desarrangement w = x1x2 · · ·xn is called
a hook, if x1 > x2 and either n = 2, or n ≥ 3 and x2 < x3 < · · · < xn. As
proved by Gessel [12], each permutation σ = σ(1)σ(2) · · ·σ(n) admits a
unique factorization, called its hook factorization, pτ1τ2 · · · τk, where p is
an increasing word and each factor τ1, τ2, . . . , τk is a hook. To derive the
hook factorization of a permutation, it suffices to start from the right and
at each step determine the right factor which is a hook, or equivalently,
the shortest right factor which is a desarrangement.

The pix-version statistic is denoted by (lec, ides, imaj, pix). The second
and third components are classical: if σ−1 denotes the inverse of the
permutation σ, they are simply defined by

idesσ := desσ−1;

imajσ := majσ−1.

The first and fourth components refer to the hook factorization pτ1τ2 · · · τk
of σ. For each i let inv τi denote the number of inversions of τi. Then, we
define:

lecσ :=
∑

1≤i≤k

inv τi;

pixσ := length of the factor p.

For instance, the hook factorization of the following permutation of
order 14 is indicated by vertical bars.

σ = 1 3 4 14 | 12 2 5 11 15 | 8 6 7 | 13 9 10

We have p = 1 3 4 14, so that pix σ = 4. Also inv(12 2 5 11 15) = 3,
inv(8 6 7) = 2, inv(13 9 10) = 2, so that lecσ = 7. Our main two theorems
are the following.

Theorem 1.1 (The fix-version). Let An(s, t, q, Y ) (n ≥ 0) be the se-
quence of polynomials in four variables, whose factorial generating func-
tion is given by (1.4). Then, the generating polynomial for Sn by the
four-variable statistic (exc, des,maj, fix) is equal to An(s, t, q, Y ). In other
words,

(1.5)
∑

σ∈Sn

sexc σtdes σqmaj σY fix σ = An(s, t, q, Y ).

Theorem 1.2 (The pix-version). Let An(s, t, q, Y ) (n ≥ 0) be the
sequence of polynomials in four variables, whose factorial generating
function is given by (1.4). Then, the generating polynomial for Sn by
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the four-variable statistic (lec, ides, imaj, pix) is equal to An(s, t, q, Y ). In
other words,

(1.6)
∑

σ∈Sn

slec σtides σqimaj σY pix σ = An(s, t, q, Y ).

The ligne of route, Ligneσ, of a permutation σ = σ(1)σ(2) · · ·σ(n) (also
called descent set) is defined to be the set of all i such that 1 ≤ i ≤ n− 1
and σ(i) > σ(i + 1). In particular, desσ = # Ligneσ and majσ is the
sum of all i such that i ∈ Ligneσ. Also, let the inverse ligne of route

of σ be defined by Iligneσ := Ligneσ−1, so that idesσ = # Iligneσ and
imajσ =

∑

i i (i ∈ Iligneσ). Finally, let iexcσ := excσ−1.
It follows from Theorem 1.1 and Theorem 1.2 that the two four-variable

statistics (iexc, ides, imaj, fix) and (lec, ides, imaj, pix) are equidistributed
on each symmetric group Sn. The third goal of this paper is to prove the
following stronger result.

Theorem 1.3. The two three-variable statistics

(iexc, fix, Iligne) and (lec, pix, Iligne)

are equidistributed on each symmetric group Sn.

Note that the third component in each of the previous triples is a set-

valued statistic. So far, it was known that the two pairs (fix, Iligne) and
(pix, Iligne) were equidistributed, a result derived by Désarménien and
Wachs [6, 7], so that Theorem 1.3 may be regarded as an extension of
their result. In the following table we reproduce the nine derangements
(resp. desarrangements) σ from S4, which are such that fix σ = 0 (resp.
pix σ = 0), together with the values of the pairs (iexcσ, Iligneσ) (resp.
(lecσ, Iligneσ)).

lec Iligne Desarrangements Derangements Iligne iexc
1 1 2 1 3 4 2 3 4 1 1 1

1, 2 3 2 4 1 3 4 2 1 1, 2
1, 3 4 2 3 1 2 4 1 3 1, 3

2 2
3 1 2 4 3 1 4 2

2 23 1 4 2 3 4 1 2
1, 3 2 1 4 3 2 1 4 3 1, 3
2, 3 4 1 3 2 4 3 1 2 2, 3

1, 2, 3 4 3 2 1 4 3 2 1 1, 2, 3
3 3 4 1 2 3 4 1 2 3 3 3

Theorem 1.3 has been recently used by Han and Xin [14] to set up a
relation between the generating polynomial for derangements by number
of excedances and the corresponding polynomial for permutations with
one fixed point.
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In our previous papers [9, 10] we have introduced three statistics
“dez,” “maz” and “maf” on Sn. If σ is a permutation, let i1, i2, . . . , ih
be the increasing sequence of its fixed points. Let Dσ (resp. Zσ) be
the word derived from σ = σ(1)σ(2) · · ·σ(n) by deleting all the fixed
points (resp. by replacing all those fixed points by 0). Then those three
statistics are simply defined by: dezσ := desZσ, mazσ := majZσ and
maf σ := (i1 − 1) + (i2 − 2) + · · ·+ (ij − h) + majDσ. For instance, with
σ = 8 2 1 3 5 6 4 9 7 we have (i1, . . . , ih) = (2, 5, 6), Zσ = 8 0 1 3 0 0 4 9 7,
Dσ = 8 1 3 4 9 7 and dezσ = 3, mazσ = 1 + 4 + 8 = 13, maf σ =
(2 − 1) + (5 − 2) + (6 − 3) + maj(8 1 3 4 9 7) = 13. Theorem 1.4 in [9]
and Theorem 1.1 above provide another combinatorial interpretation for
An(s, t, q, Y ), namely

(1.7)
∑

σ∈Sn

sexc σtdez σqmaz σY fix σ = An(s, t, q, Y ).

In the sequel we need the notations for the q-multinomial coefficients

[

n

m1, . . . , mk

]

q

:=
(q; q)n

(q; q)m1
· · · (q; q)mk

(m1 + · · ·+mk = n);

and the first q-exponential

eq(u) =
∑

n≥0

un

(q; q)n
=

1

(u; q)∞
.

Multiply both sides of (1.4) by 1− t and let t = 1. We obtain the factorial
generating function for a sequence of polynomials (An(s, 1, q, Y )) (n ≥ 0)
in three variables:

(1.8)
∑

n≥0

An(s, 1, q, Y )
un

(q; q)n
=

(1− sq)eq(Y u)

eq(squ)− sqeq(u)
.

It follows from Theorem 1.1 that

(1.9)
∑

σ∈Sn

sexc σqmaj σY fix σ = An(s, 1, q, Y )

holds for every n ≥ 0, a result stated and proved by Shareshian and Wachs
[19] by means of a symmetric function argument, so that identity (1.8) with
the interpretation (1.9) belongs to those two authors. Identity (1.4) can
be regarded as a graded form of (1.8). The interest of the graded form
also lies in the fact that it provides the joint distribution of (exc, des), as
shown in (1.15) below.
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Of course, Theorem 1.2 yields a second combinatorial interpretation for
the polynomials An(s, 1, q, Y ) in the form

(1.10)
∑

σ∈Sn

slec σqimaj σY pix σ = An(s, 1, q, Y ).

However we have a third combinatorial interpretation, where the statistic
“imaj” is replaced by the number of inversions “inv.” We state it as our
fourth main theorem.

Theorem 1.4. Let An(s, 1, q, Y ) (n ≥ 0) be the sequence of polynomials
in three variables, whose factorial generating function is given by (1.8).
Then, the generating polynomial for Sn by the three-variable statistic
(lec, inv, pix) is equal to An(s, 1, q, Y ). In other words,

(1.11)
∑

σ∈Sn

slec σqinv σY pix σ = An(s, 1, q, Y ).

Again, Theorem 1.4 in [9] and Theorem 1.1 provide a fourth combina-
torial interpretation of An(s, 1, q, Y ), namely

(1.12)
∑

σ∈Sn

sexc σqmaf σY fix σ = An(s, 1, q, Y ).

Note that the statistic “maf” was introduced and studied in [4].
Let s = 1 in identity (1.4). We get:

(1.13)
∑

n≥0

An(1, t, q, Y )
un

(t; q)n+1
=
∑

r≥0

tr
(

1− u
r
∑

i=0

qi
)−1 (u; q)r+1

(uY ; q)r+1
,

so that Theorem 1.1 implies

(1.14)
∑

σ∈Sn

tdes σqmaj σY fix σ = An(1, t, q, Y ),

an identity derived by Gessel and Reutenauer [13].
Finally, by letting q = Y := 1 we get the generating function for

polynomials in two variables An(s, t, 1, 1) (n ≥ 0) in the form
(1.15)
∑

n≥0

An(s, t, 1, 1)
un

(1− t)n+1
=
∑

r≥0

tr
1− s

(1− u)r+1(1− us)−r − s(1− u) .

It then follows from Theorems 1.1 and 1.2 that

(1.16)
∑

σ∈Sn

sexc σtdes σ =
∑

σ∈Sn

slec σtides σ = An(s, t, 1, 1).
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As is well-known (see, e.g., [11]) “exc” and “des” are equidistributed
over Sn, their common generating polynomial being the Eulerian poly-
nomial An(t) := An(t, 1, 1, 1) = An(1, t, 1, 1), which satifies the identity

(1.17)
An(t)

(1− t)n+1
=
∑

r≥0

tr(r + 1)n,

easily deduced from (1.15).
The polynomials An(s, t, 1, 1) do not have any particular symmetries.

This is perhaps the reason why their generating function has never been
calculated before, to the best of the authors’ knowledge. However, with
q = 1 and Y = 0 we obtain

(1.18)
∑

n≥0

An(s, t, 1, 0)
un

(1− t)n+1
=
∑

r≥0

tr
1− s

(1− us)−r − s(1− u)−r
.

The right-hand side is invariant under the change of variables u ← us,
s ← s−1, so that the polynomials An(s, t, 1, 0), which are the generat-
ing polynomials for the set of all derangements by the pair (exc, des),
satisfy An(s, t, 1, 0) = snAn(s−1, t, 1, 0). This means that (exc, des) and
(iexc, des) are equidistributed on the set of all derangements. There is a
stronger combinatorial result that can be derived as follows. Let c be the
complement of (n + 1) and r the reverse image, which map each permu-
tation σ = σ(1) . . . σ(n) onto c σ := (n+ 1 − σ(1))(n+ 1 − σ(2)) . . . (n+
1− σ(n)) and rσ := σ(n) . . . σ(2)σ(1), respectively. Then

(1.19) (exc, fix, des, ides) σ = (iexc, fix, des, ides) c rσ.

The paper is organized as follows. In order to prove that C(r; u, s, q, Y )
is the generating polynomial for Wn(r) by two multivariable statistics,
we show in the next section that it suffices to construct two explicit
bijections φfix and φpix. The first bijection φfix, defined in Section 3, relates
to the algebra of Lyndon words, first introduced by Chen, Fox and Lyndon
[3], popularized in Combinatorics by Schützenberger [18] and now set in
common usage in Lothaire [17]. It is based on the techniques introduced by
Kim and Zeng [15]. In particular, we show that the V -cycle decomposition
introduced by those two authors, which is attached to each permutation,
can be extended to the case of words. This is the content of Theorem 3.4,
which may be regarded as our fifth main result.

The second bijection φpix, constructed in Section 4, relates to the less
classical H-factorization, the analog for words of the hook factorization
introduced by Gessel [12].
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In Section 5 we complete the proofs of Theorems 1.1 and 1.2. By
combining the two bijections φfix and φpix we obtain a transformation on
words serving to prove that two bivariable statistics are equidistributed
on the same rearrangement class. This is done in Section 6, as well as
the proof of Theorem 1.3. Finally, Theorem 1.4 is proved in Section 7 by
means of a new property of the second fundamental transformation.

2. Two multivariable generating functions for words

As 1/(u; q)r =
∑

n≥0

[

r+n−1
n

]

q
un (see, e.g., [2, chap. 3]), we may rewrite

the fraction C(r; u, s, q, Y ) =
(1− sq) (u; q)r (usq; q)r

((u; q)r − sq(usq; q)r)(uY ; q)r+1
as

(2.1) C(r; u, s, q, Y )

=
(

1−
∑

n≥2

[

r + n− 1

n

]

q

un((sq) + (sq)2 + · · ·+ (sq)n−1)
)−1 1

(uY ; q)r+1
.

If c = c1c2 · · · cn is a word, whose letters are nonnegative integers, let
λ c := n be the length of c and tot c := c1 + c2 + · · · + cn the sum of
its letters. Furthermore, NIWn (resp. NIWn(r)) designates the set of all
monotonic nonincreasing words c = c1c2 · · · cn of length n, whose letters
are nonnegative integers (resp. nonnegative integers at most equal to r):
c1 ≥ c2 ≥ · · · ≥ c1 ≥ 0 (resp. r ≥ c1 ≥ c2 ≥ · · · ≥ c1 ≥ 0). Also let NIW(r)
be the union of all NIWn(r) for n ≥ 0. It is q-routine (see, e.g., [2, chap. 3])
to prove

[

r + n− 1

n

]

q

=
∑

w∈NIWn(r−1)

qtot w.

The sum
∑

n≥2

[

r+n−1
n

]

q
un((sq)+(sq)2+· · ·+(sq)n−1) can then be rewritten

as
∑

(w,i)

siqi+tot wuλw, where the sum is over all pairs (w, i) such that w ∈

NIW(r−1), λw ≥ 2 and i is an integer satisfying 1 ≤ i ≤ λw−1. Let D(r)
(resp. Dn(r)) denote the set of all those pairs (w, i) (resp. those pairs such
that λw = n). Therefore, equation (2.1) can also be expressed as

C(r; u, s, q, Y ) = (1−
∑

(w,i)∈D(r)

siqi+tot wuλw)−1
∑

n≥0

un
∑

w∈NIWn(r)

qtot wY λw,

and the coefficient Cn(r; s, q, Y ) of un defined in (1.3) as

(2.2) Cn(r; s, q, Y ) =
∑

si1+···+im qi1+···+im+tot w0+tot w1+···+tot wm Y λw0 ,

the sum being over all sequences (w0, (w1, i1), . . . , (wm, im)) such that
w0 ∈ NIW(r), each of the pairs (w1, i1), . . . , (wm, im) belongs to D(r),
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and λw0 + λw1 + · · · + λwm = n. Denote the set of those sequences by
D∗n(r). The next step is to construct the two bijections φfix and φpix of
D∗n(r) onto Wn(r) enabling us to calculate certain multivariable statistical
distributions on words.

Let l = x1x2 · · ·xn be a nonempty word, whose letters are nonnegative
integers. Then l is said to be a Lyndon word, if either n = 1, or if n ≥ 2
and, with respect to the lexicographic order, the inequality x1x2 · · ·xn >
xixi+1 · · ·xnx1 · · ·xi−1 holds for every i such that 2 ≤ i ≤ n. When n ≥ 2,
we always have x1 ≥ xi for all i = 2, . . . , n and xi > xi+1 for at least one
integer i (1 ≤ i ≤ n − 1), so that it makes sense to define the rightmost

minimal letter of l, denoted by rmin l, as the unique letter xi+1 satisfying
the inequalities xi > xi+1, xi+1 ≤ xi+2 ≤ · · · ≤ xn.

Let w, w′ be two nonempty primitive words (none of them can be
expressed as vb, where v is a word and b an integer greater than or equal
to 2). We write w � w′ if and only if wb ≤ w′b, with respect to the
lexicographic order, when b is large enough. As shown for instance in [17,
Theorem 5.1.5] each nonnempty word w, whose letters are nonnegative
integers, can be written uniquely as a product l1l2 · · · lk, where each li is
a Lyndon word and l1 � l2 � · · · � lk. Classically, each Lyndon word
is defined to be the minimum within its class of cyclic rearrangements,
so that the sequence l1 � l2 � · · · is replaced by l1 ≥ l2 ≥ · · · The
modification made here is for convenience.

For instance, the factorization of the following word as a nondecreasing
product of Lyndon words with respect to “�” [in short, Lyndon word

factorization] is indicated by vertical bars:

w =| 2 | 3 2 1 1 | 3 | 5 | 6 4 2 1 3 2 3 | 6 6 3 1 6 6 2 | 6 | .

Now let w = x1x2 · · ·xn be an arbitrary word. We say that a positive
integer i is a decrease of w if 1 ≤ i ≤ n−1 and xi ≥ xi+1 ≥ · · · ≥ xj > xj+1

for some j such that i ≤ j ≤ n − 1. In particular, i is a decrease
if xi > xi+1. The letter xi is said to be a decrease value of w. If
1 ≤ i1 < i2 < · · · < im ≤ n− 1 is the increasing sequence of the decreases
of w, the subword xi1xi2 · · ·xim

is called the decrease value subword of w.
It will be denoted by decvalw. The number of decreases itself of w is
denoted by dec(w). We have dec(w) = 0 if all letters of w are equal. Also
dec(w) ≥ 1 if w is a Lyndon word having at least two letters. In the
previous example we have decvalw = 3 2 6 4 2 3 6 6 3 6 6, of length 11, so
that decw = 11.

Let l1l2 . . . lk be the Lyndon word factorization of a word w and let
(li1 , li2 , . . . , lih

) (1 ≤ i1 < i2 < · · · < ih ≤ k) be the sequence of all the
one-letter factors in its Lyndon word factorization. Form the nonincreasing
word Singlew defined by Singlew := lih

· · · li2 li1 and let singlew = h
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be the number of letters of Singlew. In the previous example we have:
Singlew = 6 5 3 2 and singlew = 4.

Theorem 2.1. The map φfix : (w0, (w1, i1), . . . , (wm, im)) 7→ w of D∗n(r)
onto Wn(r), defined in Section 3, is a bijection having the properties:

(2.3)

i1 + · · ·+ im = decw;

i1 + · · ·+ im + totw0 + totw1 + · · ·+ totwm = totw;

λw0 = singlew.

The next Corollary is then a consequence of (2.2) and the above
theorem.

Corollary 2.2. The sum Cn(r; s, q, Y ) defined in (2.2) is also equal to

(2.4) Cn(r; s, q, Y ) =
∑

w

sdec wqtot wY singlew,

where the sum is over all words w ∈ Wn(r).

To define the second bijection φpix : D∗n(r) → Wn(r) another class of
words is in use. We call them H-words. They are defined as follows: let
h = x1x2 · · ·xn be a word of length λh ≥ 2, whose letters are nonnegative
integers. Say that h is a H-word, if x1 < x2, and either n = 2, or n ≥ 3
and x2 ≥ x3 ≥ · · · ≥ xn.

Each nonnempty word w, whose letters are nonnegative integers, can be
written uniquely as a product uh1h2 · · ·hk, where u is a monotonic nonin-

creasing word (possibly empty) and each hi a H-word. This factorization
is called the H-factorization of w. Unless w is monotonic nonincreasing,
it ends with a H-word, so that its H-factorization is obtained by remov-
ing that H-word and determining the next rightmost H-word. Note the
discrepancy between the hook factorization for permutations mentioned in
the introduction and the present H-factorization used for words.

For instance, the H-factorization of the following word is indicated by
vertical bars:

w =| 6 5 3 2 | 1 3 2 1 | 3 6 4 | 1 2 | 2 3 | 1 6 6 3 | 2 6 6 | .
Three statistics are now defined that relate to the H-factorization

uh1h2 · · ·hk of each arbitrary word w. First, let wpix(w) be the length
λu of u. Then, if r denotes the reverse image, which maps each word
x1x2 . . . xn onto xn . . . x2x1, define the statistic wlec(w) by

wlec(w) :=

k
∑

i=1

rinv(hi),

where rinv(w) = inv(r(w)). In the previous example, wpixw = λ(6532) =
4 and wlecw = inv(1231) + inv(463) + inv(21) + inv(32) + inv(3661) +
inv(662) = 2 + 2 + 1 + 1 + 3 + 2 = 11.
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Theorem 2.3. The map φpix : (w0, (w1, i1), . . . , (wm, im)) 7→ w of D∗n(r)
onto Wn(r), defined in Section 4, is a bijection having the properties:

(2.5)

i1 + · · ·+ im = wlecw;

i1 + · · ·+ im + totw0 + totw1 + · · ·+ totwm = totw;

λw0 = wpixw.

Corollary 2.4. The sum Cn(r; s, q, Y ) defined in (2.2) is also equal to

Cn(r; s, q, Y ) =
∑

w

swlec wqtot wY wpix w,

where the sum is over all words w ∈ Wn(r).

3. The bijection φfix

The construction of the bijection φfix of D∗n(r) onto Wn(r) proceeds in
four steps and involves three subclasses of Lyndon words: the V -words, U -
words and L-words. We can say that V - and U -words are the word analogs
of the V - and U -cycles introduced by Kim and Zeng [15] for permutations.
The present construction is directly inspired by their work.

Each word w = x1x2 · · ·xn is said to be a V -word (resp. a U -word), if
it is of length n ≥ 2 and its letters satisfy the following inequalities

x1 ≥ x2 ≥ · · · ≥ xi > xi+1 and xi+1 ≤ xi+2 ≤ · · · ≤ xn < xi,(3.1)

(resp.

x1 ≥ x2 ≥ · · · ≥ xi > xi+1 and xi+1 ≤ xi+2 ≤ · · · ≤ xn < x1 )(3.2)

for some i such that 1 ≤ i ≤ n − 1. Note that if (3.1) or (3.2) holds,
then dec(w) = i. Also maxw (the maximum letter of w) = x1 > xn. For
example, v = 5 5 4 11 2 is a V -word and u = 8 7 57 7 is a U -word, but not
a V -word. Their rightmost minimal letters have been underlined.

Now w is said to be a L-word, if it is a Lyndon word of length at least
equal to 2 and whenever x1 = xi for some i such that 2 ≤ i ≤ n, then
x1 = x2 = · · · = xi. For instance, 6 6 3 1 6 6 2 is a Lyndon word, but not a
L-word, but 6 6 3 1 2 1 is a L-word.

Let Vn(r) (resp. Un(r), resp. Ln(r), Lyndonn(r)) be the set of V -words
(resp. U -words, resp. L-words, resp. Lyndon words), of length n, whose
letters are at most equal to r. Also, let V (r) (resp. U(r), resp. L(r), resp.
Lyndon(r)) be the union of the Vn(r)’s (resp. the Un(r)’s, resp. the Ln(r)’s,
resp. the Lyndonn(r)’s) for n ≥ 2. Clearly, Vn(r) ⊂ Un(r) ⊂ Ln(r) ⊂
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Lyndonn(r). Parallel to D∗n(r), whose definition was given in (2.2), we
introduce three sets V ∗n (r), U∗n(r), L∗n(r) of sequences (w0, w1, . . . , wk) of
words from W (r) such that w0 ∈ NIW(r), λw0 + λw1 + · · ·+ λwk = n and

(i) for V ∗n (r) the components wi (1 ≤ i ≤ k) belong to V (r);
(ii) for U∗n(r) the components wi (1 ≤ i ≤ k) belong to U(r) and

are such that: rminw1 < maxw2, rminw2 < maxw3, . . . , rminwk−1 <
maxwk;

(iii) for L∗n(r) the components wi (1 ≤ i ≤ k) belong to L(r) and are
such that: maxw1 ≤ maxw2 ≤ · · · ≤ maxwk.

The first step consists of mapping the set Dn(r) onto Vn(r). This
is made by means of a very simple bijection, defined as follows: let
w = x1x2 · · ·xn be a nonincreasing word and let (w, i) belong to Dn(r),
so that n ≥ 2 and 1 ≤ i ≤ n− 1. Let

y1 := x1 + 1, y2 := x2 + 1, . . . , yi := xi + 1,

yi+1 := xn, yi+2 := xn−1, . . . , yn := xi+1;

v := y1y2 . . . yn.

The following proposition is evident.

Proposition 3.1. The mapping (w, i) 7→ v is a bijection of Dn(r) onto
Vn(r) satisfying dec(v) = i and tot v = totw + i.

For instance, the image of (w = 4 4 3 2 1 1, i = 3) is the V -word
v = 5 5 4 1 1 2 under the above bijection and dec(v) = 3.

Let (w0, (w1, i1), (w2, i2), . . . , (wk, ik)) belong to D∗n(r) and, using the
bijection of Proposition 3.1, let (w1, i1) 7→ v1, (w2, i2) 7→ v2, . . . ,
(wk, ik) 7→ vk. Then

(3.3) (w0, (w1, i1), (w2, i2), . . . , (wk, ik)) 7→ (w0, v1, v2, . . . , vk)

is a bijection of D∗n(r) onto V ∗n (r) having the property that

(3.4)

i1 + i2 + · · ·+ ik = dec(v1) + dec(v2) + · · ·+ dec(vk);

i1 + i2 + · · ·+ ik + totw0 + totw1 + totw2 + · · ·+ totwk

= totw0 + tot v1 + tot v2 + · · ·+ tot vk.

For instance, the sequence
(

6 5 3 2, (2 1 1 1, 2), (5 3 3, 2), (1 1, 1), (2 2, 1), (5 5 2 1, 3), (5 5 2, 2)
)

from D∗22(6) is mapped under (3.3) onto the sequence

(6 5 3 2, 3 2 1 1, 6 4 3, 2 1, 3 2, 6 6 3 1, 6 6 2) ∈ V ∗22(6).

Also dec(3 2 1 1)+dec(6 4 3)+dec(2 1)+dec(3 2)+dec(6 6 3 1)+dec(6 6 2) =
2 + 2 + 1 + 1 + 3 + 2 = 11.
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The second step is to map V ∗n (r) onto U∗n(r). Let u = y1y2 · · · yk ∈ U(r)
and v = z1z2 · · · zl ∈ V (r). Suppose that rminu is the (i+1)-st leftmost let-
ter of u and rmin v is the (j+1)-st letter of v. Also assume that rminu ≥
max v. Then, the word [u, v] := y1 · · ·yiz1 · · · zjzj+1 · · · zlyi+1 · · · yk be-
longs to U(r). Furthermore, rmin[u, v] is the (i+ j + 1)-st leftmost letter
of [u, v] and its value is zj+1. We also have the inequalities: yi > yi+1 (by
definition of rminu), yi+1 ≥ z1 (since minu ≥ max v) and zj > zl (since
v is a V -word). These properties allow us to get back the pair (u, v) from
[u, v] by successively determining the critical letters zj+1, zj , zl, yi+1, z1.
The mapping (u, v) 7→ [u, v] is perfectly reversible.

For example, with u = 8 7 57 7 and v = 522 we have [u, v] =
8 7522 5 7 7.

Now let (w0, v1, v2, . . . , vk) ∈ V ∗n (r). If k = 1, let (w0, u1) := (w0, v1) ∈
U∗n(r). If k ≥ 2, let (1, 2, . . . , a) be the longest sequence of integers such
that rmin v1 ≥ max v2 > rmin v2 ≥ max v2 > · · · ≥ max va > rmin va and,
either a = k, or a ≤ k − 1 and rmin va < max va+1. Let

(3.5) u1 :=

{

v1, if a = 1;
[· · · [ [v1, v2], v3], · · · , va], if a ≥ 2.

We have u1 ∈ U(r) and (w0, u1) ∈ U∗n(r) if a = k. Otherwise, rminu1 <
max va+1. We can then apply the procedure described in (3.5) to the
sequence (va+1, va+2, . . . , vk). When reaching vk we obtain a sequence
(w0, u1, . . . , uh) ∈ U∗n(r). The whole procedure is perfectly reversible. We
have then the following proposition.

Proposition 3.2. The mapping

(3.6) (w0, v1, v2, . . . , vk) 7→ (w0, u1,u2, . . . , uh)

described in (3.5) is a bijection of V ∗n (r) onto U∗n(r) having the following
properties:
(i) u1u2 · · ·uh is a rearrangement of v1v2 · · · vk, so that totu1 + totu2 +
· · ·+ totuh = tot v1 + tot v2 + · · ·+ tot vk;
(ii) dec(u1) + dec(u2) + · · ·+ dec(uh) = dec(v1) + dec(v2) + · · ·+ dec(vk).

For example, the above sequence

(6 5 3 2, 3 2 1 1, 6 4 3, 2 1, 3 2, 6 6 3 1, 6 6 2) ∈ V ∗22(6)

is mapped onto the sequence

(6 5 3 2, 3 2 1 1, 6 4 2 1 3, 3 2, 6 6 3 1, 6 6 2) ∈ U∗22(6).

where [6 4 3, 2 1] = 6 4 2 1 3. Also dec(3 2 1 1) + dec(6 4 2 1 3) + dec(3 2) +
dec(6 6 3 1) + dec(6 6 2) = 11.
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The third step is to map U∗n(r) onto L∗n(r). Let l = x1x2 · · ·xj ∈ L(r)
and u = y1y2 · · · yj′ ∈ U(r). Suppose that rmin l is the (i+ 1)-st leftmost
letter of l and rminu is the (i′+1)-st leftmost letter of u. Also assume that
rmin l < maxu and max l > maxu. If xj < y1, let 〈l, u〉 := lu. If xj ≥ y1,
there is a unique integer a ≥ i + 1 such that xa < y1 = maxu ≤ xa+1.
Then, let

〈l, u〉 := x1 · · ·xixi+1 · · ·xay1 · · · yi′yi′+1 · · · yj′xa+1 · · ·xj .

The word 〈l, u〉 belongs to L(r) and rmin〈l, u〉 is the (a+ i′+1)-st leftmost
letter of 〈l, u〉, its value being yi′+1. Now y1 is the rightmost letter of 〈l, u〉
to the left of rmin〈l, u〉 = yi′+1 such that the letter preceding it, that
is xa, satisfies xa < y1 and the letter following it, that is y2, is such that
y1 ≥ y2. On the other hand, yj′ is the unique letter in the nondecreasing
factor yi′+1 · · · yj′xa+1 · · ·xj that satisfies yj′ < y1 = maxu ≤ xa+1. Hence
the mapping (l, u) 7→ 〈l, u〉 is completely reversible.

For example, with l = 8 2 5 33 5 7 7 and u = 7612 we have 〈l, u〉 =
8 2 5 3 3 57612 7 7 (the leftmost minimal letters have been underlined).
The letter 7 is the rightmost letter in 〈l, u〉 greater than its predecessor 5
and greater than or equal to its successor 6. Also 2 is the unique letter in
the factor 12 7 7 that satisfies 2 < maxu = 7 ≤ 7.

Let (w0, u1, u2, . . . , uh) ∈ U∗n(r). If h = 1, let (w0, l1) := (w0, u1) ∈
L∗n(r). If h ≥ 2, let (1, 2, . . . , a) be the longest sequence of integers such
that maxu1 > maxuj for all j = 2, . . . , a and, and either a = h, or
a ≤ h− 1 and maxu1 ≤ maxua+1. Let

(3.7) l1 :=

{

u1, if a = 1;
〈· · · 〈 〈u1, u2〉, u3〉, · · · , ua〉, if a ≥ 2.

We have l1 ∈ L(r) and (w0, l1) ∈ L∗n(r) if a = h. Otherwise, max l1 ≤
maxua+1. We then apply the procedure described in (3.7) to the se-
quence (ua+1, ua+2, . . . , uh). When reaching uh we obtain a sequence
(w0, l1, . . . , lm) ∈ L∗n(r). The whole procedure is perfectly reversible. We
have then the following proposition.

Proposition 3.3. The mapping

(3.8) (w0, u1, u2, . . . , uh) 7→ (w0, l1, l2, . . . , lm)

described in (3.7) is a bijection of U∗n(r) onto L∗n(r) having the following
properties:
(i) l1l2 · · · lm is a rearrangement of u1u2 · · ·uh, so that tot l1 +tot l2 + · · ·+
tot lm = totu1 + totu2 + · · ·+ totuh;
(ii) dec(l1) + dec(l2) + · · ·+ dec(lm) = dec(u1) + dec(u2) + · · ·+ dec(uh).
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For example the above sequence

(6 5 3 2, 3 2 1 1, 6 4 2 1 3, 3 2, 6 6 3 1, 6 6 2)) ∈ U∗22(6).

is mapped onto the sequence

(6 5 3 2, 3 2 1 1, 6 4 2 1 3 2 3, 6 6 3 1, 6 6 2) ∈ L∗22(6),

where 〈6 4 2 1 3, 3 2〉 = 6 4 2 1 3 2 3. Also dec(3 2 1 1) + dec(6 4 2 1 3 2 3) +
dec(6 6 3 1) + dec(6 6 2) = 11.

The fourth step is to map L∗n(r) onto Wn(r). Let (w0, l1, l2, . . . , lm) ∈
L∗n(r). If w0 is nonempty, of length b, denote by f1, f2, . . . , fb its b
letters from left to right, so that r ≥ f1 ≥ f2 ≥ · · · ≥ fb ≥ 0. If m = 1,
let σ1 := l1. If m ≥ 2, let a be the greatest integer such that l1 ≻ l2,
l1l2 ≻ l3, . . . , l1 · · · la−1 ≻ la. If a ≤ h − 1, let a′ > a be the greatest
integer such that la+1 ≻ la+2, la+1la+2 ≻ la+3, . . . , la+1 · · · la′−1 ≻ la′ ,
etc. Form σ1 := l1l2 · · · la, σ2 := la+1 · · · la′ , etc. The sequence (σ1, σ2, . . . )
is a nonincreasing sequence of Lyndon words. Let (τ1, τ2, . . . , τp) be the
nonincreasing rearrangement of the sequence (σ1, σ2, . . . , f1, f2, . . . , fb)
if w0 is nonempty, and of (σ1, σ2, . . . ) otherwise. Then, (τ1, τ2, . . . , τp) is
the Lyndon word factorization of a unique word w ∈Wn(r). The mapping

(3.9) (w0, l1, l2, . . . , lm) 7→ w

is perfectly reversible. Also the verification of dec(w) = dec(l1)+dec(l2)+
· · ·+ dec(lm) is immediate.

For example, the above sequence

(6 5 3 2, 3 2 1 1, 6 4 2 1 3 2 3, 6 6 3 1, 6 6 2) ∈ L∗22(6)

is mapped onto the Lyndon word factorization

(3.10) w =| 2 | 3 2 1 1 | 3 | 5 | 6 4 2 1 3 2 3 | 6 6 3 1 6 6 2 | 6 | .

The map φfix is then defined as being the composition product of

(w0, (w1, i1), (w2, i2), . . . , (wk, ik)) 7→ (w0, v1, v2, . . . , vk) in (3.3)

(w0, v1, v2, . . . , vk) 7→ (w0, u1,u2, . . . , uh) in (3.6)

(w0, u1, u2, . . . , uh) 7→ (w0, l1, l2, . . . , lm) in (3.8)

(w0, l1, l2, . . . , lm) 7→ w. in (3.9)

Therefore, φfix is a bijection of D∗n(r) onto Wn(r) having the properties
stated in Theorem 2.1. The latter theorem is then proved.

From the property of the bijection w 7→ (w0, v1, v2, . . . , vk) of Wn(r)
onto V ∗n (r) we deduce the following theorem, which may be regarded as a
word analog of Theorem 2.4 in Kim-Zeng’s paper [15].
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Theorem 3.4 (V -word decomposition). To each word w = x1x2 · · ·xn

whose letters are nonnegative integers there corresponds a unique sequence
(w0, v1, v2, . . . , vk), where w0 is a nondecreasing word and v1, v2, . . . , vk

are V -words with the further property that w0v1v2 · · · vk is a rearrange-
ment of w and decvalw is the juxtaposition product of the decval vi’s:

decvalw = (decval v1)(decval v2) · · · (decval vk).

In particular,

decw = dec v1 + dec v2 + · · ·+ dec vk.

For instance, the decrease values of the word w below and of the V -
factors of its V -decomposition are reproduced in boldface:

w = 232 1 1 3 5642 13 2 3663 166 2 6;

(6 5 3 2, 32 1 1, 64 3, 2 1, 3 2, 663 1, 66 2).

4. The bijection φpix

The bijection φpix : D∗n(r) → Wn(r) whose properties were stated in
Theorem 3.2 is easy to construct. Let Hn(r) be the set of all H-words
of length n, whose letters are at most equal to r and H(r) be the union
of all Hn(r)’s for n ≥ 2. We first map Dn(r) onto Hn(r) as follows. Let
w = x1x2 · · ·xn be a nonincreasing word and let (w, i) belong to Dn(r),
so that n ≥ 2 and 1 ≤ i ≤ n− 1. Define:

h := xi+1(x1 + 1)(x2 + 1) . . . (xi + 1)xi+2xi+3 . . . xn.

The following proposition is evident.

Proposition 4.1. The mapping (w, i) 7→ h is a bijection of Dn(r) onto
Hn(r) satisfying rinv(h) = i and toth = totw + i.

For instance, the image of (w = 4 4 3 2 2 1, i = 3) is the H-word
h = 2 5 5 4 2 1 under the above bijection and rinv(h) = 3.

Let (w0, (w1, i1), (w2, i2), . . . , (wk, ik)) belong to D∗n(r) and, using the
bijection of Proposition 4.1, let (w1, i1) 7→ h1, (w2, i2) 7→ h2, . . . ,
(wk, ik) 7→ hk. Then w0h1h2 · · ·hk is the H-factorization of a word
w ∈Wn(r). Accordingly,

φpix : (w0, (w1, i1), (w2, i2), . . . , (wk, ik)) 7→ w := w0h1h2 · · ·hk

is a bijection of D∗n(r) onto Wn(r) having the properties listed in (2.5).
This completes the proof of Theorem 2.3.
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For instance, the sequence

(

6 5 3 2, (2 1 1 1, 2), (5 3 3, 2), (1 1, 1), (2 2, 1), (5 5 2 1, 3), (5 5 2, 2)
)

from D∗22(6) is mapped under φpix onto the word

6 5 3 2 | 1 3 2 1 | 3 6 4 | 1 2 | 2 3 | 1 6 6 3 | 2 6 6 ∈W22(6).

Also (wlec, tot,wpix)w = (11, 74, 4).

5. From words to permutations

We are now in a position to prove Theorems 1.1 and 1.2. Suppose that
identity (1.5) holds. As

1

(t; q)n+1
=
∑

j≥0

tj
∑

w∈NIWn(j)

qtot w,

the right-hand side of (1.4) can then be written as

∑

r≥0

tr
∑

n≥0

Bfix
n (r; s, q, Y )un,

where

(5.1) Bfix
n (r; s, q, Y ) :=

∑

(σ,c)

sexc σ qmaj σ+tot c Y fix σ,

the sum being over all pairs (σ, c) such that σ ∈ Sn, desσ ≤ r and
c ∈ NIWn(r − desσ). Denote the set of all those pairs by Sn(r, des).

In the same manner, let Sn(r, ides) denote the set of all pairs (σ, c)
such that σ ∈ Sn, idesσ ≤ r and c ∈ NIWn(r − ides σ) and let

(5.2) Bpix
n (r; s, q, Y ) :=

∑

(σ,c)

slec σ qimaj σ+tot c Y pix σ,

where the sum is over all (σ, c) ∈ Sn(r, ides). If (1.6) holds, the right-hand
side of (1.4) is equal to

∑

r≥0

tr
∑

n≥0

Bpix
n (r; s, q, Y )un.

Accordingly, for proving identity (1.5) (resp. (1.6)) it suffices to show
that Cn(r; s, q, Y ) = Bfix

n (r; s, q, Y ) (resp. Cn(r; s, q, Y ) = Bpix
n (r; s, q, Y ))

holds for all pairs (r, n). Referring to Corollaries 2.2 and 2.4 it suffices to
construct a bijection

ψfix : w 7→ (σ, c)
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of Wn(r) onto Sn(r, des) having the following properties

(5.3)

decw = excσ;

totw = majσ + tot c;

singlew = fixσ;

and a bijection
ψpix : w 7→ (σ, c)

of Wn(r) onto Sn(r, ides) having the following properties

(5.4)

wlecw = lecσ;

totw = imajσ + tot c;

wpixw = pix σ.

The construction of ψfix is achieved by adapting a classical bijection
used by Gessel-Reutenauer [13] and Désarménien-Wachs [6, 7]. Start with
the Lyndon word factorization (τ1, τ2, . . . , τp) of a word w ∈ Wn(r).
If x is a letter of the factor τi = y1 · · · yj−1xyj+1 · · · yh, form the cyclic
rearrangement cyc(x) := xyj+1 · · ·yhy1 · · · yj−1. If x, y are two letters
of w, we say that x precedes y, if cycx ≻ cyc y, or if cycx = cyc y and the
letter x is to the right of the letter y in the word w. Accordingly, to each
letter x of w there corresponds a unique integer p(x), which is the number
of letters preceding x plus one.

When replacing each letter x in the Lyndon word factorization of w
by p(x), we obtain a cycle decomposition of a permutation σ. Furthermore,
the cycles start with their minima and when reading the word from left
to right the cycle minima are in decreasing order.

When this replacement is applied to the Lyndon word factorization
displayed in (3.10), we obtain:

w = 2 | 3 2 1 1 | 3 | 5 | 6 4 2 1 3 2 3 | 6 6 3 1 6 6 2 | 6
σ = 16 | 12 18 22 21 | 10 | 7 | 4 8 17 20 11 15 9 | 2 5 13 19 3 6 14 | 1

Let ci := p−1(i) for i = 1, 2, . . . , n. As the permutation σ is expressed
as the product of its disjoint cycles, we can form the three-row matrix

Id = 1 2 · · · n
σ = σ(1) σ(2) · · · σ(n)
c = c1 c2 · · · cn

The essential feature is that the word c just defined is the monotonic
nonincreasing rearrangement of w and it has the property that

(5.5) σ(i) > σ(i+ 1)⇒ ci > ci+1.
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See [13, 7] for a detailed proof. The rest of the proof is routine. Let
z = z1z2 · · · zn be the word defined by

zi := #{j : i ≤ j ≤ n− 1, σ(j) > σ(j + 1)}.

In other words, zi is the number of descents of σ within the right factor
σ(i)σ(i+ 1) · · ·σ(n). In particular, z1 = desσ. Because of (5.5) the word
c = c1c2 · · · cn defined by ci := ci − zi for i = 1, 2, . . . , n belongs to
NIW(r − desσ) and des σ ≤ r.

Finally, the verification of the three properties (5.3) is straightforward.
Thus, we have constructed the desired bijection ψfix : w 7→ (σ, c), as the
reverse construction requires no further development.

With the above example we have:

Id = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
σ = 1 5 6 8 13 14 7 17 4 10 15 18 19 2 9 16 20 22 3 11 12 21
c = 6 6 6 6 6 6 5 4 3 3 3 3 3 2 2 2 2 2 1 1 1 1
z = 4 4 4 4 4 4 3 3 2 2 2 2 2 1 1 1 1 1 0 0 0 0
c = 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

The excedances of σ have been underlined (excσ = 11). As tot z = majσ,
we have 74 = totw = majσ+tot c = 45+29. The fixed points are written
in boldface (fixσ = 4).

The bijection ψpix : w 7→ (σ, c) of Wn(r) onto Sn(r, ides) is constructed
by means of the classical standardisation of words. Read w from left to
right and label 1, 2, . . . all the maximal letters. If there are m such letters,
restart the reading from left to right and label m+1, m+2, . . . the second
greatest letters. Pursue this reading method until reaching the minimal
letters. Call σ = σ(1)σ(2) · · ·σ(n) the permutation derived by reading
those labels from left to right.

The permutation σ and the word w have the same hook-factorization
type. This means that if ah1h2 . . . hs (resp. bp1p2 . . . pk) is the hook-
factorization of σ (resp. H-factorization of w), then k = s and λa = λb.
For each 1 ≤ i ≤ k we have λhi = λpi and inv(hi) = rinv(pi). Hence
wlecw = lecσ and wpixw = pix σ.

Now define the word z = z1z2 . . . zn as follows. If σ(j) = n is the
maximal letter, then zj := 0; if σ(j) = σ(k)− 1 and j < k, then zj := zk;
if σ(j) = σ(k) − 1 and j > k, then zj := zk + 1. We can verify that
imajσ = tot z. With w = x1x2 · · ·xn define the word d = d1d2 · · ·dn

by di := xi − zi (1 ≤ i ≤ n). As zj = zk + 1 ⇒ xj ≥ xk + 1, the
letters of d are all nonnegative. The final word c is just defined to be the
monotonic nonincreasing rearrangement of d. Finally, properties (5.4) are
easily verified.
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For defining the reverse of ψpix we just have to remember that the
following inequality holds: σ(j) < σ(k) ⇒ dj ≥ dk. This achieves the
proofs of Theorems 1.1 and 1.2. For example,

Id = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
w = 6 5 3 2 1 3 2 1 3 6 4 1 2 2 3 1 6 6 3 2 6 6
σ = 1 7 9 14 19 10 15 20 11 2 8 21 16 17 12 22 3 4 13 18 5 6
z = 4 3 2 1 0 2 1 0 2 4 3 0 1 1 2 0 4 4 2 1 4 4
d = 2 2 1 1 1 1 1 1 1 2 1 1 1 1 1 1 2 2 1 1 2 2
c = 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

6. A bijection on words and the proof of Theorem 1.3

Consider the two bijections φfix and φpix that have been constructed
in Sections 3 and 4 and consider the bijection F defined by the following
diagram:

�
�

��

D∗n(r)

Wn(r)

?
@

@
@R Wn(r)

φfix

φpix

F

Fig. 1. Definition of F

On the other hand, go back to the definition of the bijection (w, i) 7→ v
(resp. (w, i) 7→ h) given in Proposition 3.1 (resp. in Proposition 4.1).
If w = x1x2 · · ·xn, then both v and h are rearrangements of the word
(x1 + 1)(x2 + 1) · · · (xi + 1)xi+1 · · ·xn. Now consider the two bijections

φfix : (w0, (w1, i1), . . . , (wm, im)) 7→ w;

φpix : (w0, (w1, i1), . . . , (wm, im)) 7→ w′.

It then follows from Proposition 3.2, Proposition 3.3 and (3.9), on the one
hand, and from the very definition of φpix, on the other hand, that the
words w and w′ are rearrangements of each other. Finally, Theorems 2.1
and 2.3 imply the following result.

Theorem 6.1. The transformation F defined by the diagram of Fig. 1
maps each word whose letters are nonnegative integers on another
word F (w) and has the following properties:

(i) F (w) is a rearrangement of w and the restriction of F to each rear-
rangement class is a bijection of that class onto itself;

(ii) (dec, single)w = (wlec,wpix)F (w).

Let c be the complement to (n + 1) that maps each permutation σ =
σ(1)σ(2) · · ·σ(n) onto c σ := (n+1−σ(1))(n+1−σ(2)) · · ·(n+1−σ(n)).
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When restricted to the symmetric group Sn the mapping F ◦ c maps Sn

onto itself and has the property

(des, single) σ = (lec, pix) (F ◦ c)(σ).

Note that “dec” was replaced by “des”, as all the decreases in a permuta-
tion are descents. Finally, the so-called first fundamental transformation
(see [11]) σ 7→ σ̂ maps Sn onto itself and is such that

(exc, fix) σ = (des, single) σ̂.

Hence

(exc, fix) σ = (lec, pix) (F ◦ c)(σ̂).

As announced in the introduction we have a stronger result stated in
Theorem 1.3. Its proof is as follows.

Proof of Theorem 1.3. For each composition J = j1j2 · · · jm (word
with positive letters) define the set L(J) and the monotonic nonincreasing
word c(J) by

L(J) := {jm, jm + jm−1, . . . , jm + jm−1 + · · ·+ j2 + j1};
c(J) := mjm(m− 1)jm−1 · · · 2j21j1 .

For example, with J = 455116 we have L(J) = {6, 7, 8, 13, 18, 22} and
c(J) = 6666665433333222221111.

Fix a composition J of n (i.e., totJ = n) and let S
J be the set of all

permutations σ of order n such that Iligneσ ⊂ L(J). Using the bijection
ψpix given in Section 5, define a bijection w1 7→ σ1 between the set RJ of
all rearrangements of c(J) and S

J by

(σ1, ∗) = ψpix(w1).

For defining the reverse σ1 7→ w1 we only have to take the multiplicity of
w1 ∈ RJ into account. This is well-defined because Iligneσ1 ⊂ L(J). For
example, take the same example used in Section 5 for ψpix:

Id = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
w1 = 6 5 3 2 1 3 2 1 3 6 4 1 2 2 3 1 6 6 3 2 6 6
σ1 = 1 7 9 14 19 10 15 20 11 2 8 21 16 17 12 22 3 4 13 18 5 6

Then Iligneσ1 = {6, 8, 13, 18} ⊂ L(J) and the basic properties of this
bijection are

wlecw1 = lecσ1, wpixw1 = pixσ1.
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On the other hand the bijection ψfix given in Section 5 defines a bijection
w2 7→ σ2 between RJ and S

J by

(σ−1
2 , ∗) = ψfix(w2).

Again, for the reverse σ2 7→ w2 the multiplicity of w2 ∈ RJ is to be taken
into account. This is also well-defined, since Iligneσ2 ⊂ L(J). With the
example used in Section 5 for ψfix we have:

Id = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
w2 = 2 3 2 1 1 3 5 6 4 2 1 3 2 3 6 6 3 1 6 6 2 6
σ−1

2 = 1 5 6 8 13 14 7 17 4 10 15 18 19 2 9 16 20 22 3 11 12 21
σ2 = 1 14 19 9 2 3 7 4 15 10 20 21 5 6 11 16 8 12 13 17 22 18

Also Iligneσ2 = Ligneσ−1
2 = {6, 8, 13, 18} ⊂ L(J).

The basic properties of this bijection are

decw2 = iexcσ2, singlew2 = fixσ2.

We can use those two bijections and the bijection F defined in Fig. 1 to
form the chain

σ 7→ w1
F7→ w2 7→ σ2,

and therefore obtain a bijection σ1 7→ σ2 of S
J onto itself having the

following properties

iexcσ2 = lecσ1, fixσ2 = pixσ1.

In other words, the pairs (iexc, fix) and (lec, pix) are equidistributed on
{σ ∈ Sn, Iligneσ ⊂ J} for all compositions J of n. By the inclusion-
exclusion principle those pairs are also equidistributed on each set {σ ∈
Sn, Iligneσ = J}. Hence the triples (iexc, fix, Iligne) and (lec, pix, Iligne)
are equidistributed on Sn.

7. Proof of Theorem 1.4

If m = (m1, m2, . . . , mn) is a sequence of n nonnegative integers, the
rearrangement class of the nondecreasing word 1m12m2 . . . rmn , that is,
the class of all the words than can be derived from 1m12m2 . . . rmn by
permutation of the letters, is denoted by Rm. The definitions of “des,”
“maj” and “inv” used so far for permutations are also valid for words.
The second fundamental transformation, as it was called later on (see [8],
[17], §10.6 or [16], ex. 5.1.1.19) denoted by Φ, maps each word w on another
word Φ(w) and has the following properties:

(a) majw = inv Φ(w);
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(b) Φ(w) is a rearrangement of w, and the restriction of Φ to each
rearrangement class Rm is a bijection of Rm onto itself.

Further properties were further proved by Foata, Schützenberger [11]
and Björner, Wachs [1], in particular, when the transformation is restricted
to act on rearrangement classes Rm such that m1 = · · · = mn = 1, that
is, on symmetric groups Sn.

Ligne and inverse ligne of route have been defined in the Introduction.
As was proved in [11], the transformation Φ preserves the inverse ligne of
route, so that the pairs (Iligne,maj) and (Iligne, inv) are equidistributed
on Sn, a result that we express as

(Iligne,maj) ≃ (Iligne, inv);(7.1)

or as

(Ligne, imaj) ≃ (Ligne, inv).(7.2)

The refinement of (7.2) we now derive (see Proposition 7.1 and Theorem
7.2 below) is based on the properties of a new statistic called LAC.

For each permutation σ = σ(1)σ(2) · · ·σ(n) and each integer i such
that 1 ≤ i ≤ n define ℓi := 0 if σ(i) < σ(i+1) and ℓi := k if σ(i) is greater
than all the letters σ(i+1), σ(i+2), . . . , σ(i+k), but σ(i) < σ(i+k+1).
[By convention, σ(n+ 1) = +∞.]

Definition. The statistic LACσ attached to each permutation σ =
σ(1)σ(2) · · ·σ(n) is defined to be the word LACσ = ℓ1ℓ2 . . . ℓn.

Example. We have

id = 1 2 3 4 5 6 7 8 9 10 11 12
σ = 3 4 8 1 9 2 5 10 12 7 6 11

LACσ = 0 0 1 0 2 0 0 0 3 1 0 0

In the above table ℓ5 = 2 because σ = . . .9 2 5 10 · · · and ℓ9 = 3 because
σ = . . .12 7 6 11.

Proposition 7.1. Let σ = σ(1)σ(2) · · ·σ(n) be a permutation and let
LACσ = ℓ1ℓ2 . . . ℓn. Then i ∈ Ligneσ if and only if ℓi ≥ 1.

Theorem 7.2. We have

(7.3) (LAC, imaj) ≃ (LAC, inv).

Proof. Define ILACσ := LACσ−1. Since Φ maps “maj” to “inv,”
property (7.3) will be proved if we show that Φ preserves “ILAC”, that is,

(7.4) ILAC Φ(σ) = ILACσ.
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A direct description of ILAC σ can be given as follows. Let ILAC σ =
f1f2 . . . fn. Then fi = j if and only if within the word σ = σ(1)σ(2) · · ·σ(n)
the integer j is such that the letters of σ equal to i + 1, i + 2, . . . , i + j
are on the left of the letter equal to i and either (i+ j + 1) is on the right
of i, or i+ j = n.

As can be seen in ([17], chap. 10), the second fundamental trans-
formation Φ is defined by induction: Φ(x) = x for each letter x and
Φ(wx) = γx(Φ(w))x for each word w and each letter x, where γx is a
well-defined bijection. See the above reference for an explicit description
of γx. Identity (7.4) is then a simple consequence of the following property
of γx (we omit its proof): Let w be a word and x a letter. If u is a subword
of w such that all letters of u are smaller (resp. greater) than x, then u is
also a subword of γx(w).

Proposition 7.3. Let σ and τ be two permutations of order n. If
LACσ = LAC τ , then

(i) Ligneσ = Ligne τ ;
(ii) (des,maj)σ = (des,maj)τ ;
(iii) pixσ = pix τ ;
(iv) lecσ = lec τ .

Proof. (i) follows from Proposition 7.1. (ii) follows from (i). By (i) we
see that σ and τ have the same hook-factorization type. That means that
if ah1h2 . . . hs (resp. bp1p2 . . . pk) is the hook-factorization of σ (resp. of
τ), then k = s and λ a = λ b, λhi = λ pi for 1 ≤ i ≤ k. Hence (iii) holds.
For proving (iv) it suffices to prove that inv(hi) = inv(pi) for 1 ≤ i ≤ k.
This is true since LACσ = LAC τ by hypothesis.

It follows from Proposition 7.3 that

(7.5) (lec, imaj, pix) ≃ (lec, inv, pix)

and this is all we need to prove Theorem 1.4.
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DECREASES AND DESCENTS IN WORDS

Dominique Foata and Guo-Niu Han

ABSTRACT. The generating function for words by a multivariable statis-
tic involving decrease, increase, descent and rise values is explicitly cal-
culated by using the MacMahon Master Theorem and the properties of
the first fundamental transformation on words. Applications to statistical
study of the symmetric group are also given.

1. Introduction

In our recent papers [2, 3, 4, 5, 6, 7, 8, 9] that involve the calculations
of factorial generating functions for the symmetric and hyperoctahedral
groups, we have obtained several results on statistical distributions on
words. In this paper we take up again the study of those word statistics in
a more general context. They do not necessarily have counterparts on
permutations, but are essential in this word calculus. The MacMahon
Master Theorem [14, p. 97-98] and the first fundamental transformation
on words [13, chap. 10] will be our basic tools.

The number of decreases is a crucial statistic; as such it is at the origin
of our word studies. The definition of decrease slightly differs from the
definition of the classical descent. Let w = x1x2 · · ·xn be an arbitrary word,
whose letters are nonnegative integers. Recall that a positive integer i
is said to be a descent (or descent place) of w if 1 ≤ i ≤ n − 1 and
xi > xi+1. We say that i is a decrease of w if 1 ≤ i ≤ n − 1 and
xi = xi+1 = · · · = xj > xj+1 for some j such that i ≤ j ≤ n − 1.
The letter xi is said to be a decrease value (resp. descent value) of w.
The set of all decreases (resp. descents) is denoted by DEC(w) (resp.
DES(w)). Each descent is a decrease, but not conversely. This means that
DES(w) ⊂ DEC(w). However, DES(w) = DEC(w) when w is a word without

repetitions.
In the present paper our intention is to go back to the study of

the number of decreases, this time associated with several other word
statistics, and derive the Ur-result that should have been at the origin of
several of our statistical distribution studies. This Ur-result is stated in
Theorem 1.1, but has two equivalent forms, as written in Theorems 1.2
and 1.3.

In parallel with the notion of decrease, we say that that a positive
integer i is an increase (resp. a rise) of w if 1 ≤ i ≤ n and xi = xi+1 =
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· · · = xj < xj+1 for some j such that i ≤ j ≤ n (resp. if 1 ≤ i ≤ n and
xi < xi+1). By convention, xn+1 = +∞. The letter xi is said to be an

increase value (resp. a rise value) of w. Thus, the rightmost letter xn is
always a rise value. Again, the set of all increases (resp. rises) is denoted
by INC(w) (resp. RISE(w)). Each rise is an increase, but not conversely.
This means that RISE(w) ⊂ INC(w).

Furthermore, a position i (1 ≤ i ≤ n) is said to be a record if xj ≤ xi

for all j such that 1 ≤ j ≤ i− 1. The letter xi is said to be a record value.
The set of all records of w is denoted by REC(w).

Introduce six sequences of commuting variables (Xi), (Yi), (Zi), (Ti),
(Y ′i ), (T ′i ) (i = 0, 1, 2, . . . ) and for each word w = x1x2 . . . xn from [0, r]∗

define the weight ψ(w) of w = x1x2 . . . xn to be

(1.1) ψ(w) :=
∏

i∈DES

Xxi

∏

i∈RISE\REC

Yxi

∏

i∈DEC\DES

Zxi

×
∏

i∈(INC\RISE)\REC

Txi

∏

i∈RISE∩REC

Y ′xi

∏

i∈(INC\RISE)∩REC

T ′xi
,

where the argument “(w)” has not been written for typographic reasons.
For example, i ∈ RISE \REC stands for i ∈ RISE(w) \ REC(w).

Example. For the word w = 3 2 4 4 5 5 5 3 1 1 1 4 1 3 5 the sets DES, DEC,
INC, RISE, REC of w are indicated by bullets.

w = 3 2 4 4 5 5 5 3 1 1 1 4 1 3 5
DES = • • • •
DEC = • • • • • •
RISE = • • • • • •
INC = • • • • • • • • •
REC = • • • • • • •

We have ψ(w) = X3Y2T
′
4Y
′
4Z5Z5X5X3T1T1Y1X4Y1Y3Y

′
5 .

Now let C be the (r + 1)× (r + 1) matrix

(1.2) C =







































0
X1

1− Z1

X2

1− Z2
· · · Xr−1

1− Zr−1

Xr

1− Zr

Y0

1− T0
0

X2

1− Z2
· · · Xr−1

1− Zr−1

Xr

1− Zr

Y0

1− T0

Y1

1− T1
0 · · · Xr−1

1− Zr−1

Xr

1− Zr

...
...

...
. . .

...
...

Y0

1− T0

Y1

1− T1

Y2

1− T2
· · · 0

Xr

1− Zr
Y0

1− T0

Y1

1− T1

Y2

1− T2
· · · Yr−1

1− Tr−1
0







































.
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Theorem 1.1. The generating function for the set [0, r]∗ by the weight ψ
is given by

(1.3)
∑

w∈[0,r]∗

ψ(w) =

∏

0≤j≤r

(

1 +
Y ′j

1− T ′j

)

det(I − C)
,

where I is the identity matrix of order (r + 1).

Of course, the expression 1/ det(I−C) is too redolent of the MacMahon
Master Theorem [14, p. 97-98] for not having it play a crucial role in the
proof of (1.3). It does indeed. However we further need the properties of
the first fundamental transformation, as it is developed in Cartier-Foata
[1] and also in Lothaire [13, chap. 10]. As mentioned earlier, Theorem 1.1
must be regarded as our Ur-result. Its proof is given in Section 2. Its two
equivalent forms come next.

Theorem 1.2. We also have:

(1.4)
∑

w∈[0,r]∗

ψ(w) =

∏

0≤j≤r

1 − Zj

1 − Zj +Xj

∏

0≤j≤r

1 − T ′
j

1 − T ′
j

+ Y ′
j

1 −
∑

0≤l≤r

∏

0≤j≤l−1

1 − Zj

1 − Zj +Xj

∏

0≤j≤l−1

1 − Tj

1 − Tj + Yj

Xl

1 − Zl +Xl

.

By definition each letter equal to 0 cannot be a decrease value. Con-
sequently, the weight ψ(w) of each word w must not contain the vari-
ables X0, Z0. There is then another expression for the right-hand side of
(1.4) which does not involve the variables X0, Z0. To obtain it we factor
out (1−Z0)/(1−Z0 +X0) from both numerator and denominator of the
right-hand side, as done in the next theorem.

Theorem 1.3. We also have:

(1.5)
∑

w∈[0,r]∗

ψ(w) =

∏

1≤j≤r

1 − Zj

1 − Zj +Xj

∏

0≤j≤r

1 − T ′
j

1 − T ′
j

+ Y ′
j

1 −
∑

1≤l≤r

∏

1≤j≤l−1

1 − Zj

1 − Zj +Xj

∏

0≤j≤l−1

1 − Tj

1 − Tj + Yj

Xl

1 − Zl +Xl

.
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Theorem 1.2 (and therefore Theorem 1.3) is proved in Section 3
by using a determinantal manipulation and summing the weights ψ(w)
according to their so-called keys. An alternate proof of Theorem 1.2,
which is not reproduced in this paper, is based on the word-analog of
the Kim-Zeng transformation [11] and follows the pattern developed in
our previous paper [9]. Specializations of those two theorems for deriving
generating functions on words only appear in Section 6. There is however
a specialization of (1.5) that deserves a special development and is now
presented.

Let γ be the homomorphism defined by the following substitutions of
variables:

γ := {Xj ← s Yj−1, Zj ← s Yj−1, Tj ← Yj, T ′j ← Y ′j }.

For each word w = x1x2 · · ·xn ∈ [0, r]∗ we then have:

(1.6) γ ψ(w) =
∏

xi∈INC∩REC

Y ′xi
×

∏

xi∈DEC

sYxi−1 ×
∏

xi∈INC\REC

Yxi
.

Applying γ to (1.5) we get:

(1.7)
∑

w∈[0,r]∗

γ ψ(w) =

∏

1≤j≤r

(1− sYj−1)

∏

0≤j≤r

(1− Y ′j )

1−
∑

1≤l≤r

∏

1≤j≤l−1

(1− sYj−1)

∏

0≤j≤l−1

(1− Yj)
sYl−1

.

The above right-hand side can be further simplified as stated in the
following theorem, whose proof is given in Section 4.

Theorem 1.4. We have:

(1.8)
∑

w∈[0,r]∗

γ ψ(w)

=

(1− s) ∏

0≤j≤r−1

(1− Yj)
∏

0≤j≤r−1

(1− s Yj)

∏

0≤j≤r

(1− Y ′j )
(

∏

0≤j≤r−1

(1− Yj)− s
∏

0≤j≤r−1

(1− s Yj)
) .

For each word w = x1x2 · · ·xn let inrecw denote the number of letters
of w, which are increase and record values. Also let decw be the number
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of decreases in w and totw = x1 + x2 + · · ·+ xn be the sum of the letters
of w. Also make the substitution Y ′j ← RYj, where R is a new variable
and let ψR := γ ψ |Y ′

j
←R Yj

, so that (1.6) becomes:

(1.9) ψR(w) = Rinrec wsdec w
∏

xi∈DEC

Yxi−1 ×
∏

xi∈INC

Yxi
.

On the other hand, let

H(Y ) :=
∏

i≥0

(1− Yi)
−1;(1.10)

Hr(Y ) :=
∏

0≤i≤r−1

(1− Yi)
−1 (r ≥ 0).(1.11)

Using the homomorphism ψR identity (1.8) may be rewritten as:

(1.12)
∑

w∈[0,r]∗

ψR(w) =
(1− s)Hr+1(RY )

Hr(sY )− sHr(Y )
.

The left-hand side of (1.12) can be further expressed as a series over
the symmetric groups Sn (n = 0, 1, . . . ). If σ = σ(1)σ(2) · · ·σ(n) is a
permutation of 12 · · ·n, let z = z1z2 · · · zn be the word defined by:

(1.13) zi := #{j : i ≤ j ≤ n− 1, σ(j) > σ(j + 1)} (1 ≤ i ≤ n),

so that z1 is the number of descents, des σ, and tot z = z1 +z2 + · · ·+zn is
the major index, majσ, of σ. Also, let excσ := {i : 1 ≤ i ≤ n−1, σ(i) > i}
be the number of excedances and fixσ be the number of fixed points of σ.
Finally, let NIWn (resp. NIWn(k)) denote the set of words c = c1c2 · · · cn,
of length n, whose letters are integers satisfying c1 ≥ c1 ≥ · · · ≥ cn ≥ 0
(resp. k ≥ c1 ≥ c1 ≥ · · · ≥ cn ≥ 0). With each pair (σ, c) ∈ Sn ×NIWn we
associate the monomial

(1.14) Y(σ,c) :=
∏

j<σ(j)

Ycj+zj−1 ×
∏

j≥σ(j)

Ycj+zj
.

Theorem 1.5. We have:

(1.15)
∑

n≥0

∑

σ∈Sn

des σ≤r

Rfix σsexc σ
∑

c∈NIWn(r−des σ)

Y(σ,c) =
(1− s)Hr+1(RY )

Hr(sY )− sHr(Y )
(r ≥ 0).
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When r tends to infinity in (1.15), we get the identity

(1.16)
∑

n≥0

∑

σ∈Sn

Rfix σsexc σ
∑

c∈NIWn

Y(σ,c) =
(1− s)H(RY )

H(sY )− sH(Y )
,

derived by Shareshian and Wachs [15, Theorem 2.1] using a quasi-
symmetric function approach. However, starting from (1.15), we can ob-
tain a graded form of (1.16) as follows. Let

(1.17) Y (σ; t) :=
∑

k≥0

tk
∑

c∈NIWn(k)

Y(σ,c).

Theorem 1.6. The graded form of (1.16) reads:

(1.18)
∑

n≥0

∑

σ∈Sn

Rfix σsexc σtdes σY (σ; t) =
∑

r≥0

tr
(1− s)Hr+1(RY )

Hr(sY )− sHr(Y )
.

Section 5 starts with redescribing the Gessel-Reutenauer standardiza-
tion [10] and showing how it is used to prove Theorem 1.5. The graded
form (1.18) is deduced from Theorem 1.5 by a standard series manipula-
tion. We end the paper by giving some specializations of our Ur-theorem
and also by showing that the distribution of (fix, exc, des,maj) over the
symmetric groups that was found earlier in [9] using the word-analog of
the Kim-Zeng transformation [11], can also be deduced from our Ur-result
in two different manners.

2. Proof of Theorem 1.1

A word w = y1y2 · · · yn ∈ [0, r]∗ having no equal letters in succession
is called an h-derangement (horizontal derangement). The set of all h-
derangement words in [0, r]∗ is denoted by [0, r]∗h. Let α be the substitution
of variables defined by

α := {Zi ← 0, Ti ← 0, T ′i ← 0}.

Then

αψ(w) = ψ(w) =
∏

i∈DES

Xxi

∏

i∈RISE\REC

Yxi

∏

i∈RISE∩REC

Y ′xi
,

if w is an h-derangement and αψ(w) = 0 otherwise. The following
specialization of Theorem 1.1 is obtained by taking the image of identity
(1.3) under α.
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Theorem 2.1. We have

(2.1)
∑

w∈[0,r]∗
h

ψ(w) =

∏

0≤j≤r

(

1 + Y ′j

)

det(I − αC)
.

Even though Theorem 2.1 is a special case of Theorem 1.1, it can still
be used as a lemma to prove Theorem 1.1. We proceed as follows.

Proof of Theorem 1.1. Let w be a word from [0, r]∗. The key of w is
defined to be the h-derangement k derived from w by erasing all letters xi

such that xi = xi+1. For instance, the key of w = 324455531114135 is the
h-derangement k = 3245314135.

Let β be the substitution of variables defined by

β := {Xi ← Xi/(1− Zi), Yi ← Yi/(1− Ti), Y ′i ← Y ′i /(1− T ′i )}.

Then, the generating function for the set of all w whose key is k by the
weight ψ is given by

∑

w, key(w)=k

ψ(w) = β ψ(k).

Since β αC = C we have

∑

w∈[0,r]∗

ψ(w) =
∑

k∈[0,r]∗
h

∑

key(w)=k

ψ(w) =
∑

k∈[0,r]∗
h

β ψ(k)

= β
(

∑

k∈[0,r]∗
h

ψ(k)
)

= β

∏

0≤j≤r

(

1 + Y ′j

)

det(I − αC)
[by (2.1)]

=

∏

0≤j≤r

(

1 + β Y ′j

)

det(I − β αC)
=

∏

0≤j≤r

(

1 +
Y ′j

1− T ′j

)

det(I − C)
.

Proof of Theorem 2.1. A letter xi which is a record and also a rise
value is called an riserec value. For each h-derangement k = x1x2 · · ·xn

let w0 be the nondecreasing word composed of all the riserec values of k
and let k0 be the word obtained from k by erasing all the riserec values
of k. Since the letters of w0 can be uniquely inserted into the word k0 for
reconstructing k, the map

(2.2) k 7→ (w0, k0)
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is a bijection of the set of all h-derangements onto the the set of all pairs
(w0, k0) such that w0 is a nondecreasing word and k0 is an h-derangement
without any riserec value. Moreover, if a letter xj of k is a record value
and therefore becomes a letter, say, x0,i of w0, then x0,i is a rise of w0 if
and only if xj is a rise of k. Therefore

(2.3) ψ(k) = ψ(w0)ψ(k0).

Next apply the first fundamental transformation to k0 (see [13, § 10.5]),
say, u = F1(k0). Let us recall how F1 is defined by means of an example.
Start with the word k0 = 5 3 6 5 3 2 4 6 1 2 4 3 1 and cut it before each record
value to get k0 = 5 3 | 6 5 3 2 4 | 6 1 2 4 3 1 =: w1 | w2 | w3. In each
compartment move the leftmost letter to the end to obtain the cyclic
shifts δw1 = 3 5, δw2 = 5 3 2 4 6, δw3 = 1 2 4 3 1 6 and form the two-row

matrix

(

δw1 δw2 δw3

w1 w2 w3

)

=

(

3 5 5 3 2 4 6 1 2 4 3 1 6
5 3 6 5 3 2 4 6 1 2 4 3 1

)

. Finally, rearrange the

vertical biletters of that two-row matrix in such a way that the entries on
the top row are in nondecreasing order, assuming that two biletters

(

a
a′

)

,
(

b

b′

)

can commute only when a 6= b. We then obtain the two-row matrix

F1(k0) :=

(

u
u

)

=

(

1 1 2 2 3 3 3 4 4 5 5 6 6
6 3 3 1 5 5 4 2 2 3 6 4 1

)

.

We can characterize the word u = y1y2 · · · ym when we start with an h-
derangement k0. Let u = z1z2 · · · zm be the nondecreasing rearrangement
of u (and of k0). By construction yi 6= zi for 1 ≤ i ≤ m. Such a word u
is called a v-derangement (vertical derangement). Denote the set of all
v-derangements in [0, r]∗ by [0, r]∗v. Then F1 provides a bijection of the
set of all h-derangements onto the set of all pairs (w0, u) such that w0 is
a nondecreasing word and u is a v-derangement:

k 7→ (w0, k0) 7→ (w0, u) where F1(k0) =

(

u

u

)

.

k = 2535653246124316 7→ (w0 = 256, k0 = 5365324612431)Example.

7→ (w0 = 256, u = 6331554223641),

F1(k0) =

(

u
u

)

=

(

1 1 2 2 3 3 3 4 4 5 5 6 6
6 3 3 1 5 5 4 2 2 3 6 4 1

)

.since

Let Φ be the homomorphism generated by

Φ

(

i

j

)

:=

{

Xj , if j > i;

Yj , if j < i.
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By the property [13, chap. 10] of the first fundamental transformation we
have

(2.4) ψ(k) = ψ(w0)ψ(k0) = ψ(w0)Φ

(

u

u

)

.

Let ND(r) be the set of all non-decreasing words from [0, r]∗. It follows
from the properties of the above bijections that

∑

w∈[0,r]∗
h

ψ(w) =
∑

w0∈ND(r)

ψ(w0)
∑

u∈[0,r]∗v

Φ

(

u

u

)

;

∑

w0∈ND(r)

ψ(w0) =
∏

0≤j≤r

(1 + Y ′j ).

There remains to prove the identity:

(2.5)
∑

u∈[0,r]∗v

Φ

(

u

u

)

=
1

det(I − αC)
.

The proof is based on the celebrated MacMahon Master Theorem, using
the noncommutative version developed in ([1], chap. 4). Also see ([13],
chap. 10). Consider the matrix

C′′ =



























0
(

0
1

) (

0
2

)

· · ·
(

0
r−1

) (

0
r

)

(

1
0

)

0
(

1
2

)

· · ·
(

1
r−1

) (

1
r

)

(

2
0

) (

2
1

)

0 · · ·
(

2
r−1

) (

2
r

)

...
...

...
. . .

...
...

(

r−1
0

) (

r−1
1

) (

r−1
2

)

· · · 0
(

r−1
r

)

(

r

0

) (

r

1

) (

r

2

)

· · ·
(

r

r−1

)

0



























.

As shown in the references just mentioned, there holds the identity

(2.6)
1

det(I − C′′) =
∑

u∈[0,r]∗v

(

u

u

)

.

Applying Φ to both sides of (2.6) yields (2.5).

3. Proof of Theorem 1.2

The proof of Theorem 1.2 is similar to the proof of Theorem 1.1 given
in the previous section. First we prove the following specialization of
Theorem 1.2.



 - 174 - 

DISTRIBUTIONS ON WORDS AND q-CALCULUS

Theorem 3.1. We have:

(3.1)
∑

w∈[0,r]∗
h

ψ(w) =

∏

0≤j≤r

1 + Y ′j
1 +Xj

1−
∑

0≤l≤r

∏

0≤j≤l−1

1 + Yj

1 +Xj

Xl

1 +Xl

.

Proof. Denote the left-hand side of (3.1) by LHS. From Theorem 2.1 we
have

LHS =

∏

0≤j≤r

(1 + Y ′j )

D
,

where

D =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 −X1 −X2 · · · −Xr−1 −Xr

−Y0 1 −X2 · · · −Xr−1 −Xr

−Y0 −Y1 1 · · · −Xr−1 −Xr

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

−Y0 −Y1 −Y2 · · · 1 −Xr

−Y0 −Y1 −Y2 · · · −Yr−1 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

In the above determinant subtract the r-th row from the (r+1)-st one;
then the (r − 1)-st from the r-th row; . . . , the first row from the second.
We obtain:

D =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 −X1 −X2 · · · −Xr−1 −Xr

−1 − Y0 1 +X1 0 · · · 0 0
0 −1 − Y1 1 +X2 · · · 0 0
..
.

..

.
..
.

. . .
..
.

..

.

0 0 0 · · · 1 +Xr−1 0
0 0 0 · · · −1 − Yr−1 1 +Xr

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Now expand the determinant by the cofactors of the first row. We get:

D =
∏

1≤j≤r

(1 +Xj)−
∑

1≤l≤r

(

∏

0≤j≤l−1

(1 + Yj)
∏

l+1≤j≤r

(1 +Xj)
)

Xl.

We further have:

D =
∏

1≤j≤r

(1 +Xj) +X0

∏

1≤j≤r

(1 +Xj)

−
∑

0≤l≤r

(

∏

0≤j≤l−1

(1 + Yj)
∏

l≤j≤r

(1 +Xj)
) Xl

1 +Xl

.
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Hence,

(3.2) LHS =

∏

0≤j≤r

(1 + Y ′j )

(1 +Xj)

1−
∑

0≤l≤r

∏

0≤j≤l−1

(1 + Yj)

(1 +Xj)

Xl

1 +Xl

.

Proof of Theorem 1.2. As in the proof of Theorem 1.1 we may write:

∑

w∈[0,r]∗

ψ(w) =
∑

k∈[0,r]∗
h

∑

key(w)=k

ψ(w) =
∑

k∈[0,r]∗
h

β ψ(k) = β(LHS).

Using (3.2) it is immediate to verify that β(LHS) is equal to the right-hand
side of (1.4).

4. Proof of Theorem 1.4

First, we may check that

∏

0≤j≤r

(1 − sYj) −
∏

0≤j≤r

(1 − Yj)

=
∑

0≤l≤r

∏

0≤j≤l

(1 − sYj)
∏

l+1≤j≤r

(1 − Yj) −
∑

0≤l≤r

∏

0≤j≤l−1

(1 − sYj)
∏

l≤j≤r

(1 − Yj)

=(1 − s)
∑

0≤l≤r

Yl

∏

0≤j≤l−1

(1 − sYj)
∏

l+1≤j≤r

(1 − Yj).

Proof of Theorem 1.4. Using (1.7) we have:

1

1− s ∑

0≤l≤r−1

Yl

∏

0≤j≤l−1

(1− sYj)/
∏

0≤j≤l

(1− Yj)

=

∏

0≤j≤r−1

(1− Yj)

∏

0≤j≤r−1

(1− Yj)− s
∑

0≤l≤r−1

Yl

∏

0≤j≤l−1

(1− sYj)
∏

l+1≤j≤r−1

(1− Yj)

=

∏

0≤j≤r−1

(1− Yj)

∏

0≤j≤r−1

(1− Yj)− s
(

∏

0≤j≤r−1

(1− sYj)−
∏

0≤j≤r−1

(1− Yj)
)

/(1− s)

=

(1− s) ∏

0≤j≤r−1

(1− Yj)

∏

0≤j≤r−1

(1− Yj)− s
∏

0≤j≤r−1

(1− sYj)
.
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5. Proofs of Theorems 1.5 and 1.6

An updated version of the Gessel-Reutenauer standardization [10] is
fully described in our previous paper [9], Section 5. The standardization
consists of mapping each word w from [0, r]∗ of length n onto a pair (σ, c),
where σ ∈ Sn and c = c1c2 · · · cn is a word of length n, whose letters are
nonnegative integers having the property: r − desσ ≥ c1 ≥ c2 ≥ · · · ≥
cn ≥ 0, the symbol des σ being the number of descents of σ. We recall the
construction of the inverse (σ, c) 7→ w by means of an example.

Id = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
→ σ = 1 5 6 8 13 14 7 17 4 10 15 18 19 2 9 16 20 22 3 11 12 21
z = 4 4 4 4 4 4 3 3 2 2 2 2 2 1 1 1 1 1 0 0 0 0

→ c = 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
c = 6 6 6 6 6 6 5 4 3 3 3 3 3 2 2 2 2 2 1 1 1 1
σ = (16) (12 18 22 21) (10) (7) (4 8 17 20 11 15 9) (2 5 13 19 3 6 14) (1)
σ̌ = 16 12 18 22 21 10 7 4 8 17 20 11 15 9 2 5 13 19 3 6 14 1

7→ w = 2 | 3 2 1 1 | 3 | 5 | 6 4 2 1 3 2 3 | 6 6 3 1 6 6 2 | 6

In the example n = 22. The second row contains the values σ(i)
(i = 1, 2, . . . , n) of the starting permutation σ. The excedances σ(i) > i
are underlined, while the fixed points σ(i) = i are written in boldface. The
third row is the vector z = z1z2 · · · zn defined by (1.13) so that z1 = desσ
and tot z = z1 + z2 + · · · + zn is the major index of σ denoted by majσ,
as already mentioned in the Introduction. The fourth row is the starting

nonincreasing word c = c1c2 · · · cn. The fifth row c = c1c2 · · · cn is the word
defined by

ci := zi + ci (1 ≤ i ≤ n).

In the sixth row the permutation σ is represented as the product of its
disjoint cycles. Each cycle starts with its minimum element and those
minimum elements are in decreasing order when reading the whole word
from left to right. When removing the parentheses in the sixth row we
obtain the seventh row denoted by σ̌ = σ̌(1)σ̌(2) · · · σ̌(n). The bottom row
is the word w = x1x2 · · ·xn corresponding to the pair (σ, c) defined by

xi := cσ̌(i) (1 ≤ i ≤ n).

For instance, σ̌(9) = 8 and c(8) = 4. Hence x9 = 4. The decrease values
of w have been underlined.

It can be verified that all the above steps are reversible and that
w 7→ (σ, c) is a bijection of the set of all words from [0, r]∗ of length n
onto the set of pairs (σ, c) such that σ ∈ Sn, desσ ≤ r and c = c1c2 · · · cn
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is a word satisfying r − desσ ≥ c1 ≥ c2 ≥ · · · ≥ cn ≥ 0. Furthermore,
xi is a decrease value of w if and only if σ̌(i) < σ̌(i + 1), if and only if
σ̌(i) < σ(σ̌(i)). Also xi is an increase and record value of w if and only if
σ̌(i) is a fixed point of σ. Hence,

ψR(w) = Rinrec wsdec w
∏

xi∈DEC

Yxi−1

∏

xi∈INC

Yxi

= Rfix σsexc σ
∏

σ̌(i)<σ(σ̌(i))

Ycσ̌(i)−1

∏

σ̌(i)≥σ(σ̌(i))

Ycσ̌(i)

= Rfix σsexc σ
∏

j<σ(j)

Ycj−1

∏

j≥σ(j)

Ycj

= Rfix σsexc σ
∏

j<σ(j)

Ycj+zj−1

∏

j≥σ(j)

Ycj+zj

= Rfix σsexc σY(σ,c).

Consequently,

(5.1)
∑

w∈[0,r]∗

ψR(w) =
∑

n≥0

∑

σ∈Sn

des σ≤r

Rfix σsexc σ
∑

c∈NIWn(r−des σ)

Y(σ,c).

This achieves the proof of Theorem 1.5 by taking identity (1.12) into
account.

For the proof of Theorem 1.6 we multiply both sides of (1.15) by tr and
sum over r ≥ 0. We obtain:

∑

r≥0

tr
(1− s)Hr+1(RY )

Hr(sY )− sHr(Y )

=
∑

r≥0

tr
∑

n≥0

∑

σ∈Sn

des σ≤r

Rfix σsexc σ
∑

c∈NIWn(r−des σ)

Y(σ,c)

=
∑

n≥0

∑

r≥0

tr
∑

0≤j≤r

∑

σ∈Sn

des σ=r−j

Rfix σsexc σ
∑

c∈NIWn(j)

Y(σ,c)

=
∑

n≥0

∑

j≥0

tj
∑

r≥j

tr−j
∑

σ∈Sn

des σ=r−j

Rfix σsexc σ
∑

c∈NIWn(j)

Y(σ,c)

=
∑

n≥0

∑

j≥0

tj
∑

k≥0

tk
∑

σ∈Sn

des σ=k

Rfix σsexc σ
∑

c∈NIWn(j)

Y(σ,c)
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=
∑

n≥0

∑

σ∈Sn

Rfix σsexc σtdes σ
∑

j≥0

tj
∑

c∈NIWn(j)

Y(σ,c)

=
∑

n≥0

∑

σ∈Sn

Rfix σsexc σtdes σY (σ; t).

6. Specializations and q-Calculus

In Theorem 1.4, replace Yj , Y
′
j (j ≥ 0) by u. We get the identity

(6.1)
∑

w∈[0,r]∗

sdec wuλw =
1− s

(1− u)r+1(1− us)−r − s(1− u) ,

where λw denotes the length of w.
Now replace Xj (j ≥ 0) by us and the other variables by u in

Theorem 1.2. We then recover the classical generating function for words
by number of descents:

(6.2)
∑

w∈[0,r]∗

sdes wuλw =
1− s

(1− u+ us)r+1 − s .

As was proved in our paper [9] (formula (1.15)), when multiplying (6.1)
(and not (6.2)) by tr and summing over r ≥ 0 we get the generating
function for the pair (exc, des) over the symmetric groups:

(6.3)
∑

r≥0

tr
∑

w∈[0,r]∗

sdec wuλw =
∑

n≥0

un

(1− t)n+1

∑

σ∈Sn

sexc σtdes σ.

Now, recall the traditional notation of the q-ascending factorial

(a; q)n =

{

1, if n = 0;
(1− a)(1− aq) · · · (1− aqn−1), if n ≥ 1.

Theorem 6.1. The factorial generating function for the distributions of
the vector (fix, exc, des,maj) over the symmetric groups Sn is given by

(6.4)
∑

n≥0

un

(t; q)n+1

∑

σ∈Sn

Rfix σsexc σtdes σqmaj σ

=
∑

r≥0

tr
1

(uR; q)r+1

(1− sq) (u; q)r (usq; q)r

((u; q)r − sq(usq; q)r)
.

The theorem was proved in our previous paper [9] by means of the word-
analog of the Kim-Zeng transformation [11] and the Gessel-Reutenauer



 - 179 - 

DECREASES AND DESCENTS IN WORDS

standardization. Here, it is a simple consequence of Theorem 1.6 by
applying the homomorphism φ generated by φ(Yj) := uqj (j ≥ 0) and
φ(s) := sq to both sides of (1.18).

We proceed as follows. First, φHr(Y ) =
∏

0≤j≤r−1

(1− uqj)−1 = 1/(u; q)r

and

φ
(1− s)Hr+1(RY )

Hr(sY )− sHr(Y )
=

(1− sq)/(uR; q)r+1

1/(usq; q)r − sq/(u; q)r

=
(1− sq)(u; q)r (usq; q)r

(uR; q)r+1 (
(

(u; q)r − sq(usq; q)r

) .

Then, for (σ, c) ∈ Sn × NIWn

φY(σ,c) = unqtot c+tot z−exc σ = qmaj σ−exc σunqtot c;

φY (σ; t) = qmaj σ−exc σun
∑

j≥0

tj
∑

c∈NIWn(j)

qtot c = qmaj σ−exc σ un

(t; q)n+1
;

so that

φ
(

R fixσ sexc σtdes σY (σ; t)
)

= Rfix σ(sq)exc σtdes σqmaj σ−exc σ un

(t; q)n+1
.

Hence, the image of identity (1.18) under φ gives back (6.4).

There is still another proof, which we now describe as follows. In identity
(1.4) make the substitutions Xj ← usqj, Yj ← uqj , Zj ← usqj , Tj ← uqj ,
Y ′j ← uRqj, T ′j ← uRqj. The weight ψ(w) becomes sdec wRinrec wuλwqtot w

and (1.4) yields the identity

(6.5)
∑

w∈[0,r]∗

sdec wRinrec wuλwqtot w =

(us; q)r+1

(uR; q)r+1

1−
∑

0≤l≤r

(us; q)l

(u; q)l

usql

.

Now, use the q-telescoping argument provided by Krattenthaler [12]:

(us; q)l

(u; q)l

usql =
sq

1− sq
((us; q)l+1

(u; q)l

− (us; q)l

(u; q)l−1

)

(1 ≤ l ≤ r).

We obtain:

(6.6)
∑

w∈[0,r]∗

sdec wRinrec wuλwqtot w =
1

(uR; q)r+1

(1− sq) (u; q)r (usq; q)r

((u; q)r − sq(usq; q)r)
.

The summation can also be made over the symmetric groups by using
the Gessel-Reutenauer standardization w 7→ (σ, c). This time only the
following properties are needed:

decw = excσ; totw = majσ + tot c; inrecw = fix σ.
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Multiply (6.6) by tr and sum over r ≥ 0. We get:

∑

r≥0

tr
∑

n≥0

∑

σ∈Sn

des σ≤r

∑

c∈NIWn(r−des σ)

sexc σRfix σunqmaj σ+tot c

=
∑

r≥0

tr
1

(uR; q)r+1

(1− sq) (u; q)r (usq; q)r

((u; q)r − sq(usq; q)r)
.

Following the same pattern as in the proof of Theorem 1.6 we again derive
identity (6.4).

Acknowledgements. The authors should like to thank Christian
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GUO-NIU HAN1 AND GUOCE XIN2

Abstract. We extend Stanley’s work on alternating permutations with extremal num-
ber of fixed points in two directions: first, alternating permutations are replaced by
permutations with a prescribed descent set; second, instead of simply counting per-
mutations we study their generating polynomials by number of excedances. Several
techniques are used: Désarménien’s desarrangement combinatorics, Gessel’s hook-
factorization and the analytical properties of two new permutation statistics “DEZ”
and “lec”. Explicit formulas for the maximal case are derived by using symmetric
function tools.

Mathematics Subject Classification. Primary 05A05, secondary 05A15, 05E05.

Key words. Alternating permutations, derangements, desarrangements, descent set

1. Introduction

Let J = {j1, j2, . . . , jr}< be a set of integers arranged increasingly and let SJ denote
the set of all permutations on J . For each permutation σ = σ(j1)σ(j2) · · ·σ(jr) ∈ SJ

define the number of excedances, the number of fixed points and the descent set of σ to
be

fix σ = |{i : 1 ≤ i ≤ r, σ(ji) = ji}|,
exc σ = |{i : 1 ≤ i ≤ r, σ(ji) > ji}|,

DESσ = {i : 1 ≤ i ≤ r − 1, σ(ji) > σ(ji+1)}, (1)

respectively. A permutation without fixed point is called a derangement. When J =
[n] := {1, 2, . . . , n}, we recover the classical definitions. The set S[n] is abbreviated by
Sn, and for σ ∈ Sn we write σi for σ(i). Our main results are the following Theorems 1
and 2.

Theorem 1. Let J be a subset of [n− 1].
(i) If σ ∈ Sn and DESσ = J , then

fix σ ≤ n− |J |.
(ii) Let Fn(J) be the set of all permutations σ of order n such that DES σ = J and

fix σ = n − |J |. Furthermore, let G(J) be the set of all derangements τ on J such that

τ(i) > τ(i + 1) whenever i and i + 1 belong to J . Then
∑

σ∈Fn(J)

sexc σ =
∑

τ∈G(J)

sexc τ .

Date: June 22, 2007.
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Example. For n = 8 and J = {1, 2, 3, 6}, there are two permutations in Fn(J), both
having two excedances: 74315628 and 74325618. On the other hand, there are two
derangements in G(J), both having two excedances: 6321 and 6312.

Theorem 2. Let DJ
0 (n) be the set of all derangements σ on [n] such that DES σ = J ,

and let DJ
1 (n) be the set of all permutations σ on [n] such that DESσ = J with exactly

one fixed point. If J is a proper subset of [n− 1], then there is a polynomial QJ
n(s) with

positive integral coefficients such that
∑

σ∈DJ
0 (n)

sexc σ −
∑

σ∈DJ
1 (n)

sexc σ = (s− 1)QJ
n(s).

Example. For n = 6 and J = {1, 3, 4, 5} there are six derangements in DJ
0 (n):

216543, 316542, 416532, 436521, 546321, 645321;

and there are six permutations in DJ
1 (n):

326541, 426531, 516432, 536421, 615432, 635421.

The numbers of excedances are respectively 3, 3, 3, 4, 3, 3 and 3, 3, 2, 3, 2, 3, so that
∑

σ∈DJ
0 (n)

sexc σ −
∑

σ∈DJ
1 (n)

sexc σ = (5s3 + s4)− (4s3 + 2s2) = (s− 1)(s3 + 2s2).

Theorem 1 extends Stanley’s work on alternating permutations (that we explain next)
with maximal number of fixed points, and Theorem 2 extends the corresponding minimal
case. The extensions are in two directions: first, alternating permutations are replaced
by permutations with a prescribed descent set; second, instead of simply counting per-
mutations we study their generating polynomials by number of excedances.

A permutation π = π1π2 · · ·πn ∈ Sn is said to be alternating (resp. reverse alternat-

ing) if π1 > π2 < π3 > π4 < . . . (resp. if π1 < π2 > π3 < π4 > . . . ); or equivalently, if
DES π is {1, 3, 5, . . .} ∩ [n− 1] (resp. {2, 4, 6, . . .} ∩ [n− 1]). Therefore, results on per-
mutations with a prescribed descent set apply to alternating permutations. Let Dk(n)
be the set of permutations in Sn with exactly k fixed points. Then D0(n) is the set of
derangements of order n. Write dk(n) (resp. d∗

k(n)) for the number of alternating (resp.
reverse alternating) permutations in Dk(n). The next two corollaries are immediate
consequences of Theorems 1 and 2.

Corollary 3 ([14], Conjecture 6.3). Let Dn denote the number of derangements. Then,

for n ≥ 2 we have

dn(2n) = dn+1(2n + 1) = d∗
n+1(2n + 1) = d∗

n+2(2n + 2) = Dn.

Corollary 4 ([14], Corollary 6.2). For n ≥ 2 we have d0(n) = d1(n) and d∗
0(n) = d∗

1(n).

Stanley enumerated Dk(n) and came up with Corollaries 3 and 4 on alternating per-
mutations with extremal number of fixed points. He then asked for combinatorial proofs
of them. This is the motivation of the paper. The results in Corollary 3, conjectured by
Stanley, was recently proved by Chapman and Williams [16] in two ways, one directly



 - 185 - 

PERMUTATIONS WITH EXTREMAL NUMBER OF FIXED POINTS

and the other using the newly developed concept of permutation tableaux [15]. In Sec-
tion 3 we give a direct proof of a generalized form of Corollary 3. Corollary 4 is actually
a special case of a more general result due to Gessel and Reutenauer, which itself can
be derived from Theorem 2 by setting s = 1, as stated in the next corollary.

Corollary 5 ([10], Theorem 8.3). Let J be a proper subset of [n−1]. Then, the number

of derangements in Sn with descent set J is equal to the number of permutations in Sn

with exactly one fixed point and descent set J .

The paper is organized as follows. In Section 2 we give the proof of Theorem 1 that
contains the results for the maximal case. Section 3 includes a direct proof of an exten-
sion of Corollary 3. Section 4 introduces the necessary part of Gessel and Reutenauer’s
work for enumerating the maximal case. Section 5 is devoted to the proof of Theorem 2
dealing with the minimal case. We conclude the paper by making several remarks of an-
alytic nature (see Section 6). In particular, Corollary 19, proved combinatorially, should
deserve an analytic proof. Several techniques are used: Désarménien’s desarrangement
combinatorics [1], Gessel’s hook-factorization [9] and the analytical properties of two
new permutation statistics “DEZ” and “lec” [5, 6].

2. Permutations with maximal number of fixed points

Our task in this section is to prove Theorem 1. The proof relies on the properties
of the new statistic “DEZ” introduced by Foata and Han [5]. For a permutation σ =
σ1σ2 · · ·σn ∈ Sn let σ0 = σ0

1σ
0
2 · · ·σ0

n be the word derived from σ by replacing each fixed
point σi = i by 0. The set-valued statistic “DEZ” is defined by

DEZ σ = DESσ0 := {i : 1 ≤ i ≤ n− 1, σ0
i > σ0

i+1}.
For example, if σ = 8 2 1 3 5 6 4 9 7, then DESσ = {1, 2, 6, 8}, σ0 = 8 0 1 3 0 0 4 9 7 and
DEZ σ = DES σ0 = {1, 4, 8}. The basic property of the statistic “DEZ” is given in the
following proposition.

Proposition 6 ([5], Theorem 1.4). The two three-variable statistics (fix, exc, DEZ) and

(fix, exc, DES) are equi-distributed on the symmetric group Sn.

More precisely, Proposition 6 asserts that there is a bijection Φ : Sn 7→ Sn such that

fix π = fix Φ(π), exc π = exc Φ(π), DES π = DEZ Φ(π), for all π ∈ Sn.

By Proposition 6 Theorem 1 is equivalent to the following Theorem 1′, where the statistic
“DES” has been replaced by “DEZ”.

Theorem 1′. Let J be a subset of [n− 1].
(i) If σ ∈ Sn and DEZ σ = J , then

fix σ ≤ n− |J |.
(ii) Let F ′

n(J) be the set of all permutations σ of order n such that DEZ σ = J and

fix σ = n − |J |. Furthermore, let G(J) be the set of all derangements τ on J such that
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τ(i) > τ(i + 1) whenever i and i + 1 belong to J . Then
∑

σ∈F ′
n(J)

sexc σ =
∑

τ∈G(J)

sexc τ .

Proof of Theorem 1′. Let σ be a permutation such that DEZσ = J and let i ∈ J . Then
σ0

i > σ0
i+1 ≥ 0, so that i is not a fixed point of σ. It follows that σ has at least |J |

non-fixed points. This proves (i).
Now, consider the case where σ has exactly n − |J | fixed points. Then J is the set

of all the non-fixed points of σ. By removing the fixed points from σ we obtain a
derangement τ on J . If i, i + 1 ∈ J , then τ(i) = σ(i) > σ(i + 1) = τ(i + 1). It follows
that τ ∈ G(J). On the other hand, take any derangement τ ∈ G(J) and let σ be the
permutation defined by

σ(i) =

{

τ(i), if i ∈ J ,

i, if i 6∈ J .

Then DEZ σ = J . It is easy to see that σ ∈ F ′
n(J) and exc σ = exc τ . This proves the

second part of Theorem 1′. �

Example. Suppose n = 8 and J = {1, 2, 3, 6}. Let us search for the permutations
σ ∈ S8 such that fix σ = 8− |J | = 4 and DEZσ = J . There are two derangements τ in
G(J), namely, 6321 and 6312, both having two excedances, so that the two corresponding
elements σ in F ′

n(J) are 63245178 and 63145278, both having two excedances.

Remarks. (i) For permutations with descent set J it is easy to show that the maximum
number of fixed points is n−|J |, except when J consists of an odd number of consecutive
integers. In the latter exceptional case the only decreasing permutation has exactly one
fixed point and therefore is not a derangement.

(ii) The first part of Theorem 1 can also be proved directly by using the fact that in
any consecutive decreasing subsequence of π, say πi > πi+1 > · · · > πi+k, there is at
most one fixed point in {i, i + 1, . . . , i + k}. However the “DEZ” statistic is an essential
tool in the proof of the second part.

3. An extension of Corollary 3

Stanley’s conjectured result in Corollary 3 was first proved by Williams [16] using
the newly developed concept of permutation tableaux. A direct proof without using
permutation tableaux was later included in her updated version with Chapman. Our
direct proof was independently derived just after Williams’ first proof. It has the ad-
vantage of automatically showing the following extension (Proposition 7). We only give
the generalized form for dn(2n) = Dn, since the other cases are similar. All of the three
proofs are bijective, and the bijections are all equivalent. Note that Proposition 7 is still
a corollary of Theorem 1.

Proposition 7. The number of alternating permutations in S2n with n fixed points and

k excedances is equal to the number of derangements in Sn with k excedances.
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Let π be an alternating permutation. Then, each doubleton {π2i−1, π2i} contains at
most one fixed point. This proves the following lemma.

Lemma 8. Each alternating permutation π ∈ Sn has at most ⌈n/2⌉ fixed points. When

this maximum is reached, either 2i− 1, or 2i is a fixed point of π (2 ≤ 2i ≤ n + 1).

When the underlying set of the permutation π is not necessarily [n], we use π(i)
instead of πi for convenience. An integer i is called an excedance, a fixed point, or a
subcedance of π if π(i) > i, π(i) = i, or π(i) < i, respectively.

Proof of Proposition 7. Let π ∈ S2n be alternating and have exactly n fixed points. It
follows from Lemma 8 that for each i we have the following property: either 2i − 1
is a fixed point and 2i a subcedance, or 2i − 1 is an excedance and 2i a fixed point.
Conversely, if the property holds, the permutation π is necessarily alternating, because
π(2i) ≤ 2i < 2i+1 ≤ π(2i+1); π(2i−1) ≥ 2i−1 ≥ π(2i)−1. Those inequalities imply
that π(2i− 1) > π(2i), since 2i− 1 and 2i cannot be both fixed points.

By removing all fixed points of π we obtain a derangement σ on an n-subset of [2n].
The standardization of σ, which consists of replacing the i-th smallest element of σ by i,
yields a derangement τ on [n]. We claim that the map ϕ : π 7→ τ is the desired bijection.
Since the standardization preserves excedances, subcedances and fixed points, it maps
one element of {π(2i − 1), π(2i)} to τ(i). It follows that τ(i) > i if and only if 2i − 1
is an excedance and 2i is a fixed point of π, and that τ(i) < i if and only if 2i − 1 is
a fixed point and 2i is a subcedance of π. Thus, the set of all fixed points of π can be
constructed from τ . The map ϕ is then reversible.

The proposition then follows since the bijection preserves the number of excedances.
�

Example. Let π =

(

1 2 3 4 5 6 7 8 9 10
3 2̄ 6 4̄ 5̄ 1 10 8̄ 9̄ 7

)

. Removing all the fixed points

gives σ =

(

1 3 6 7 10
3 6 1 10 7

)

, standardized to τ =

(

1 2 3 4 5
2 3 1 5 4

)

. Conversely, τ has

excedances at positions 1, 2, 4 and subcedances at positions 3, 5. This implies that 2, 4, 8
and 5, 9 are fixed points of π and hence we can construct π. Furthermore, we have
exc π = exc σ = exc τ = 3.

4. Enumeration for the maximal case

In this section we will use Theorem 1 to enumerate the number of permutations with
a prescribed descent set and having the maximal number of fixed points. Every descent
set J ⊆ [n−1] can be partitioned into blocks of consecutive integers, such that numbers
from different blocks differ by at least 2. Let J b = (a1, a2, . . . , ak) denote the sequence of
the size of the blocks. For instance, if J = {1, 2, 3, 6}, then 1, 2, 3 form a block and 6 itself
forms another block. Hence J b = (3, 1). Let MJ denote the number of derangements
in Sn with descent set J having n − |J | fixed points. By Theorem 1 the number MJ

depends only on J b. Thus, we can denote MJ by M(a1, a2, . . . , ak).
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Theorem 9. The number M(a1, . . . , ak) is the coefficient of xa1
1 · · ·xak

k in the expan-

sion of

1

(1 + x1)(1 + x2) · · · (1 + xk)(1− x1 − x2 − · · · − xk)
.

An immediate consequence of Theorem 9 is the following Corollary 10, which says
that M(a1, a2, . . . , ak) is symmetric in the ai’s.

Corollary 10. For each permutation τ ∈ Sk we have

M(a1, a2, . . . , ak) = M(aτ1 , aτ2 , . . . , aτk
).

For example, M(3, 1) counts two derangements 4312 and 4321; M(1, 3) counts two
derangements 3421 and 4321. This symmetry seems not easy to prove directly. Using
Theorem 9 an explicit formula for M(a1, a2, . . . , ak) can be obtained when k = 1, 2. We
have M(a) = 1 if a is even, and M(a) = 0 if a is odd; also

M(a, b) =
a+b
∑

j=2

j
∑

i=0

(−1)j

(

a + b− j

a− i

)

.

To prove Theorem 9 we need some notions from [10], where Gessel and Reutenauer
represented the number of permutations with given cycle structure and descent set by the
scalar product of two special characters of the symmetric group introduced by Foulkes
[7, 8]. Their results were also key ingredients in [14] for the enumeration of alternating
permutations by number of fixed points. In what follows, we assume the basic knowledge
of symmetric functions (see, e.g., [11, 12, 13]). The scalar product 〈 , 〉 of two symmetric
functions is a bilinear form defined for all partitions λ and µ by

〈mλ, hµ〉 = 〈hµ, mλ〉 = δλµ, (2)

where mλ is the monomial symmetric function, hµ is the complete symmetric function,
and δ is the usual Kronecker symbol. Moreover, if ω is the homomorphism defined by
ωei = hi and ωhi = ei, where ei is the elementary symmetric function, then for any
symmetric functions f and g we have

〈f, g〉 = 〈ωf, ωg〉. (3)

Associate the function

SJ =
∑

DES w=J

xw1xw2 · · ·xwn
(4)

with each subset J ⊆ [n − 1], where the sum ranges over all words on positive integers
with descent set J . We claim that SJ is a symmetric function whose shape is a border
strip (see [13, p. 345]). In particular, S[n−1] is equal to en, the elementary symmetric
function of order n. On the other hand, every partition λ of n has an associate symmetric
function Lλ related to a Lie representation. The definition of Lλ is omitted here (see
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[10]); just remember that the symmetric function corresponding to derangements of
order n is given by

Dn =
∑

λ

Lλ =
n
∑

j=0

(−1)jejh
n−j
1 , (5)

where the sum ranges over all partitions λ having no part equal to 1 [10, Theorem 8.1].
We need the following result from [10] for our enumeration.

Proposition 11 (Gessel-Reutenauer). The number of permutations having descent set J
and cycle structure λ is equal to the scalar product of the symmetric functions SJ and Lλ.

Proof of Theorem 9. For each fixed integer sequence (a1, a2, . . . , ak) let si = a1 + a2 +
· · ·+ai for i = 1, . . . , k and ℓ = sk. Then M(a1, a2, . . . , ak) is the number of derangements

π ∈ Sℓ such that si with i = 1, 2, . . . , k − 1 may or may not be a descent of π, and
such that all the other numbers in [ℓ − 1] are descents of π. There is then a set T of
2k−1 descent sets J to consider, depending on whether each si is a descent or not (for
i = 1, . . . , k − 1). By Proposition 11 and linearity we have

M(a1, a2, . . . , ak) = 〈
∑

J∈T

SJ ,Dℓ〉. (6)

From (4) it follows that
∑

J∈T

SJ =
∑

DES w∈T

xw1xw2 · · ·xwn
=

∑

[ℓ−1]\{s1,s2,...,sk−1}⊆DES w

xw1xw2 · · ·xwn
.

Each word w occurring in the latter sum is the juxtaposition product w = u(1)u(2) · · ·u(k),
where each u(i) is a decreasing word of length ai (i = 1, 2, . . . , k). Hence

∑

J∈T SJ =
ea1ea2 · · · eak

. In (6) replace
∑

J∈T SJ by ea1ea2 · · · eak
and Dℓ by the second expression

in (5). We obtain

M(a1, a2, . . . , ak) = 〈ea1ea2 · · · eak
,

n
∑

j=0

(−1)jejh
n−j
1 〉.

The image under ω yields

M(a1, a2, . . . , ak) = 〈ωea1 · · · eak
, ω

ℓ
∑

j=0

(−1)jejh
ℓ−j
1 〉

= 〈ha1 · · ·hak
,

ℓ
∑

j=0

(−1)jhje
ℓ−j
1 〉.

Notice that
∑ℓ

j=0(−1)jhje
ℓ−j
1 is the coefficient of uℓ in

(

∑

j

hj(−u)j
)(

∑

i

ei
1u

i
)

=
1

(1 + x1u)(1 + x2u) · · · (1 + xku)(1− (x1 + x2 + · · ·+ xk)u)
.

It follows from (2) that M(a1, . . . , ak) is the coefficient of xa1
1 · · ·xak

k uℓ in the expansion
of the above fraction. �
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5. Permutations with 0 or 1 fixed points

Our objective in this section is to prove Theorem 2. We will establish a chain of
equivalent or stronger statements, leading to the final easy one. Further notations are
needed. Let w = w1w2 · · ·wn be a word on the letters 1, 2, . . . , m, each letter appearing
at least once. The set-statistic IDES w is defined to be the set of all i such that the
rightmost i appears to the right of the rightmost i+1 in w. Note that if π is a permutation
on [n], then IDESπ = DESπ−1. For every proper subset J of [n−1] let S

J
n be the set of

permutations σ ∈ Sn with IDESσ = J . Note the difference with the notation of DJ
k (n)

for k = 0, 1. We will see that it is easier to deal with IDES than with DES directly.
A word w = w1w2 · · ·wn is said to be a desarrangement if w1 > w2 > · · · > w2k

and w2k ≤ w2k+1 for some k ≥ 1. By convention, wn+1 = ∞. We may also say that
the leftmost trough of w occurs at an even position [6]. This notion was introduced,
for permutations, by Désarménien [1] and elegantly used in a subsequent paper [2]. A
further refinement is due to Gessel [9]. A desarrangement w = w1w2 · · ·wn is called
a hook, if n ≥ 2 and w1 > w2 ≤ w3 ≤ · · · ≤ wn. Every nonempty word w on the
letters 1, 2, 3, . . . can be written uniquely as a product uh1h2 · · ·hk, where u is a weakly

increasing word (possibly empty) and each hi is a hook. This factorization is called the
hook-factorization of w [6]. For permutations it was already introduced by Gessel [9].
For instance, the hook-factorization of the following word is indicated by vertical bars:

w =| 1 2 4 5 | 6 4 5 6 | 4 1 3 | 6 5 | 5 4 | 6 1 1 4 | 5 1 1 | .
Let uh1h2 · · ·hk be the hook factorization of the word w. The statistic pix w is defined

to be the length of u, and the statistic lec w is defined, in terms of inversion statistics
“inv”, by the sum [6]

lec w :=

k
∑

i=1

inv(hi).

In the previous example, pixw = |1245| = 4 and lec w = inv(6456)+inv(413)+inv(65)+
inv(54) + inv(6114) + inv(511) = 2 + 2 + 1 + 1 + 3 + 2 = 11.

For each permutation σ let iexc σ = exc σ−1. The next proposition was proved in
Foata and Han [6].

Proposition 12. The two three-variable statistics (iexc, fix, IDES) and (lec, pix, IDES)
are equi-distributed on the symmetric group Sn.

Let KJ
0 (n) denote the set of all desarrangements in S

J
n, and KJ

1 (n) the set of all
permutations in S

J
n with exactly one pixed point. Since the map σ → σ−1 preserves the

number of fixed points, Theorem 2 is equivalent to asserting that
∑

σ∈D0(n)
IDES(σ)=J

−
∑

σ∈D1(n)
IDES(σ)=J

= (s− 1)QJ
n(s).

Then by Proposition 12 this is equivalent to the following Theorem 2a.
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Theorem 2a. We have
∑

σ∈KJ
0 (n)

slec σ −
∑

σ∈KJ
1 (n)

slec σ = (s− 1)QJ
n(s),

where QJ
n(s) is a polynomial with positive integral coefficients.

The following lemma enables us to prove a stronger result.

Lemma 13. Let w = w1w2 · · ·wn be a desarrangement such that IDES w 6= {1, 2, . . . , n−
1} and let w′ = wnw1w2 · · ·wn−1. Then, either lec w′ = lec w, or lec w′ = lec w − 1.

Proof. Several cases are to be considered. Say that w belongs to type A if lec(w′) =
lec(w), and say that w belongs to type B if lec(w′) = lec(w)− 1.

Since w is a desarrangement, we may assume w1 > w2 > · · · > w2k ≤ w2k+1 for
some k. It follows that w′ has one pixed point. Let h1 · · ·hk be the hook-factorization
of w. Then the hook-factorization of w′ must have the form wn|h′

1 · · ·h′
ℓ. Thus, when

computing lec(w′), we can simply omit wn. This fact will be used when checking the
various cases. The reader is invited to look at Figures 1–3, where the letters b, c, x, y, z
play a critical role.

(1) If the rightmost hook hk has at least three elements, as shown in Figure 1, then
b ≤ c belongs to type A and b > c belongs to type B. This is because the only
possible change for “lec” must come from an inversion containing c. Furthermore,
(b, c) forms an inversion for type B and does not form an inversion for type A.

@@
q

��q
��q

��q
q

b

c

-

@@
q

��q
��q

q

b

Figure 1. Transformation for case 1.

(2) Suppose the rightmost hook hk has two elements b > c.
(a) If there is a hook xy followed by several decreasing hooks of length 2 with

y ≤ z, as shown in Figure 2, then x ≤ z belongs to type B and x > z
belongs to type A.
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q

q
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q
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q
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Figure 2. Transformation for case 2a.

(b) If there is a hook of length at least 3, followed by several decreasing hooks
of length 2, then (see Figure 3)
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(i) x > y belongs to type B and x ≤ y belongs to type A in case y > z;
(ii) x ≤ z belongs to type B and x > z belongs to type A in case y ≤ z.
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Figure 3. Transformations for case 2b.

This achieves the proof of the lemma. �

With the notations of Lemma 13 we say that a desarrangement w is in class A0 if
lec w′ = lec w and in class B0 if lec w′ = lec w − 1. A word w = w1w2w3 · · ·wn is said to
be in class A1 (resp. in class B1) if the word w2w3 · · ·wnw1 is in class A0 (resp. in class
B0). Notice that a word in class A1 or B1 has exactly one pixed point. Then, Theorem
2a is a consequence of the following theorem.

Theorem 2b. We have
∑

σ∈SJ
n∩A0

slec σ =
∑

σ∈SJ
n∩A1

slec σ and
∑

σ∈SJ
n∩B0

slec σ = s
∑

σ∈SJ
n∩B1

slec σ.

Let S
⊆J
n be the set of all permutations σ of order n such that IDES σ ⊆ J . By the

inclusion-exclusion principle, Theorem 2b is equivalent to the following theorem.

Theorem 2c. We have
∑

σ∈S
⊆J
n ∩A0

slec σ =
∑

σ∈S
⊆J
n ∩A1

slec σ and
∑

σ∈S
⊆J
n ∩B0

slec σ = s
∑

σ∈S
⊆J
n ∩B1

slec σ.

If J = {j1, j2, . . . , jr−1} ⊆ [n − 1], define a composition m = (m1, m2, . . . , mr) by
m1 = j1, m2 = j2 − j1, . . . , mr−1 = jr−1 − jr−2, mr = n − jr−1. Let R(m) be the set
of all rearrangements of 1m12m2 · · · rmr . We construct a bijection φ from R(m) to S

⊆J
n

by means of the classical standardization of words. Let w ∈ R(m) be a word. From
left to right label the letters 1 in w by 1, 2, . . . , m1, then label the letters 2 in w by
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m1 + 1, m1 + 2, . . . , m1 + m2, and so on. Then the standardization of w, denoted by
σ = φ(w), is the permutation obtained by reading those labels from left to right. It is
easy to see that φ is reversible and IDES σ ⊆ J if and only if w ∈ R(m) (see [3, 6]).
Moreover, the permutation σ and the word w have the same hook-factorization type.
This means that if ah1h2 . . . hs (resp. bp1p2 . . . pk) is the hook-factorization of σ (resp.
hook-factorization of w), then k = s and |a| = |b|. For each 1 ≤ i ≤ k we have |hi| = |pi|
and inv(hi) = inv(pi). Hence lec w = lec σ and pix w = pix σ. Furthermore, σ is in class
A0, A1, B0 or B1 if and only if w is in the same class. Theorem 2c is equivalent to the
next theorem, whose proof follows from the definition of the classes A0, A1, B0, B1 and
Lemma 13.

Theorem 2d. We have
∑

σ∈R(m)∩A0

slec σ =
∑

σ∈R(m)∩A1

slec σ and
∑

σ∈R(m)∩B0

slec σ = s
∑

σ∈R(m)∩B1

slec σ.

The following variation of Theorem 2 follows from Theorem 2b, but cannot be derived
from Theorem 2 directly.

Theorem 14. We have
∑

σ∈DJ
0 (n)

siexc σ −
∑

σ∈DJ
1 (n)

siexc σ = (s− 1)QJ
n(s)

for some polynomial QJ
n(s) with positive integral coefficients.

6. Further remarks

A combinatorial proof of Corollary 5 can be made by using the methods developed in
the preceding section. However this proof does not need the concept of “hook” and the
statistic “lec”. We only list the equivalent statements, leaving the details to the reader.

Theorem 15. Let J be a proper subset of [n−1]. The following statements are equivalent

to Corollary 5:

(1) The number of derangements in S
J
n is equal to the number of permutations in

S
J
n with exactly one fixed point.

(2) The number of desarrangements in S
J
n is equal to the number of permutations in

S
J
n with exactly one pixed point.

(3) The number of desarrangements in S
⊆J
n is equal to the number of permutations

in S
⊆J
n with exactly one pixed point.

(4) The number of desarrangements in R(m) is equal to the number of words in

R(m) with exactly one pixed point.

We remark that the equivalence of (1) and (2) also follows from a result of Désarménien
and Wachs [2, 3]: the two bi-variable statistics (fix, IDES) and (pix, IDES) are equi-
distributed on the symmetric group Sn.

The statistics “des” and “maj” are determined by “DES”: desπ = # DES π and
maj π =

∑

i∈DES π i for π ∈ Sn. By using Theorem 2 for each proper subset J of [n− 1]
and by checking the case J = [n− 1] directly, we have the following result.
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Theorem 16. There is a polynomial Qn(s, t, q) with positive integral coefficients such

that
∑

σ∈D0(n)

sexc σtdes σqmaj σ −
∑

σ∈D1(n)

sexc σtdes σqmaj σ = (s− 1)Qn(s, t, q) + rn(s, t, q)

where r2k(s, t, q) = skt2k−1qk(2k−1) for k ≥ 1 and r2k+1(s, t, q) = −skt2kqk(2k+1) for k ≥ 0.

A related result is the following, where we use the standard notation for q-series:

(z; q)m = (1− z)(1− zq) · · · (1− zqm−1).

Proposition 17 ([6], Theorem 1.1). Let (An(s, t, q, Y ))n≥0 be the sequence of polynomi-

als in four variables, whose factorial generating function is given by

∑

r≥0

tr
(1− sq) (u; q)r (usq; q)r

((u; q)r − sq(usq; q)r)(uY ; q)r+1
=
∑

n≥0

An(s, t, q, Y )
un

(t; q)n+1
.

Then An(s, t, q, Y ) is the generating polynomial for Sn according to the four-variable

statistic (exc, des, maj, fix). In other words,

An(s, t, q, Y ) =
∑

σ∈Sn

sexc σtdes σqmaj σY fix σ.

Since
∑

σ∈D0(n) sexc σtdes σqmaj σ is simply An(s, t, q, 0) and
∑

σ∈D1(n) sexc σtdes σqmaj σ is

equal to the coefficient of Y in An(s, t, q, Y ), Theorem 16 and Proposition 17 imply the
following theorem.

Theorem 18. There is a sequence of polynomials (Qn(s, t, q))n≥0 with positive integral

coefficients such that

∑

r≥0

tr
(

1− u
1− qr+1

1− q

)

(1− sq) (u; q)r (usq; q)r

((u; q)r − sq(usq; q)r)
− 1

1− t

= (s− 1)
∑

n≥1

Qn(s, t, q)
un

(t; q)n+1
+ r(s, t, q),

where

r(s, t, q) =
∑

k≥1

skt2k−1qk(2k−1) u2k

(t; q)2k+1

−
∑

k≥0

skt2kqk(2k+1) u2k+1

(t; q)2k+2

.

In the case of t = 1 and q = 1 the above theorem yields the following corollary.

Corollary 19. For each n ≥ 0 let Qn(s) be the coefficient of un/n! in the Taylor

expansion of

H(s) =
u− 1

seus − s2eu
− 1

2s
√

s

( eu
√

s

√
s + 1

+
e−u

√
s

√
s− 1

)

,

that is

H(s) =
u3

3!
+(s+3)

u4

4!
+(s2 +17s+4)

u5

5!
+(s3 +46s2 +80s+5)

u6

6!
+ · · ·+Qn(s)

un

n!
+ · · ·

Then, the coefficients Qn(s) are polynomials in s with positive integral coefficients.
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It is easy to show that Q2n−1(1) = D2n−1/2 and Q2n(1) = (D2n − 1)/2 for n ≥ 2. By
Formula (6.19) in [4] we have

Qn(1) =
∑

2≤2k≤n−1

k × n(n− 1)(n− 2) · · · (2k + 2).

Since Qn(1) counts the number of desarrangements of type B, Corollary 19 implies that
the number of desarrangements of type A equals the number of desarrangements of type
B, when excluding the decreasing desarrangement of even length. It would be interesting
to have a direct (analytic) proof of Corollary 19 which would not use the combinatorial
set-up of this paper.
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