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THE q-TANGENT AND q-SECANT NUMBERS
VIA BASIC EULERIAN POLYNOMIALS

DOMINIQUE FOATA AND GUO-NIU HAN

Abstract. The classical identity that relates Eulerian polynomials to tangent

numbers together with the parallel result dealing with secant numbers is given
a q-extension, both analytically and combinatorially. The analytic proof is

based on a recent result by Shareshian and Wachs and the combinatorial one

on the geometry of alternating permutations.

1. Introduction

Let (An(s, Y )) (n ≥ 0) be the sequence of polynomials in two variables defined
by

(1.1)
∑
n≥0

un

n!
An(s, Y ) =

1− s

exp(su)− s exp(u)
exp(Y u).

It is known (see, e.g. [11], chap. 4) that they are polynomials with positive integral
coefficients. For Y = 1 we recover the Eulerian polynomials (An(s, 1)) introduced
by Euler [8] for his evaluation of the alternating sum

∑m
i=1(−1)iin. Moreover, Euler

derived the two identities

(1.2) A2n(−1, 1) = 0 (n ≥ 1); (−1)nA2n+1(−1, 1) = T2n+1 (n ≥ 0);

where T2n+1 (n ≥ 0) are the coefficients of the Taylor expansion of tanu,

tanu =
∑
n≥0

u2n+1

(2n + 1)!
T2n+1

=
u

1!
1 +

u3

3!
2 +

u5

5!
16 +

u7

7!
272 +

u9

9!
7936 +

u11

11!
353792 + · · ·(1.3)

The coefficients T2n+1 (n ≥ 0), called tangent numbers, are positive integral num-
bers, and so are the secant numbers E2n (n ≥ 1) (see, e.g., [16], p. 177) defined by
the Taylor expansion of sec u:

sec u =
1

cos u
= 1 +

∑
n≥1

u2n

(2n)!
E2n

= 1 +
u2

2!
1 +

u4

4!
5 +

u6

6!
61 +

u8

8!
1385 +

u10

10!
50521 + · · ·(1.4)

Received by the editors September 30, 2008.
1991 Mathematics Subject Classification. Primary 05A15, 05A30, 05E15.
Key words and phrases. q-tangent numbers, q-secant numbers, q-Eulerian polynomials, ex-

cedances, derangements, desarrangements, alternating permutations.

c©2005 American Mathematical Society

1



2 DOMINIQUE FOATA AND GUO-NIU HAN

The parallel result to (1.2) involving secant numbers was obtained by Roselle [18]
for the polynomials An(s, 0) in the form

(1.5) A2n−1(−1, 0) = 0 (n ≥ 1); (−1)nA2n(−1, 0) = E2n (n ≥ 0).

For each permutation σ = σ(1)σ(2) · · ·σ(n) of 12 · · ·n the number of excedances
exc σ, (resp. of descents, des σ,) of σ is defined to be the number of integers i such
that 1 ≤ i ≤ n − 1 and σ(i) > i (resp. σ(i) > σ(i + 1)). Also, fix σ designates
the number of fixed points of σ and Dn the subset of Sn of the permutations
without fixed points, called derangements. It is known that the two statistics “exc”
and “des” have the same distributions over the symmetric group ([15], p. 186). As
derived in [11], we have An(s, Y ) =

∑
σ∈Sn

sexc σY fix σ. The specializations are due
to Riordan ([17], p. 214) for Y = 1 and to Roselle [18] for Y = 0.

The combinatorial counterparts of (1.2) and (1.5) can be expressed as∑
σ∈S2n

(−1)exc σ = 0 (n ≥ 1);(1.6)

∑
σ∈S2n+1

(−1)n+exc σ = T2n+1 (n ≥ 0);(1.7)

∑
σ∈D2n−1

(−1)exc σ = 0 (n ≥ 1);(1.8)

∑
σ∈D2n

(−1)n+exc σ = E2n (n ≥ 0).(1.9)

Let (t; q)n = (1 − t)(1 − tq) · · · (1 − tqn−1) for n ≥ 1 and (t; q)0 = 1 denote
the traditional q-ascending factorials. The purpose of this paper is to construct a
q-analog of (1.6)–(1.9), as further stated in Theorem 1. This first means that two
sequences of polynomials (T2n+1(q)), (E2n(q)) with positive integral coefficients are
to be introduced such that T2n+1(1) = T2n+1 and E2n(1) = E2n. This is achieved
by taking the q-tangent numbers T2n+1(q) and the q-secant numbers E2n(q) (see [3,
4, 9]) occurring in the two expansions:

tanq(u) =

∑
n≥0

(−1)nu2n+1/(q; q)2n+1∑
n≥0

(−1)nu2n/(q; q)2n
=

∑
n≥0

u2n+1

(q; q)2n+1
T2n+1(q);

secq(u) =
1∑

n≥0

(−1)nu2n/(q; q)2n
=

∑
n≥0

u2n

(q; q)2n
E2n(q).

Note that tanq(u) (resp. secq(u)) is simply the quotient of the q-sine and q-cosine
(resp. the inverse of q-cosine), as introduced by Jackson [14] (also see [12], p. 23).
The first values are: T1(q) = 1; T3(q) = q + q2; T5(q) = q2 +2q3 +3q4 +4q5 +3q6 +
2q7 + q8; E0(q) = E2(q) = 1, E4(q) = q(1 + q)2 + q4; E6(q) = q2(1 + q)2(1 + q2 +
q4)(1 + q + q2 + 2q3) + q12.

Second, another statistic on the symmetric group Sn is to be associated with
“exc,” so that the left-hand sides of the four identities (1.6)–(1.9) will become
true polynomial identities. The statistic that meets our expectations is the classical
major index “maj,” defined for each permutation σ = σ(1)σ(2) · · ·σ(n) as the sum
of all the i’s such that σ(i) > σ(i+1). The main result of the present paper is then
the following theorem.
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Theorem 1. We have:∑
σ∈S2n

(−1)exc σq(maj− exc)σ = 0 (n ≥ 1);(1.10) ∑
σ∈S2n+1

(−1)n+exc σq(maj− exc)σ = T2n+1(q) (n ≥ 0);(1.11) ∑
σ∈D2n−1

(−1)exc σq(maj− exc)σ = 0 (n ≥ 1);(1.12)

∑
σ∈D2n

(−1)n+exc σq(maj− exc)σ = E2n(q) (n ≥ 0).(1.13)

We provide two proofs of Theorem 1. The analytic proof, given in Section 2, is
based on a recent result due to Shareshian and Wachs [19] who made an explicit
study of the statistic “maj− exc”. The combinatorial proof, given in Section 4,
is based on the geometry of alternating permutations, as introduced by André
[1, 2] and on an equidistribution property between two three-variable statistics
(exc,fix,maj) and (lec,pix, inv) established in [10]. However, to make this paper
self-contained, we give a new proof of that equidistribution property by directly
calculating the distribution of the latter statistic (see Theorem 4, Section 3). Our
combinatorial proof consists of reducing the four alternating sums (1.10)–(1.13) by
means of two explicit sign-reversing involutions. In contrast to the combinatorial
proofs of (1.6) and (1.7) given in [11], chap. 5, these involutions naturally lead to
the alternating permutation model.

2. The analytic proof

The q-analogs of the Eulerian polynomials, which have been derived, are the
generating polynomials for Sn by the pair (des,maj) (Carlitz [5, 6]), by (des, inv)
(Stanley [20]) and by (exc,maj) (Shareshian and Wachs [19]). Let us recall the
latest q-extension.

Theorem 2 (Shareshian-Wachs). Let

An(s, Y, q) =
∑

σ∈Sn

sexc σY fix σqmaj σ.(2.1)

Then ∑
n≥0

un

(q; q)n
An(s, Y, q) =

1− sq

eq(squ)− sqeq(u)
eq(Y u),(2.2)

where eq(u) =
∑
n≥0

un/(q; q)n is the first q-exponential.

To prove Theorem 1 it then suffices to establish the following equivalent theorem.

Theorem 3. Let (An(s, Y, q)) (n ≥ 0) be the sequence of polynomials defined by
(2.1). Then

A2n(−q−1, 1, q)=0 (n ≥ 1); (−1)nA2n+1(−q−1, 1, q)=T2n+1(q) (n ≥ 0);
A2n−1(−q−1, 0, q)=0 (n ≥ 1); (−1)nA2n(−q−1, 0, q)=E2n(q) (n ≥ 0).
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Proof. With the substitutions Y := 0 and s := −q−1 in (2.2) we get∑
n≥0

un

(q; q)n
An(−q−1, 0, q) =

(
1 +

∑
n≥1

u2n

(q; q)2n

)−1

.

As the fraction on the right involves only even powers of u, we deduce:

A2n−1(−q−1, 0, q) = 0 (n ≥ 1).

By replacing u by iu we obtain∑
n≥0

u2n

(q; q)2n
(−1)nA2n(−q−1, 0, q) =

(
1 +

∑
n≥1

(−1)n u2n

(q; q)2n

)−1

=
1

cosq(u)
.

Consequently, (−1)nA2n(−q−1, 0, q) = E2n(q) (n ≥ 0).
From (2.2) we can write:∑

n≥0

un

(q; q)n
An(s, 1, q) = eq(u)

∑
n≥0

un

(q; q)n
An(s, 0, q)

so that by replacing s by −q−1 and u by iu∑
n≥0

(iu)n

(q; q)n
An(−q−1, 1, q) =

eq(iu)
cosq(u)

=
cosq(u) + i sinq(u)

cosq(u)
.

By selecting the real and imaginary parts we get∑
n even

(iu)n

(q; q)n
An(−q−1, 1, q) = 1

and ∑
n≥0

u2n+1

(q; q)2n+1
(−1)nA2n+1(−q−1, 1, q) =

sinq(u)
cosq(u)

= tanq(u).

We then conclude:
A2n(−q−1, 1, q) = 0 (n ≥ 1),

(−1)nA2n+1(−q−1, 1, q) = T2n+1(q) (n ≥ 0). �

3. A direct derivation

A word w = x1x2 · · ·xm is called a hook if x1 > x2 and either m = 2, or
m ≥ 3 and x2 < x3 < · · · < xm. As proved by Gessel [13], each permuta-
tion σ = σ(1)σ(2) · · ·σ(n) admits a unique factorization, called its hook factor-
ization, pτ1τ2 · · · τk, where p is an increasing word and each factor τ1, τ2, . . . , τk is
a hook. To derive the hook factorization of a permutation, it suffices to start from
the right and at each step determine the right factor which is a hook. For each i let
inv τi denote the number of inversions of τi and define:

lec σ :=
∑

1≤i≤k

inv τi;(3.1)

pix σ := length of the factor p.(3.2)
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Those two statistics have been introduced and used in [10]. Furthermore, let Desarn

be the subset of Sn of the permutations σ, called desarrangements, having the
property that pixσ = 0 [7].

For instance, the hook factorization of the following permutation is indicated by
vertical bars: σ = 13 4 14 | 12 2 5 11 15 | 8 6 7 | 13 9 10. We have p = 13 4 14, so that
pix σ = 4, inv(12 2 5 11 15) = 3, inv(8 6 7) = 2, inv(13 9 10) = 2, so that lec σ = 7.
The next theorem, already derived in [10], is given a new direct proof.

Theorem 4. Let

Alec,pix,inv
n (s, Y, q) :=

∑
σ∈Sn

slec σY pix σqinv σ.(3.3)

Then ∑
n≥0

un

(q; q)n
Alec,pix,inv

n (s, Y, q) =
1− sq

eq(squ)− sqeq(u)
eq(Y u).(3.4)

Proof. Let pτ1τ2 · · · τr be the hook factorization of a permutation σ from Sn. Let A0

(resp. Ai (1 ≤ i ≤ r)) denote the set of all letters in the word p (resp. in the hook τi)
and call content of σ the sequence Cont σ = (A0, A1, . . . , Ar). Note that #Ai ≥ 2
for i = 1, . . . , r and (A0, A1, . . . , Ar) is an ordered partition of [n] = {1, 2, . . . , n}.
The statistic (inv− lec)σ is equal to the number of pairs (k, l) such that k ∈ Ai,
l ∈ Aj , k > l and i < j, a number we shall denote by inv(A0, A1 . . . , Ar).

If Ai = {a1 < a2 < · · · < am}, then the hooks with content Ai are the
(m − 1) words: w1 = ama1 · · · am−2am−1, w2 = am−1a1 · · · am−2am, . . . , wm−1 =
a2a1a3 · · · am−1am, whose “lec” statistic and inversion number are both equal to
(m− 1), (m− 2), . . . , 1, respectively. The generating polynomial for those (m− 1)
hooks by the pair (lec, inv) is then equal to

(3.5) Pm(s, q) := sq + (sq)2 + · · ·+ (sq)m−1 =
sq − (sq)m

1− sq
.

The identity
∑

(A0,A1,... ,Ar)
#Ai=ai

qinv(A0,A1,... ,Ar) =
[

n
a0,a1,... ,ar

]
q
, where the right-hand side

is the q-multinomial coefficient (q; q)n/((q; q)a0(q; q)a1 · · · (q; q)ar
) is easy to verify.

We then have:

Alec,pix,inv
n (s, Y, q) =

∑
σ∈Sn

q(inv− lec)σ(sq)lec σY pix σ

=
∑

(A0,A1,... ,Ar)

qinv(A0,A1,... ,Ar)Y #A0
∑

Cont σ=(A0,A1,... ,Ar)

(sq)lec σ

=
∑

(A0,A1,... ,Ar)

qinv(A0,A1,... ,Ar)Y #A0
∏

1≤i≤r

P#Ai(s, q)

=
∑

a0+a1+···+ar=n
ai≥2 (1≤i≤r)

Y a0
∏

1≤i≤r

Pai
(s, q)

∑
(A0,A1,... ,Ar)

#Ai=ai

qinv(A0,A1,... ,Ar)

=
∑

a0+a1+···+ar=n
ai≥2 (1≤i≤r)

[
n

a0, a1, . . . , ar

]
q

Y a0
∏

1≤i≤r

Pai(s, q).
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The rest of the calculation is routine:∑
n≥0

Alec,pix,inv
n (s, Y, q)

un

(q; q)n
=

∑
n≥0

∑
a0+a1+···+ar=n

ai≥2 (1≤i≤r)

Y a0
ua0

(q; q)a0

∏
1≤i≤r

Pai(s, q)
uai

(q; q)ai

=
( ∑

a0≥0

(Y u)a0

(q; q)a0

)(
1−

∑
b≥2

Pb(s, q)
ub

(q; q)b

)−1

= eq(Y u)
(
1−

∑
b≥2

sq − (sq)b

1− sq

ub

(q; q)b

)−1

= eq(Y u)
1− sq

eq(squ)− sqeq(u)
. �

In view of (2.1), (2.2), (3.3) and (3.4) the following identity holds

(3.6)
∑

σ∈Sn

sexc σY fix σqmaj σ =
∑

σ∈Sn

slec σY pix σqinv σ

and Theorem 1 is proved if we establish the four following identities:∑
σ∈S2n

(−1)lec σq(inv− lec)σ = 0 (n ≥ 1);(3.7)

∑
σ∈S2n+1

(−1)n+lec σq(inv− lec)σ = T2n+1(q) (n ≥ 0);(3.8)

∑
σ∈Desar2n−1

(−1)lec σq(inv− lec)σ = 0 (n ≥ 1);(3.9)

∑
σ∈Desar2n

(−1)n+lec σq(inv− lec)σ = E2n(q) (n ≥ 0).(3.10)

This is the object of the next section.

4. The combinatorial proof

An alternating (resp. falling alternating) permutation is defined to be a per-
mutation σ = σ(1) · · ·σ(n) having the following properties: σ(1) < σ(2), σ(2) >
σ(3), σ(3) < σ(4), etc. (resp. σ(1) > σ(2), σ(2) < σ(3), σ(3) > σ(4), etc.) in
an alternating way. The set of alternating (resp. falling alternating) permutations
of order n is denoted by Tn (resp. by T′n). The combinatorial interpretations
#T2n+1 = #T′2n+1 = T2n+1, #T2n = #T′2n = E2n are due to Désiré André [1,
2]. For each permutation σ let inv σ denote the number of its inversions. The fol-
lowing theorem is of common knowledge today, once we know how to q-transpose
the calculation made by André in his memoirs (see, e.g., [3], Proposition 4.1.)

Theorem 5. For each n ≥ 0 we have∑
σ∈T2n+1

qinv σ =
∑

σ∈T′2n+1

qinv σ = T2n+1(q),

and ∑
σ∈T2n

qinv σ = E2n(q).
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We first prove identities (3.9) and (3.10). With the notations of the previous
section the content of each desarrangement is of the form (∅, A1, . . . , Ar), so that∑

σ∈Desarn

(−1)lec σq(inv− lec)σ = Alec,pix,inv
n (−q−1, 0, q)

=
∑

a1+···+ar=n
ai≥2

∏
1≤i≤r

Pai
(−q−1, q)

∑
(A1,... ,Ar)
#Ai=ai

qinv(A1,... ,Ar).

From the very definition of Pm(s, q) we have:

Pm(−q−1, q) = (−1)inv w1 + · · ·+ (−1)inv wm−1 =
{

0, if m odd;
−1, if m even.

Hence, if the ordered partition (A1, A2, . . . , Ar) has at least one block of odd car-
dinality and #Ai = ai (1 ≤ i ≤ r), the product

∏
1≤i≤r Pai

(−q−1, q) is null. As
each desarrangement from S2n−1 has at least one hook of odd length, the sum∑

σ∈Desar2n−1
(−1)lec σq(inv− lec)σ is zero. This already proves identity (3.9).

Next, consider the even case. If all the blocks A1, A2, . . . , Ar of the ordered
partition (A1, A2, . . . , Ar) are of even cardinality, then∑

σ∈Cont(A1,... ,Ar)

(−1)n+lec σq(inv− lec)σ = (−1)n+rqinv(A1,... ,Ar).

Hence, ∑
σ∈Desar2n

(−1)n+lec σq(inv− lec)σ =
∑

(A1,... ,Ar)
#Ai even

(−1)n+rqinv(A1,... ,Ar).(4.1)

Sign-reversing involution. An ordered partition Ω = (A1, A2, . . . , Ar) is said to
have an increase at i if 1 ≤ i ≤ r − 1 and maxAi < minAi+1. If it has no increase
and all its blocks Aj are of cardinality 2, then r = n and the corresponding term in
(4.1) is equal to qinv Ω. If it is not the case, let i be the integer with the following
properties:

(i) #A1 = · · · = #Ai−1 = 2;
(ii) no increase at 1, 2, . . . , (i− 1);
(iii) either #Ai ≥ 4, or
(iv) #Ai = 2 and there is an increase at i.

Say that the partition Ω is of class Ci (resp. C ′
i) if (i), (ii) and (iii) (resp. and (iv))

hold. If Ω is of class Ci, let Ai = {a1 < a2 < · · · < a2m} (m ≥ 2) and form Ω′ =
(A1, . . . , Ai−1, {a1, a2}, {a3, . . . , a2m}, Ai+1, . . . , Ar). Then, Ω′ is of class C ′

i. Thus
Ω 7→ Ω′ is an involution of Ci onto C ′

i, which is sign-reversing since invΩ′ = invΩ
and (−1)n+rqinv Ω + (−1)n+r+1qinv Ω′

=0.
By applying the involution Ω 7→ Ω′, the only partitions (A1, . . . , Ar) remaining in

(4.1) are of the form Ω = ({a1 < b1}, {a2 < b2}, . . . , {an < bn}) having the property
that for each i = 2, . . . , n the relation bi−1 > ai holds. Hence, the permutation
ω = a1b1a2b2 · · · anbn is an alternating permutation starting with a rise a1 < b1.
We have then proved ∑

σ∈Desar2n

(−1)n+lec σq(inv− lec)σ =
∑
ω

qinv ω,

where the sum is over all alternating permutations of order 2n, which establishes
identity (3.10) by Theorem 5.



8 DOMINIQUE FOATA AND GUO-NIU HAN

Next, consider the left-hand side LHS of (3.8) (resp. of (3.7)). The sum may be re-
garded as being over all hook factorizations pτ1τ2 · · · τr of permutations from S2n+1

(resp. S2n). Let A0 be the set of the letters in p and, as before, let Ai be the set
of all letters in τi (1 ≤ i ≤ r). As above, we may apply the involution Ω 7→ Ω′

to all contents Ω = (A1, A2, . . . , Ar), remembering that this time Ω is an ordered
partition of [2n + 1] \A0 (resp. of [2n] \A0). After applying Ω 7→ Ω′ we get

(4.2) LHS =
∑

(A0,A1,... ,Ar)

(−1)n+rqinv(A0,A1,... ,Ar),

where the sum is over all ordered partitions Θ = (A0, A1, . . . , Ar) of [2n + 1] (resp.
of [2n] with the convention that A0 may be empty), having the property that
(A1, . . . , Ar) is an ordered partition of a subset of [2n+1] (resp. of [2n]) into blocks
of cardinality 2 having no increase.

Another sign-reversing involution. Each ordered partition Θ = (A0, A1, . . . , Ar)
of [2n+1] (resp. of [2n]) is said to be of type D, if max A0 < minA1 (by convention,
max ∅ = −∞). It is of type D′′ if max A0 < minA1 does not hold and #A0 ≥ 2.
If Θ is of type D, define Θ′′ = (A0 ∪ A1, A2, . . . , Ar). Then, Θ′′ is of type D′′ and
invΘ′′ = invΘ, so that

(4.3) (−1)n+rqinv Θ + (−1)n+r−1qinv Θ′′
= 0.

Thus Θ 7→ Θ′′ is a sign-reversing involution.
After applying the transformation Θ 7→ Θ′′ to the summands in (4.2) there re-

mains no term if the sum is made over the ordered partitions of [2n]. This proves
identity (3.7). When making the sum over ordered partitions of [2n+1], the remain-
ing terms correspond to the ordered partitions (A0, A1, . . . , Ar) having no increase
and such that A0 is a singleton. In particular, r = n. Such a partition is of the form
({a0}, {a1 < b1}, {a2 < b2}, . . . , {an < bn}) having the property that a0 > a1 and
for each i = 2, . . . , n the relation bi−1 > ai holds. Hence ω = a0a1b1a2b2 · · · anbn is
a falling alternating permutation. We have then proved∑

σ∈S2n+1

(−1)n+lec σq(inv− lec)σ =
∑

ω∈T′
2n+1

qinv ω (n ≥ 0).

This establishes (3.8) by Theorem 5.
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