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Doubloons and new q-tangent numbers

Dominique Foata and Guo-Niu Han

ABSTRACT. We introduce new q-tangent numbers based on the Carlitz
q-analog of the Eulerian polynomial and the so-called doubloon combina-
torial set-up. Those new q-tangent numbers are polynomials with positive
integral coefficients. They are divisible by products of binomials of the
form 1+ qi, the quotients being q-analogs of the reduced tangent numbers
having an explicit combinatorial interpretation.

1. Introduction

In his search for an evaluation of the alternating sum
∑m

i=1(−1)iin

Euler [Eu1755] introduced the sequence of now called Eulerian polynomials

(An(t)) (n ≥ 0) in the following two equivalent forms:

t − 1

t − exp(u(t − 1))
=

∑

n≥0

un

n!
An(t)(1.1)

= 1 +
u

1!
+

u2

2!
(t + 1) +

u3

3!
(t2 + 4t + 1)

+
u4

4!
(t3 + 11t2 + 11t + 1) + · · ·

m
∑

i=1

inti =

n
∑

l=1

(−1)n+l

(

n

l

)

tm+1An−l(t)

(t − 1)n−l+1
ml + (−1)n t(tm − 1)

(t − 1)n+1
An(t).(1.2)

The following infinite form of (1.2), also equivalent to both (1.1) and (1.2),

(1.3)
∑

i≥0

ti(i + 1)n =
An(t)

(1 − t)n+1
(n ≥ 0)

is more of common usage today, while Euler’s relation (1.2) seems to have
been suprisingly forgotten. He also knew how to write the now called
Taylor expansion of tanu as

tan u =
∑

n≥0

u2n+1

(2n + 1)!
T2n+1

=
u

1!
+

u3

3!
2 +

u5

5!
16 +

u7

7!
272 +

u9

9!
7936 +

u11

11!
353792 + · · ·(1.4)

As tanu =
1

i

1 − e−2iu

1 + e−2iu
, also equal to

∑

n≥1

un

n!
in−1An(−1) by (1.1), he

derived the relations

(1.5) A2n(−1) = 0 (n ≥ 1); (−1)nA2n+1(−1) = T2n+1 (n ≥ 0).
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Since Euler both Eulerian polynomials An(t) and tangent numbers T2n+1

(n ≥ 0) have been given several combinatorial interpretations (see, e.g.
[Ri58], [St99] and [FS70], chap. 5 for a combinatorial proof of (1.5)). Also
several q-analogs for both polynomials have been proposed, each of them
having interesting geometric properties. The purpose of this paper is to
derive a q-analog for (1.5). This means that a sequence of polynomials
(A∗

n(t, q)) (n ≥ 0) is to be found having the following properties:

(P1) the coefficients of each polynomial A∗
n(t, q) are positive integers;

(P2) A∗
n(t, 1) = An(t) (n ≥ 0);

(P3) A∗
2n(−1, q) = 0 (n ≥ 1);

(P4) the coefficients of each polynomial (−1)nA∗
2n+1(−1, q) (n ≥ 0) are

positive integers;
(P5) (−1)nA∗

2n+1(−1, 1) = T2n+1 (n ≥ 0).

Our second goal is to provide combinatorial interpretations for those
two sequences of polynomials (A∗

n(t, q)), ((−1)nA∗
2n+1(−1, q)), compatible

with what is already known for An(t) and T2n+1. As we now see, the
polynomials A∗

n(t, q), we have found, are slight variations of the classical q-
analogs An(t, q) of the Eulerian polynomials introduced by Carlitz [Ca54].
The latter polynomials may be defined by the identity

(1.6)
An(t, q)

(t; q)n+1
=

∑

j≥0

tj([j + 1]q)
n (n ≥ 0),

where (t; q)n+1 = (1−t)(1−tq) · · · (1−tqn) and [j+1]q = 1+q+q2+· · ·+qn

are the traditional q-ascending factorials and q-analogs of the positive
integers. When q = 1, identity (1.6) is transformed into (1.3), so that

(1.7) An(t, 1) = An(t).

Let us reproduce the first values of the polynomials An(t, q) (see [Ca54],
p. 336):

A0(t, q) = A1(t, q) = 1; A2(t, q) = 1 + tq; A3(t, q) = 1 + 2tq(q + 1) + t2q3;
A4(t, q) = 1 + tq(3q2 + 5q + 3) + t2q3(3q2 + 5q + 3) + t3q6;
A5(t, q) = 1 + tq(4q3 + 9q2 + 9q + 4) + t2q3(6q4 + 16q3 + 22q2 + 16q + 6) +

t3q6(4q3 + 9q2 + 9q + 4) + t4q10.

Table 1.1. The Carlitz q-Eulerian Polynomials

The polynomials A∗
n(t, q) which meet our expectations are defined by:

A∗
2n(t, q) = q(

n

2)A2n(tq−n, q);(1.8)

A∗
2n+1(t, q) = q(

n

2)A2n+1(tq
−n, q);(1.9)
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and our new q-tangent numbers by

T2n+1(q) = (−1)nA∗
2n+1(−1, q)

= (−1)n q(
n

2) A2n+1(−q−n, q).(1.10)

The main result of this paper is the following theorem.

Theorem 1.1. Let T2n+1(q) be defined by (1.10). Then
(a) T2n+1(q) is a polynomial;
(b) its coefficients are positive integers;
(c) T2n+1(1) = T2n+1 (the tangent number).

The proof of (a) is a consequence of Proposition 1.2 further stated.
The proof of (b) is the most difficult part. It requires a long combinatorial
development given in the next sections. The proof of (c) is easy:

T2n+1(1) = (−1)n A2n+1(−1, 1) [by (1.10)]

= (−1)n A2n+1(−1) [by (1.7)]

= T2n+1. [by (1.5)]

Using Table 1.1 we can determine the first values of those new q-tangent
numbers T2n+1(q):

T1(q) = 1; T3(q) = 1 + q; T5(q) = 2 + 4q + 4q2 + 4q3 + 2q4;
T7(q) = 5 + 17q + 29q2 + 39q3 + 46q4 + 46q5 + 39q6 + 29q7 + 17q8 + 5q9.

Table 1.2. The new q-tangent numbers

Of course, we recover the traditional tangent numbers: 1, 2, 16, 272, by
replacing q by 1. They differ from the usual q-tangent numbers tan2n+1(q)
occurring in the expansion of the ratio of the q-sine by the q-cosine intro-
duced by Jackson [Ja04] (also see [AG78], [Fo81], [GR90, p. 23])

∑

n≥0

u2n+1

(q; q)2n+1
tan2n+1(q) =

∑

n≥0

(−1)nu2n+1/(q; q)2n+1

∑

n≥0

(−1)nu2n/(q; q)2n
,

whose first values are tan1(q) = 1; tan3(q) = q + q2; tan5(q) = q2 + 2q3 +
3q4 + 4q5 + 3q6 + 2q7 + q8; tan7(q) = q3(1 + q)2(1 + q2)(1 + q3)(1 + q +
3q2 + 2q3 + 3q4 + 2q5 + 3q6 + q7 + q8).

In a subsequent paper Carlitz [Ca75] obtained the following combina-
torial interpretation for the polynomial An(t, q). Let σ = σ(1)σ(2) · · ·σ(n)
be a permutation of 12 · · ·n. The number of descents, des σ, (resp. major

index, majσ,) of the permutation σ is defined to be the number (resp. the
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sum) of all i’s such that 1 ≤ i ≤ n − 1 and σ(i) > σ(i + 1). The following
result

(1.11) An(t, q) =
∑

σ∈Sn

tdes σqmaj σ (n ≥ 0)

is due to him. From (1.11) and the definition of A∗
2n+1(t, q) given in (1.9)

it follows that

(1.12) A∗
2n+1(t, q) =

∑

σ∈S2n+1

tdes σqcmaj σ,

where cmajσ is the compressed major index of σ defined by

(1.13) cmajσ = majσ − n des σ + n(n − 1)/2.

Proposition 1.2. If σ ∈ S2n+1, then

(1.14) 0 ≤ cmajσ ≤ n2.

In particular, A∗
2n+1(t, q) is a polynomial of degree (n−1) in t and n2 in q

and T2n+1(q) is a polynomial (condition (a) of Theorem 1.1 holds).

Proof. We just verify:

min
σ∈S2n+1

(majσ − n des σ) = min
I={i1,i2,...,id}⊂[2n]

(i1 + i2 + · · · id − nd)

= min
I={i1,i2,...,id}⊂[2n]

((i1 − n) + (i2 − n) + · · · (id − n))

= (1 − n) + (2 − n) + · · · (n − n) = −n(n − 1)/2;

max
σ∈S2n+1

(majσ − n des σ) = max
I={i1,i2,...,id}⊂[2n]

((i1 − n) + (i2 − n) + · · · (id − n))

= (n − n) + ((n + 1) − n) + · · · ((n + n) − n)

= n(n + 1)/2.

Go back to the five properties (P1)–(P5) we wish to fulfill: (P1) has
been proved by Proposition 1.2. Also, (P2) holds since A∗

n(t, 1)=An(t, 1)=
An(t) by (1.7). (P5) is condition (c) of Theorem 1.1 and has been proved.
Let us deal with (P3).

Proposition 1.3. For each n ≥ 1 we have: A∗
2n(−1, q) = 0.

Proof. One possibility is to go back to the other recurrence relations
for the Carlitz polynomials An(t, q) and extract an analytic proof. Feasible
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but cumbersome. We can instead use the following combinatorial argument
based on (1.11). Let σ = σ(1)σ(2) · · ·σ(2n) be a permutation of 12 · · · (2n)
and let rσ be the reverse permutation rσ = σ(2n) · · ·σ(2)σ(1). If σ has
j descents in positions d1, d2, . . . , dj (1 ≤ d1 < d2 < · · · < dj ≤
2n − 1), its major index, majσ, is equal to d1 + d2 + · · ·+ dj. Hence, the
major index of rσ can be evaluated as maj rσ = 1 + 2 + · · ·+ (2n − 1) −
(n − d1) − (n − d2) − · · · − (n − dj). As des rσ = 2n − 1 − j, we have
−n des rσ + maj rσ = −n(2n− 1− j) + 1 + 2 + · · ·+ (2n− 1)− (n− d1)−
(n − d2) − · · · − (n − dj) = −nj + d1 + d2 + · · ·+ dj = −n des σ + majσ.
Thus (−q−n)des σqmaj σ = −(−q−n)des rσqmaj r σ.

There remains to prove (P4), that is, Theorem 1.1 (b). As a matter of
fact, we will prove the following stronger result.

Theorem 1.4. The ratio dn(q) =
T2n+1(q)

(1 + q)(1 + q2) · · · (1 + qn)
is a poly-

nomial in q with positive integral coefficients.

Our proof will be of combinatorial nature, but the problem remains
open for a true analytical one, which would use the very definition of the
Carlitz q-Eulerian polynomials An(t, q), in particular (1.6), from which we
can derive:

An(t, q)

(t; q)n+1
=

1

(1 − q)n

n
∑

k=0

(

n

k

)

(−1)kqk

1 − tqk
,

so that

A∗
2n+1(t, q)

(tq−n, q)2n+1
=

qn(n−1)/2

(1 − q)2n+1

2n+1
∑

k=0

(

2n + 1

k

)

(−1)kqk

1 − tq−nqk
.

Hence

T2n+1(q)

(−q−n, q)2n+1
=

(−1)nqn(n−1)/2

(1 − q)2n+1

2n+1
∑

k=0

(

2n + 1

k

)

(−1)kqk

1 + q−nqk
.

and

T2n+1(q)

(1 + q)(1 + q2) · · · (1 + qn)
=

(−1)n+1(−1; q)n+2

(1 − q)2n+1

2n+1
∑

k=0

(

2n + 1

k

)

(−1)k

1 + qk−n
.

Theorem 1.4 asserts that the right-hand side of the last identity is a poly-
nomial in q with integral positive coefficients. A direct proof would be
welcome.

The first values of dn(q) = T2n+1(q)/(1 + q)(1 + q2) · · · (1 + qn) are
reproduced in Table 1.3.

d0(q) = d1(q) = 1; d2(q) = 2 + 2q; d3(q) = 5 + 12q + 12q2 + 5q3;
d4(q) = 14 + 56q + 110q2 + 136q3 + 110q4 + 56q5 + 14q6.

Table 1.3. The q-reduced tangent polynomials
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From Theorems 1.1 (c) and 1.4 it follows that dn(1) = T2n+1/2n. Ac-
cordingly, the integers dn(1) are the reduced tangent numbers. Their ex-
ponential generating function is directly obtainable from (1.4) and reads:

√
2 tan

u√
2

=
∑

n≥0

u2n+1

(2n + 1)!
dn(1)

=
u

1!
1 +

u3

3!
1 +

u5

5!
4 +

u7

7!
34 +

u9

9!
496 +

u11

11!
353792 + · · ·(1.15)

The combinatorial set-up used in this paper is directly inspired from the
models used in our previous statistical studies ([Ha92], [Ha94], [FH00]). It
can be described as follows. A doubloon of order (2n + 1) is a 2× (n + 1)-
matrix δ =

(

a0 a1 ···an

b0 b1 ··· bn

)

such that the word a0a1 · · ·anbnbn−1 · · · b0 is a

permutation of 012 · · · (2n+1). Let D2n+1 (resp. D0
2n+1) denote the set of

all doubloons δ =
(

a0 a1 ···an

b0 b1 ··· bn

)

of order (2n + 1) (resp. the subset of D2n+1

composed of all doubloons such that a0 = 0). When δ =
(

0 a1 ··· an

b0 b1 ··· bn

)

belongs

to D0
2n+1, the word ρ(δ) = a1 · · ·anbnbn−1 · · · b0 is called the reading of δ.

Clearly, ρ provides a bijection of D0
2n+1 onto S2n+1. When δ belongs to

D0
2n+1, we simply define: des δ = des ρ(δ), maj δ = maj ρ(δ), cmaj δ =

cmaj ρ(δ).
Now take advantage of the presentation of each doubloon as a two-row

matrix δ =
(

a0 a1 ··· an

b0 b1 ··· bn

)

for introducing the notions of interlacedness and

normalizedness at each k (1 ≤ k ≤ n): the doubloon δ=
(

a0 a1 ···an

b0 b1 ··· bn

)

is said
to be interlaced (resp. normalized) at k, if the sequence (ak−1, ak, bk−1, bk)
or one of its three cyclic rearrangements is monotonic increasing or de-
creasing (resp. decreasing). In the beginning of the next section it will be
seen that out of the 4! = 24 possible orderings of the elements ak−1, ak,
bk−1, bk there are four of them that make δ interlaced but not normalized
at k (relations (I1)–(I4)) and four others that make δ normalized at k
(relations (IN1)–(IN4)).

For instance, the doubloon δ =
(

0 2 4 3
5 7 1 6

)

of order 7 is interlaced (but not
normalized) at 1, since 0 2 5 7 is increasing; interlaced (but not normalized)
at 2, since the cyclic rearrangement 1 2 4 7 of 2 4 7 1 is increasing; normal-
ized (and also interlaced) at 3, since the cyclic rearrangement 6 4 3 1 of
4 3 1 6 is decreasing.

When a doubloon of order (2n + 1) is interlaced (resp. normalized) at
every k = 1, 2, . . . , n, we simply say that it is interlaced (resp. normalized).
Let I0

2n+1 (resp. N 0
2n+1) denote the set of all doubloons from D0

2n+1, which
are interlaced (resp. normalized).
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Theorem 1.5. The polynomial T2n+1(q) is the generating function for
the set I0

2n+1 of interlaced doubloons by “cmaj”:

(1.16) T2n+1(q) =
∑

δ∈I0
2n+1

qcmaj δ.

Theorem 1.6. The following factorization holds

(1.17)
∑

δ∈I0
2n+1

qcmaj δ = (1 + q)(1 + q2) · · · (1 + qn)
∑

δ∈N0
2n+1

qcmaj δ,

so that the polynomial dn(q) is the generating function for the set N 0
2n+1

of normalized doubloons by “cmaj”:

(1.18) dn(q) =
∑

δ∈N0
2n+1

qcmaj δ.

The rest of the paper is devoted to proving the previous two theorems,
which give combinatorial interpretations to T2n+1(q) and dn(q) and evi-
dently imply Theorems 1.1 and 1.4.

There is one normalized doubloon of order 3, namely
(

03
21

)

, whose “cmaj”

is null, the other interlaced doubloon being
(

0 1
2 3

)

with a “cmaj” equal to 1.
Hence, d1(q) = 1 and T3(q) = 1+ q. In Table 1.4 are displayed the sixteen
interlaced doubloons of order 5 with the values of their “cmaj” next to
them. The top row contains the four normalized doubloons of order 5.
Hence, d2(q) = 2 + 2q, T5(q) = (1 + q)(1 + q2)(2 + 2q).

(

0 5 3
4 2 1

)

, 0
(

0 4 2
3 1 5

)

, 1
(

0 5 4
3 2 1

)

, 0
(

0 4 3
2 1 5

)

, 1
(

0 5 1
4 2 3

)

, 1
(

0 4 5
3 1 2

)

, 2
(

0 5 1
3 2 4

)

, 1
(

0 4 5
2 1 3

)

, 2
(

0 2 3
4 5 1

)

, 3
(

0 1 2
3 4 5

)

, 4
(

0 2 4
3 5 1

)

, 3
(

0 1 3
2 4 5

)

, 4
(

0 2 1
4 5 3

)

, 2
(

0 1 5
3 4 2

)

, 3
(

0 2 1
3 5 4

)

, 2
(

0 1 5
2 4 3

)

, 3

Table 1.4. The set I0
5 of interlaced doubloons of order 5

2. Geometry of doubloons

Let δ=
(

a0 a1 ··· an

b0 b1 ··· bn

)

be a doubloon and for each k = 1, 2, . . . , n write the
four relations that make δ be normalized at k (conditions (IN1)–(IN4)),
and the four relations making δ be interlaced but not normalized at k
(conditions (I1)–(I4)):

(IN1) bk < bk−1 < ak < ak−1; (I1) ak < bk−1 < bk < ak−1;
(IN2) bk−1 < ak < ak−1 < bk; (I2) bk−1 < bk < ak−1 < ak;
(IN3) ak < ak−1 < bk < bk−1; (I3) bk < ak−1 < ak < bk−1;
(IN4) ak−1 < bk < bk−1 < ak; (I4) ak−1 < ak < bk−1 < bk.
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We next introduce a class of transformations φk (0 ≤ k ≤ n) on D2n+1,
called micro flips, which simply permute the entries in a given column.
For 0 ≤ k ≤ n define:

φk :

(

a0 · · ·ak−1 ak ak+1 · · ·an

b0 · · · bk−1 bk bk+1 · · · bn

)

7→
(

a0 · · ·ak−1 bk ak+1 · · ·an

b0 · · · bk−1 ak bk+1 · · · bn

)

.

Two doubloons δ, δ′ are said to be equivalent, if there is a sequence φi1 ,
φi2 , . . . , φik

of micro flips such that δ′ = φi1φi2 · · ·φik
(δ).

Proposition 2.1. The following conditions hold:
(a) Each micro flip is an involution.
(b) The micro flips commute with each other.
(c) Each doubloon δ is normalized at k if and only if φk(δ) is interlaced

but not normalized at k.
(d) Each doubloon δ is normalized at (k + 1) if and only if φk(δ) is

interlaced but not normalized at (k + 1).
(e) Every doubloon equivalent to an interlaced doubloon is also inter-

laced.
(f) Each equivalence class of interlaced doubloons contains one and only

one normalized doubloon and there is an explicit algorithm for reaching it.
(g) Each equivalence class of interlaced doubloons from I0

2n+1 contains
2n doubloons.

Proof. Conditions (a) and (b) are obvious. For (c) just observe that
each doubloon δ satisfies (INi) if and only if (Ii) holds for φk(δ) (i =
1, 2, 3, 4). For (d) verify that condition (IN1) (resp. (IN2), resp. (IN3),
resp. (IN4)), with (k + 1) replacing k, holds if and only if (I3) (resp.
(I4), resp. (I1), resp. (I2)), with (k + 1) replacing k, holds for φk(δ).
Condition (e) is a consequence of (c) and (d). For (f) let l be the smallest
integer at which an interlaced doubloon δ=

(

a0 a1 ··· an

b0 b1 ··· bn

)

is not normalized.
By (c) the doubloon φl(δ) is normalized at 1, 2, . . . , l. Continue the process
until reaching a doubloon normalized at all integers 1, 2, . . . , n. Finally, (g)
follows from the fact that each equivalence class can be generated from an
interlaced doubloon δ from the set I0

2n+1 by applying the n involutions
φ1, φ2, . . . , φn to δ, independently.

For comparing two adjacent biletters
(

ak−1

bk−1

)

and
(

ak

bk

)

(1 ≤ k ≤ n) of a

doubloon δ =
(

a0 a1 ···an

b0 b1 ··· bn

)

we define: shapek(δ) =
(

>
>

)

(resp.
(

>
<

)

, resp.
(

<
<

)

,

resp.
(

<
>

)

), if ak−1 > ak and bk−1 > bk (resp. ak−1 > ak and bk−1 < bk,
resp. ak−1 < ak and bk−1 < bk, resp. ak−1 < ak and bk−1 > bk). We also
define shapen+1(δ) = ∨ or ∧ depending on whether an > bn or an < bn.
The word shape1(δ) shape2(δ) · · · shapen(δ) is called the shape of δ and
denoted by shape δ.

For example, if δ =

(

0 8 1 6 9
7 4 5 3 2

)

, then shape(δ) =

(

< > < <
> < > >

)

and
shape5(δ) = ∨.
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Now go back to the conditions (INi)’s and (Ii)’s and determine shapek

in each one of those eight cases. We obtain:

(IN1)
(

>
>

)

; (IN2)
(

>
<

)

; (IN3)
(

>
>

)

; (IN4)
(

<
>

)

;

(I1)
(

>
<

)

; (I2)
(

<
<

)

; (I3)
(

<
>

)

; (I4)
(

<
<

)

.

As (Ii) holds for δ whenever (INi) does for φk(δ), we can express the
change of shapek when φk is applied to δ by the diagram displayed in
Fig. 2.1.

(

>

>

)

�
�

���
�

�	

(

>

<

)

@
@

@R

@
@

@I

�
�

�	
(

<

>

)

�
�

��

@
@

@R

@
@

@I

(

<

<

)

Fig. 2.1. The interlaced case

The same study is to be done for each non interlaced doubloon. There
are sixteen reorderings of the sequence (ak−1, ak, bk−1, bk) that make the
doubloon δ non-interlaced at k. In Fig. 2.2 only eight of them have been
listed. As non-interlacedness is preserved under φk by Proposition 2.1 (c),
the other eight are indeed obtained by applying the micro flip φk. Again,
the content ot the table may be summarized by the diagram displayed in
Fig. 2.3. Notice that each shape may be preserved under φk (symbolized
by the fixed point ©

6
) and the only possible change occurs between the

shapes
(

>
<

)

and
(

<
>

)

.

case : shapek(δ) shapekφk(δ)

bk < bk−1 < ak−1 < ak :
(

<
>

) (

>
<

)

ak−1 < ak < bk < bk−1 :
(

<
>

) (

<
>

)

bk−1 < bk < ak < ak−1 :
(

>
<

) (

>
<

)

ak < ak−1 < bk−1 < bk :
(

>
<

) (

<
>

)

bk < ak < bk−1 < ak−1 :
(

>
>

) (

>
>

)

ak < bk < ak−1 < bk−1 :
(

>
>

) (

>
>

)

bk−1 < ak−1 < bk < ak :
(

<
<

) (

<
<

)

ak−1 < bk−1 < ak < bk :
(

<
<

) (

<
<

)

Fig. 2.2. The sixteen non interlaced orderings

9



Finally, we introduce the macro flip Φk as

(2.1) Φk(δ) = φkφk+1 · · ·φn(δ).

Again, the macro flip Φk is an involution and also preserves interlacedness.

(

>

>

)

©6
6

?

(

>

<

)

(

<

>

)

©6

©6

(

<

<

)

©6

Fig. 2.3. The non-interlaced case

3. Statistics on shapes

The next step is to study the action of the involution Φk onto the pair
of statistics (des, cmaj). As those two statistics essentially depend on the
doubloon shapes, it is convenient to study the action on the shapes them-
selves. To that end we introduce the notion of full shape in the following
manner. If δ belongs to I0

2n+1, its full shape is obtained by juxtaposing
shapen+1(δ) to the right of its shape, as defined just before (2.2). For
example, the full shape of the interlaced doubloon

δ =

(

0 8 1 6 9
7 4 5 3 2

)

is represented by T =

(

< > < <
> < > >

)

∨ .

The full shape T of a doubloon δ from I0
2n+1 has then n columns with

two signs, followed by one single symbol. The statistics “des”, “maj” and
“cmaj” for the full shape T are defined by

des T = des ρ(δ), majT = maj ρ(δ) and cmaj T = cmaj ρ(δ).

If δ =
(

0 a1 ... an

b0 b1 ... bn

)

and if the k-th column of the full shape T of δ is
(

>
<

)

(1 ≤
k ≤ n), this means that ak−1 > ak and bk−1 < bk. Furthermore, bk is the
(2n−k+1)-st term of the permutation ρ(δ)=a1 · · ·ak−1ak · · · bkbk−1 · · · b0,
so that the contribution of that k-th column to majT is k−1+(2n−k+1) =
2n. The remark will be used in the next lemmas.

Lemma 3.1. Let T be a full shape and S be obtained from T by per-
muting two symbols in the same column. Then

(−1)des T = (−1)des S and cmaj T = cmajS.

Proof. Only one case is to consider. Suppose that the k-th column of T
(resp. of S) is

(

>
<

)

(resp.
(

<
>

)

). Clearly, des T = des S + 2. Moreover,
maj T = majS + 2n. Hence, cmaj T = majT − n des T + n(n − 1)/2 =
maj S + 2n − n(des S + 2) + n(n − 1)/2 = cmaj S.
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Lemma 3.2. Let T be a full shape and S be obtained from T by changing
the value of the rightmost single symbol. Then

(−1)des T = −(−1)des S and cmaj T = cmaj S.

Proof. Suppose that the rightmost single symbol of T (resp. of S) is ∨
(resp. ∧). Clearly, des T = des S + 1. Since

cmaj T = (· · ·+ n + · · ·) − n des T + n(n − 1)/2,

cmajS = (· · ·+ 0 + · · ·) − n des S + n(n − 1)/2,

we have cmaj T = cmaj S.

Lemma 3.3. Let T be a full shape, whose k-th column is
(

>
<

)

or
(

<
>

)

.

Let S be obtained from T by changing the k-th column into
(

>
>

)

. Then

(−1)des T = −(−1)des S and cmajT − cmaj S = n − i + 1.

Proof. If the k-th column of T is
(

>
<

)

, then des T = des S +1. Moreover,
with j = 2n − k + 1 we have:

cmaj T = (· · ·+ k − 1 + · · ·+ j + · · ·) − n des T + n(n − 1)/2

= (· · ·+ k − 1 + · · ·+ 0 + · · ·) + j − n(des S + 1) + n(n − 1)/2

= cmajS + j − n = cmaj S + n − k + 1.

For the second case we just appeal to Lemma 3.1.

Lemma 3.4. Let T be a full shape, whose k-th column is
(

<
<

)

. Let S be

obtained from T by changing the k-th column into
(

>
<

)

or
(

<
>

)

. Then

(−1)des T = −(−1)des S and cmaj T − cmajS = n − k + 1.

Proof. If the k-th column is changed into
(

>
<

)

, then des T = des S − 1.
With j = 2n − k + 1 we have

cmajT = (· · ·+ 0 + · · ·+ j + · · ·) − n des T + n(n − 1)/2

= (· · ·+ k − 1 + · · · + j + · · ·) − k + 1 − n(des S − 1) + n(n − 1)/2

= cmaj S + n − k + 1.

Again it is sufficient to appeal to Lemma 3.1 to cover the second case.

The macro flips Φk have been defined in (2.1). They are involutions and
preserve the interlacedness. They play a crucial role in the next theorem.
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Theorem 3.5. Let δ =
(

0 a1 ... an

b0 b1 ... bn

)

belong to D0
2n+1 and 1 ≤ k ≤ n be an

integer.
(1) If δ is normalized at k, then

(3.1)

{

(−1)des Φk(δ) = (−1)des δ;
cmaj Φk(δ) − cmaj δ = n − k + 1;

(2) If δ is non-interlaced at k, then

(3.2)

{

(−1)des Φk(δ) = −(−1)des δ;
cmaj Φk(δ) = cmaj δ.

Proof. Apply the macro flip Φk = φk · · ·φn to δ and compare the shapes
of δ and Φk(δ). First, φn leaves “cmaj” invariant and changes the parity
of “des” by Lemma 3.2. Next, φn−1, . . . , φi+1 leave both “des” and
“cmaj” invariant by Lemma 3.1, so that (−1)desΦk+1(δ) = −(−1)des δ and
cmaj Φk+1(δ) = cmaj δ. Note that shapek δ = shapek φk+1 · · ·φn(δ), as φn,
. . . , φk+1 have no action on the columns of rank (k − 1) and k (the k-th
and (k + 1)-st columns). Also shapek φk(δ) = shapek φk+1 · · ·φnφk(δ) =
shapek φkφk+1 · · ·φn(δ) = shapek Φk(δ).

In case (1) there are two possibilities: either shapek δ =
(

>
>

)

(cases

(IN1) and (IN3)), or shapek φk(δ)=
(

<
<

)

(cases (IN2) and (IN4)). When

shapek δ =
(

>
>

)

(resp. shapek φk(δ) =
(

<
<

)

), then

shapek Φk(δ) = shapek φk(δ) =
(

<
>

)

or
(

>
<

)

according to Fig. 2.1 (resp. shapek Φk(δ) = shapek φk(δ) =
(

<
<

)

). By
Lemma 3.3 (resp. Lemma 3.4) the parity of “des” is modified when going
from Φk(δ) to φkΦk(δ) = Φk+1(δ) and cmaj Φk(δ) − cmaj Φk+1(δ) = n −
k+1. Hence (−1)des Φk(δ) = −(−1)des Φk+1(δ) = (−1)des δ and cmaj Φk(δ) =
cmaj Φk+1(δ) + n − k + 1 = cmaj δ + n − k + 1.

In case 2 look at Fig. 2.3 and apply Lemmas 3.1 and 3.2. The only
change is the parity of “des.”

4. Proofs of Theorems 1.5 and 1.6

Let δ belong to D0
2n+1 and σ = ρ(δ) be its reading. Recall that the

statistics “des”, “maj” and “cmaj” for δ are defined by

(4.1) des δ = des σ, maj δ = majσ and cmaj δ = cmajσ.

From the definition of A∗
2n+1(t, q) (given in (1.12)) and the fact that ρ is

a bijection of D0
2n+1 onto S2n+1 we can write:
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A∗
2n+1(t, q) =

∑

δ∈D0
2n+1

tdes δqcmaj δ

=
∑

δ∈I0
2n+1

tdes δqcmaj δ +
∑

δ∈D0
2n+1

\I0
2n+1

tdes δqcmaj δ,

so that

T2n+1(q) = (−1)nA∗
2n+1(−1, q)

=
∑

δ∈I0
2n+1

(−1)n+des δqcmaj δ +
∑

δ∈D0
2n+1

\I0
2n+1

(−1)n+des δqcmaj δ.(4.2)

Lemma 4.1. Let δ ∈ I0
2n+1. Then

(4.3) (−1)des δ = (−1)n.

Proof. First, des
(

0 1
2 3

)

= des(0 1 3 2) = 1, so that (4.3) holds for n = 1.

Let n ≥ 2 and δ =
(

0 ... an−1 an

b0 ... bn−1 bn

)

∈ I0
2n+1. Then δ′ =

(

0 ... an−1

b0 ... bn−1

)

is an

interlaced doubloon on the alphabet [0, 2n+1]\{an, bn} (instead of [0, 2n−
1]) and des δ′ = (−1)n−1 by induction. As δ is interlaced at n, the eight
orderings to consider for the sequence (an−1, an, bn−1, bn) are the eight
orderings (INi), (Ii) (i = 1, 2, 3, 4) described in the beginning of Section 2.
If an−1 < bn−1, then des δ = des δ′ + des(an−1anbnbn−1) = des δ′ + 1. If
an−1 > bn−1, then des δ = δ′ − 1 + des(an−1anbnbn−1) = des δ′ − 1 + 2 =
des δ′ + 1.

From (4.2) and (4.3) we deduce:

(4.4) T2n+1(q) =
∑

δ∈I0
2n+1

qcmaj δ +
∑

δ∈D0
2n+1

\I0
2n+1

(−1)n+des δqcmaj δ.

Theorem 1.5 will be proved once we construct a sign-reversing involution

on D0
2n+1 \ I0

2n+1 that makes the second sum vanish.

The sign-reversing involution. For each doubloon δ =
(

a0 a1 ... an

b0 b1 ... bn

)

from

the set D0
2n+1 \I0

2n+1 there exists at least one integer k at which δ is non-
interlaced. Let k(δ) be the smallest integer satisfying that condition.

Theorem 4.2. The mapping Φk(δ) : δ 7→ Φk(δ)(δ) is a sign-reversing
involution on D0

2n+1 \ I0
2n+1.

Proof. This is an immediate consequence of Theorem 3.5, formulas
(3.2).
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Proof of Theorem 1.6. Let δ be a normalized doubloon from N 0
2n+1.

By Proposition 2.1 the set of all the 2n interlaced doubloons equivalent
to δ may be expressed as

{Φi1Φi2 · · ·Φik
(δ) : 1 ≤ i2 < i2 < · · · < ik ≤ n}.

As Φik
(δ) (resp. Φik−1

Φik
(δ), . . . , resp. Φi2 · · ·Φik−1

Φik
(δ)) is normalized

at ik−1, (resp. at ik−2, . . . , resp. at i1), it follows from (3.2) that

cmaj Φi1 Φi2 · · ·Φik
(δ) = cmajΦi2 · · ·Φik

(δ) + n − i1 + 1

= cmajΦi3 · · ·Φik
(δ) + n − i2 + 1 + n − i1 + 1

= · · ·
= cmaj δ + n − ik + 1 + · · ·+ n − i1 + 1.

Hence
∑

α equiv δ

qcmaj α =
∑

qcmaj Φi1
Φi2

···Φik
(δ) (1 ≤ i2 < i2 < · · · < ik ≤ n)

= qcmaj δ
∑

qn−ik+1+···+n−i1+1 (1 ≤ i1 < · · · < ik ≤ n)

= qcmaj δ(1 + q)(1 + q2) · · · (1 + qn).

By (4.4) we can write

T2n+1(q) = (−1)nA∗
2n+1(−1, q)

=
∑

α∈I0
2n+1

qcmaj α

=
∑

δ∈N0
2n+1

∑

α equiv δ

qcmaj α

= (1 + q)(1 + q2) · · · (1 + qn)
∑

δ∈N0
2n+1

qcmaj δ.

5. Constant terms and Catalan numbers

Referring to Table 1.2 we see that T1(0) = T3(0) = 1, T5(0) = 2,
T7(0) = 5 and we would find T9(0) = 14. The sequence 1, 1, 2, 5, 14 is
indeed the beginning of the sequence of Catalan numbers. This is true for
all n as stated in the next theorem.

Theorem 5.1. For all n ≥ 0

(5.1) T2n+1(0) =
1

n + 1

(

2n

n

)

(the Catalan number).

14



Proof. From (1.16) T2n+1(0) = #{σ ∈ S2n+1, cmaj σ = 0}. Let
{i1, i2, . . . , id}< be the descent set of a permutation σ from S2n+1. Then,

majσ − n des σ = (i1 + i2 + · · · id − nd)

= (i1 − n) + (i2 − n) + · · · (id − n)

= −n(n − 1)/2

= (1 − n) + (2 − n) + · · · ((n − 1) − n) + (n − n)(5.2)

= (1 − n) + (2 − n) + · · · ((n − 1) − n).(5.3)

Accordingly, the descent set of σ is either [n] = {1, 2, . . . , n} by (5.2), or
[n − 1] = {1, 2, . . . , n − 1} by (5.3). The number of permutations of order
2n+1 whose descent set is [n] (resp. [n−1]) is equal to

(

2n
n

)

(resp.
(

2n
n−1

)

).
Hence,

T2n+1(0) = (−1)n
∑

σ∈S2n+1

(−1)des σ0cmaj σ

=

(

2n

n

)

−
(

2n

n − 1

)

=
1

n + 1

(

2n

n

)

.

As a summary we have:

T2n+1(1) = T2n+1 (the tangent number);(5.4)

T2n+1(0) = dn(0) =
1

n + 1

(

2n

n

)

(the Catalan number);(5.5)

dn(1) = tn (the reduced tangent number).(5.6)

Remark. Each doubloon δ =
(

0 a1 ··· an

b0 b1 ··· bn

)

such that cmaj δ = 0 has a full

shape of the form
(

< > > ···>
> > > ···>

)

∨ or
(

< > > ···>
> > > ···>

)

∧. As δ is interlaced at every
k = 1, 2, . . . , n, the following inequalities a1 > b0 > b1, a1 > a2 > b1 > b2,
. . . , an−1 > an > bn−1 > bn hold and may be represented by the poset:

n = a1 > a2 > · · · > an

∨ ∨ · · · ∨
b0 > b1 > · · · > bn−1 = 1

.

This establishes a bijection between those doubloons and the above posets,
which belong to the list of combinatorial models counted by the Catalan
numbers [St99, p. 227].
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6. Concluding remarks

Besides the traditional q-tangent number, tan2n+1(q), already men-
tioned in the Introduction, other q-analogs of the tangent have been pro-
posed, in particular by Prodinger [Pr00, Pr08] (also see [Fu00]) and Han
et al. [HRZ01]. For those two cases the emphasis has been the search for
adequate continued fraction expansions of those new functions.

In the Introduction each doubloon
(

a0 a1··· an

b0 b1 ··· bn

)

was said to be interlaced

at k if the sequence (ak−1, ak, bk−1, bk) or one of its three cyclic rearrange-
ments was monotonic increasing or decreasing. Another equivalent defini-
tion that was successfully used in [Ha04] is based on the notion of cyclic

interval. The cyclic interval [[ak−1, bk−1[[ is defined as the semi-open inter-
val [ak−1, bk−1) if ak−1 < bk−1 and as the union [ak−1, +∞)∪ (−∞, bk−1)
otherwise. It is readily seen that the doubloon is interlaced at k if and
only if exactly one of the entries ak, bk belongs to the cyclic interval
[[ak−1, bk−1[[.

The doubloon model described in this paper serves to interpret the two
q-analogs T2n+1(q) of T2n+1 and dn(q) of tn. A refinement of the doubloon
model will be proposed in our next paper [FH08]; it will provide a refine-
ment dn,j(q) of the polynomials dn(q), so that identities (5.5) and (5.6)
will be extended to classical double-digit sequences of numbers: Catalan
triangle [Sl07, sequence A009766] and Poupard triangle [Po89].
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Université Louis Pasteur et CNRS
7, rue René-Descartes
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