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THE FLAG-DESCENT AND -EXCEDANCE NUMBERS
Dominique Foata and Guo-Niu Han

We deal with the wreath product C; ! G,,, where ] is the cyclic group
of order [ and &,, the symmetric group of order n. The elements of C; 1 &,,
are viewed as ordered pairs (w, €), where w = z125 - - - 7, is a permutation
of 12...n and € = €165 --€, is a word of length n, all letters of which
belong to {0,1,...,0l —1}. As a total order on C; ! &,, we take:

(LI-1)<2,i-)<---<(nl-1)<(LI-2)<---<(n,l—2)
<< (1,0) < (2,0) <+ < (n,0).

For each argument A let x(A) = 1 or 0, depending on whether A
is true or false. Also, for each word € = €1¢e5---€,, whose letters ¢; are
nonnegative letters, let tote := € + €5 + - - - + €,. Now, for each element
(w,€) = (1, €1)(w2,€) - (Tn, €,) from C; ! &,, define

tote: =€ + €2+ -+ €p;
excw:=#{j:1<j<n,z;>je =0}
des(w,e) = #{] 1<j<n—1, (xj7€j) > (xj-l-lv 6j+1)};
maj(w, ) := > jx((zj,6) > (2541, €41));
1<j<n—1
as well as the flag-statistics:
fexc(w, €) 1= . excw + tot ¢;
fdes(w, €) := [. des(w, €) + €1;

fmaj(w, €) := l. maj(w, €) + tote.

Let Wi(t,q) = Y tfdes(we)gfmajw.e) he the generating polynomial
(w,e)ECNG,

for C; 1 &,, by the pair (fdes, fmaj). In [6] (Theorem 5.3) it is shown that

the generating function for the polynomials W/ (¢, q) can be expressed as:

(1) j£:<14‘t4""+-ﬂ_l)VV£@gq)(ﬁTE;}———::j{:tr____;g____

e Q" )nt1 > 1 —ufr+1]
= Z u” Ztr[r +1]".
n>0 r>0
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In the present Note we first obtain four other equivalent definitions for
the polynomials W} (t, q) (Section 1). Then, let W} (¢,1) :==>", WTlkatk. In
the next Sections the two identities

(2) Wflk = #{(w,e) € C;16,, : fdes(w, €) = k};
(3) Wflk = #{(w,e) € C; 16, : fexc(w, €) = k};

are given combinatorial proofs.

1. Four equivalent definitions

Identity (1) is also equivalent to:

W(
4 t"| (I>1,n>0).
(4) 1 =0 thlq Z r+1 ,n>0)

Other definitions can be worked out in the following way. Starting with
(4) we have:

r+1

Lt 1—
Wn<7q) _Ztr q

— Lal. 4l - —
A=0td5d) & 1-4q
1 3 Z

1 Waate) g Wii(tg.q)
1—q(1-t)(t'¢"; ¢ )na  1—q (1—tq)(t'q?; ¢")
This can be rewritten
(1—q)(1—tq)W)(tq)
=1 —tq)(1—t' g YW, _1(t,q) —q(1 —t)(1 — t'¢" YW} _,(tq, q),
further simplified into
(1—@Wi(t,q— = (1 —t'g"hW}_,(t,q)
—q(l —t)(L+tq+ -+t WL (tq, q)

[r+ 1)1

or still
(5) (1—@Wu(t,q) = (1—t'¢YW,_,(t,q)
—(—q+tq(l—q)+- -+t (1 = q) +t'¢" YW, (tg, q).
Now, look for the coefficients of t* on both sides. With W (t,q) :=
>k Wi (@)tF we get:
(1= Wy (@) = Wiy k(@) = "Wy x_y(a)
— "W @)+ T =W 1 (9)

o T A=W oy (@) + W (),
so that, by dividing both sides by (1 — q),
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(6) erzk( )= [k +1]q W _ 1x(q )+qk+1W£—1,k—1(Q)
+qk+2Wé—17k—2(Q)+' ’ '+qk+l 1Wé-1,k—(l—1)(Q)+qk[nl_k]qW£—1,k—z(Q)~

Thus, formulas (1), (4), (5), (6) are four equivalent definitions for the
statistical distribution of the pair (fdes, fmaj) over C;1&,,. There is a fifth
one, that may be regarded as the finite analog of (4), which reads:

1+t+ + th= 12
:t_Wl(t 9) m+1z( ) ek Wilta" ™. q)

g1 "l (tg=Pl g
We do not reproduce the proof of the equivalence, as it is quite similar to

the proof of (5.2) in [1]. Remember that W/ (¢,q) = A,(t, q), the Carlitz
g-Eulerian polynomial, for [ = 1.

(7)

2. The combinatorial proof for the flag-descent number
Let ¢ = 1 in identity (4). Remembering that W} (t,1) := ", I/Vfl’kt"C we
obtain:
(8) erzk = (k+ 1)W7l1—1,k: + WTZL—Lk—l
+o qum—l,k:—(l—l) +(In—K)W,)_y 5,

for n > 2 and 0 < k < nl—1 and the initial conditions: W}, =1, W}, =0
for k # 0; Wllk =1fork=0,1,...,l—1 and 0 for any other value of k. In
this Section let Wl denote the number of elements (w, €) from C; ! &,

such that fdes(w, e) = k. Our intention is to prove that W! 1 satisfies
recurrence (8).

Note that C; ! &,, is generated from C; ! &,,_1 (from ("~ 1(n — 1)!
elements to ["~1(n — 1)! x In = [" - n! elements) by inserting the biletter
(") (0 <@ <1—1) to the left of each element () = (%*%2"¥»~1) from

€1 €2 €En—1
C; ! G,,_1, or between two consecutive letters (fﬂ ), (?“) or still to the
J Jj+

right of (16”) Let us examine those three possibilities.

1. Insertion to the left of (*). We have:

fdes (M%) = {

Next, let 1 <j3<n—1 and

/
w L xl...xjnxj_’_l...xn_l

/ = . .
6 61 .-.Ej Z 6j+]_ -.-en_l

fdes( )+l+z—el, if 0 <1 <eq;
fdes(e)—i—z—el, if 0<e <.
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2. Insertion into a descent of (V). By assumption, (9;7) > (fjill), SO
that €; < €j41, or €; = €41 and x; > x;41. A simple verification leads to:

fdes (1:), it i<ej<ejpr,ori <ej=¢€j4q and x;>2,41,
or if €; < €41 < 7,
or €;=¢€j+1 < iand x; > Tj41;
w . .
fdes(6)+l, ife; <i<ejq.

fdes (1:,/) =

3. Insertion into a rise of (f) By assumption, (fj) < (fjj:ll), so that
€j > €j41, O € = €541 and z; < zj41. Again, we get:

fdes (I:)—{-l, ifi§6j+1 <E€j, Or 1 < € =€5+1 and Tj<ZTjt1,
orif ;41 < ¢ <4,
or €j4+1=¢; < iand x; < Tj41;
w . .
fdes(e), 1f€j >1> €541,

fdes (1:,/) =

4. Insertion to the right of (2:) Clearly,

fdes (16”) +1, ife, 1 <i<l—1;
fdes (%), if0<i<en1.

s 27) - {
For each pair (k,n) let W! , denote the set of all elements from C; ! &,
whose “fdes” are equal to k. The previous analysis shows that the insertion
of (7;) increases “fdes” by 1, 2, ... or [ in procedure 1, and keeps it invariant
or increases it by [ in procedures 2, 3 and 4. Hence, for each h =1,2,...,1
each element from W,,_1 _j gives rise to one and only one element from
Wik, if the [ insertions to the left are applied (procedure 1).
Let k= k'l+7 (0 <r <1—1)andlet (*) belong to W},_, ;, so that
des (*) = k" and €; = r. The number of insertions of (%) into (%), using
procedures 2, 3 and 4, which keep “fdes” invariant is equal to

n—2
Z((fj + 1)+ (0= 1—e41))x((Z) > (21))
+ 2 (6 —er)x(2) < () + (ena + 1)

=€ —€te—€3+ -t e0—€1te1+E I+1
=kl+ea+1=k+1.

Finally, suppose that fdes (1:) = k—1 = k'l +¢;. The number of
insertions of (7;) into (1:), using procedures 1, 2, 3 and 4, which increase

4



FLAG-DESCENT AND -EXCEDANCE NUMBERS

“fdes” by [ is equal to

n—2
L+ D ((egan = e)x((2) > (1)

+Z((€j+1+1)+(l—1—€j))x(<§j) < (Ij+1))+(l—1—€n_1)

€5+1

=l+e—atea—et - Fep1—enot(n—2-k)+l-1-¢
=—e +nl—-1-FKl
=ln—(Kl+e +1)=In—k.

This establishes the above recurrence holds when

W,lLk = #{(w,e) € C116,, : fdes(w, €) = k}.

3. The combinatorial proof for the flag-excedance number

In this Section WTZL . denotes the number of elements (w, €) from C;1 S,
such that fexc(w, €) = k and the purpose is to prove that recurrence (8)
still holds. We start with an element from C;16,,_1 written as a three-row
matrix:

Id 1oeoioomn—1
w = Tl Ti " Ty
6 61.-.61;.-.671_1

1. If1<i<n-—1and ¢ =0 form:

d =1 --- 1 n—1 n
w o=z n C L1 T4
€D =€ -0 0 c€p_y O
e =¢ - 1 c€p—1 1 —1
€@ =¢ -0 2 C €y [ —2
=D =¢ il =1 ¢,1 1

Note that ego) +e£10) =0, egj) +e£lj) = for j=1,2,...,1l—1. Furthermore,
if x > 4, then fexc(w’,e)) = fexc(w,e) for j = 0,1,2,...,1 — 1; but if
x; < 14, then fexc(w’, €9)) = fexc(w,e) + 1 for j =0,1,2,...,1 — 1.

5
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2.If1<i<n—1land¢ =7 with1 <j<[—1 form:

Id =1 .- 14 -n—1 n
w =z n C Tl T
D) = - 1 Ceny j—1
P = - 2 et j—2
U =€ - ey O

U =) oo 41 gy 1—1

D =¢ o l—1 - €yq jH+1
6D =€ - 0 €1 g
Note that ¢\ + ¢4 = h for h =1,2,...,j, while ¢\ + ¢ = j +1 for
h=j+1,...,1—1,1. Also, fexc(w’, ¢!")) = fexc(w,e€) for h =1,2,...,7,
while fexc(w’, $M) = fexc(w,e) +1for h=7j+1,...,1—1,1.
3. Finally, form
Id =1.---n—1 n
wn =T, " Tp-1 n
PO =€ - 1 0
P =€ ooy 1

Then, fexc(wn, ™) = fexc(w, €) + h for h=0,1,2,...,1 — 1.
Let (w,e€) € C;16,,—1 be such that exc(w, €) = a and € is a rearrange-

-1
ment of 0°01% ... (I — 1)%-1 so that fexc(w,e) =1-a+ > j-b;. When
j=1

procedure 1 is applied to (w, €) at each of the a excedances, it gives rise
to a -l elements from C;! S, having the same “fexc” as (w, ¢).

When procedure 2 is applied to each of the b; biletters (z;, €;) such that
€; = J, it gives rise to j elements from ;! &,, having the same “fexc” as
(w, €). Let fexc(w, €) = k. Altogether, procedures 1 and 2 yield

-1
lxa—}—Zj-bj = fexc(w,e) = k
j=1
elements (w’,€') from C; 1 &,, such that (w',€') = k.

Finally, procedure 3 yields (wn,w(o)), which is another element such
that fexc(wn, ) = k. Altogether, each element from C;? &,,_1, whose
“fexc” is equal to k, exactly produces (k+1) elements from C;!S,, having
an “fexc” equal to k.
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-1
Now, suppose that fexc(w,e) =k —1=1-a+ > j-b;. Then, (w,e¢)

j=1
exactly hasn—1—a—by — by —---—b;_1 biletters (x;, ¢;) such that z; <1
and ¢, = 0. (Remember that a counts the excedances of (w,¢).) When
procedure 1 is applied to each of those biletters, it gives rise to [ elements
(w’, €') from C16&,, such that fexc(w’, ') = fexc(w, e)+1 = (k—1)+1 = k.
When procedure 2 is applied to a biletter (z;,¢;) such that ¢, =7 > 1,
the (I — 7) elements (w’,U*D), ... | (w',¢""V), (w',¢M) have their

“fexc”’s equal to fexc(w,e) +1=(k—1)+1=k.
Altogether, procedures 1 and 2 yield

-1
(n—1—a—by—by—---—b_1)+» (I—jb,
j=1
-1
=in—l—al->» (I-jbj=In—1—(k—1)=In—k

J=1

elements (w’,€’) from C; 1 &,, such that fexc(w’,€') = k.

Finally, let 1 < h <1—1 and suppose fexc(w, €) = k—h. By procedure 3
we have: fexc(wn, ™) = fexc(w,e) + h = k — h 4+ h = k, so that each
such an element (w, €) exactly produces one element, whose “fexc” is equal

tok []
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