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Abstract. The polynomials commonly called “Eulerian” today have been
introduced by Euler himself in his famous book “Institutiones calculi differ-
entialis cum eius usu in analysi finitorum ac Doctrina serierum” (chap. VII),
back in 1755. They have been since thoroughly studied, extended, applied.
The purpose of the present paper is to go back to Euler’s memoir, find out
his motivation and reproduce his derivation, surprisingly partially forgotten.
The rebirth of those polynomials in a q-environment is due to Carlitz two
centuries after Euler. A brief overview of Carlitz’s method is given, as well as
a short presentation of combinatorial works dealing with natural extensions
of the classical Eulerian polynomials.

1. Introduction

Before Euler’s time Jacques Bernoulli had already introduced his famous
Bernoulli numbers, denoted by B2n (n ≥ 1) in the sequel. Those numbers
can be defined by their generating function as

(1.1)
u

eu − 1
= 1− u

2
+
∑
n≥1

u2n

(2n)!
(−1)n+1B2n,

their first values being shown in the table:

(1.2)
n 1 2 3 4 5 6 7
B2n 1/6 1/30 1/42 1/30 5/66 691/2730 7/6

Note that besides the first term −u/2 there is no term of odd rank in the
series expansion (1.1), a property easy to verify. On the other hand, the
factor (−1)n+1 in formula (1.1) and the first values shown in the above
table suggest that those numbers are all positive, which is true.

Jacques Bernoulli ([Be1713], p. 95–97) had introduced the numbers called
after his name to evaluate the sum of the n-th powers of the first m integers.
He then proved the following summation formula

(1.3)

m∑
i=1

in =
mn+1

n+ 1
+
mn

2
+

1

n+ 1

∑
1≤r≤n/2

(
n+ 1

2r

)
mn−2r+1(−1)r+1B2r,
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where n, m ≥ 1. Once the first bn/2c Bernoulli numbers have been
determined (and there are quick ways of getting them, directly derived from
(1.1)), there are only 2 + bn/2c terms to sum on the right-hand side for
evaluating

∑m
i=1 i

n, whatever the number m.
Euler certainly had this summation formula in mind when he looked for

an expression for the alternating sum
∑k
i=1 i

n(−1)i. Instead of the Bernoulli
numbers he introduced another sequence (G2n) (n ≥ 1) of integers, later
called Genocchi numbers, after the name of Peano’s mentor [Ge1852]. They
are related to the Bernoulli numbers by the relation

(1.4) G2n := 2(22n − 1)B2n (n ≥ 1),

their first values being shown in the next table.

n 1 2 3 4 5 6 7

B2n 1/6 1/30 1/42 1/30 5/66 691/2730 7/6

G2n 1 1 3 17 155 2073 38227

Of course, it is not obvious that the numbers G2n defined by (1.4) are
integers and furthermore odd integers. This is a consequence of the little
Fermat theorem and the celebrated von Staudt-Clausen theorem (see, for
instance, the classical treatise by Nielsen [Ni23] entirely devoted to the
studies of Bernoulli numbers and related sequences) that asserts that the
expression

(1.5) (−1)nB2n −
∑
p

1

p
,

where the sum is over all prime numbers p such that (p − 1) | 2n, is an
integer. From (1.1) and (1.4) we can easily obtain the generating function
for the Genocchi numbers in the form:

(1.6)
2u

eu + 1
= u+

∑
n≥1

u2n

(2n)!
(−1)nG2n.

The formula obtained by Euler for the alternating sum
∑m
i=1 i

n(−1)i is
quite analogous to Bernoulli’s formula (1.3). It suffices to know the first
bn/2c Genocchi numbers to complete the computation. Euler’s formula is
the following.

Theorem 1.1. Let (G2n) (n ≥ 1) be the sequence of numbers defined by
relation (1.4) (or by (1.6)). If n = 2p ≥ 2, then

(1.7)
m∑
k=1

k2p(−1)k = (−1)m
m2p

2
+

p∑
k=1

(
2p

2k − 1

)
(−1)m+k+1G2k

4k
m2p−2k+1,
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EULERIAN POLYNOMIALS

while, if n = 2p+ 1, the following holds:

(1.8)
m∑
k=1

k2p+1(−1)k = (−1)m
m2p+1

2

+

p+1∑
k=1

(
2p+ 1

2k − 1

)
(−1)m+k+1G2k

4k
m2p−2k+2 + (−1)p+1 G2p+2

4(p+ 1)
.

The first values of the numbers G2n do appear in Euler’s memoir. How-
ever, he did not bother proving that they were odd integral numbers. The
two identities (1.7) and (1.8) have not become classical, in contrast to
Bernoulli’s formula (1.3), but the effective discovery of the Eulerian polyno-
mials made by Euler for deriving (1.7) and (1.8) has been fundamental in
numerous arithmetical and combinatorial studies in modern times. Our pur-
pose in the sequel is to present Euler’s discovery by making a contemporary
reading of his calculation. Two centuries after Euler the Eulerian polynomi-
als were given an extension in the algebra of the q-series, thanks to Carlitz
[Ca54]. Our intention is also to discuss some aspects of that q-extension
with a short detour to contemporary works in Combinatorics.

It is a great privilege for me to have met Professor Alladi Ramakrishnan,
the brilliant Indian physicist and mathematician, who has been influential in
so many fields, from Probability to Relativity Theory. He was kind enough
to listen to my 2008 University of Florida Ulam Colloquium address and told
me of his great admiration for Euler. I am pleased and honored therefore to
dedicate the present text to his memory.

2. Euler’s definition of the Eulerian polynomials

Let (ai(x)) (i ≥ 0) be a sequence of polynomials in the variable x and
let t be another variable. For each positive integer m we have the banal
identity:

(2.1)

m−1∑
i=0

ai(x)ti =
1

t

m∑
i=1

ai−1(x)ti = a0(x) +

m∑
i=1

ai(x)ti − am(x)tm.

Now, consider the operator ∆ =
∑
k≥0

(−1)k

k!
Dk, where D is the usual

differential operator. Starting with a given polynomial p(x) define

ai(x) := ∆m−ip(x) (0 ≤ i ≤ m);

S(p(x), t) :=
m∑
i=1

∆m−ip(x) ti =
m∑
i=1

ai(x) ti.
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As D commutes with ∆, we have S(Dkp(x), t) = DkS(p(x), t) for each
k ≥ 0, so that, using (2.1), we get:

a0(x) + S(p(x), t)− p(x)tm = a0(x) +
m∑
i=1

ai(x)ti − am(x)tm

=
1

t

m∑
i=1

ai−1(x)ti =
1

t

m∑
i=1

∆ai(x) ti

=
1

t

m∑
i=1

∑
k≥0

(−1)k

k!
Dkai(x) ti

=
1

t

∑
k≥0

(−1)k

k!

m∑
i=1

Dkai(x) ti

=
1

t

∑
k≥0

(−1)k

k!
S(Dkp(x), t)

=
1

t

(
S(p(x), t) +

∑
k≥1

(−1)k

k!
S(Dkp(x), t)

)
.

Hence,

(2.2) S(p(x), t) =
1

t− 1

(
p(x)tm+1 − a0(x)t+

∑
k≥1

(−1)k

k!
S(Dkp(x), t)

)
.

We now work out specializations of (2.2) for the monomials p(x) = xn

(n ≥ 0) and for x = m. First, we verify that:

(2.3) ∆ixn = (x− i)n (0 ≤ i ≤ m).

It is true for i = 0 and all n ≥ 0. When i ≥ 0, we have

∆i+1xn = ∆∆ixn = ∆(x− i)n

=
n∑
k=0

(−1)k
(
n

k

)
(x− i)n−k = (x− (i+ 1))n.

Consequently,

S(xn, t) =
m∑
i=1

∆m−ixn ti =
m∑
i=1

(x− (m− i))n ti.

Let S(xn, t) := S(xn, t) |{x=m}, so that

S(xn, t) =
m∑
i=1

inti.(2.4)

On the other hand,

a0(m) = ∆mxn |{x=m}=
{

1, si n = 0;
0, si n ≥ 1.

(2.5)
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Identity (2.2), when p(x) = xn and x = m, becomes:

S(xn, t) =
1

t− 1

(
mntm+1 − a0(m)t+

n∑
k=1

(−1)k

k!
S(Dkxn, t)

)
=

1

t− 1

(
mntm+1 − a0(m)t

+
n∑
k=1

(−1)k

k!
S(n(n− 1) · · · (n− k + 1)xn−k, t)

)
,

and, finally,

S(xn, t) =
1

t− 1

(
mntm+1 − a0(m)t+

n∑
k=1

(−1)k
(
n

k

)
S(xn−k, t)

)
.(2.6)

Another proof of identity (2.6) consists, for m ≥ 1, 0 ≤ k ≤ m and n ≥ 0,

of letting s(k,m, n) := (−1)k
(
n
k

) m∑
i=1

in−kti, so that s(0,m, n) =
m∑
i=1

inti and

of deriving the previous identity under the form

s(0,m, n) =
1

t− 1

(
mntm+1 − a0(m)t+

n∑
k=1

s(k,m, n)
)
,

still assuming that a0(m) = 1 if n = 0 and 0 if n ≥ 1. The identity is banal
for m = 1 and every n ≥ 0. When m ≥ 2, we have the relations

s(k,m, n) = (−1)k
(
n

k

)
mn−ktm + s(k,m− 1, n),

so that
n∑
k=1

s(k,m, n) =
(
(m− 1)n −mn

)
tm +

n∑
k=1

s(k,m− 1, n).

Hence, by induction on m ≥ 1

s(0,m, n) =

m∑
i=1

inti = mntm +

m−1∑
i=1

intn = mntm + s(0,m− 1, n)

= mntm +
1

t− 1

(
(m− 1)ntm − a0(m− 1)t+

n∑
k=1

s(k,m− 1, n)
)

= mntm +
1

t− 1

(
−a0(m)t+

n∑
k=1

s(k,m, n) +mntm
)

=
1

t− 1

(
mntm+1 − a0(m)t+

n∑
k=1

s(k,m, n)
)
.

5
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As a0(m) = 1 when n = 0, identity (2.6) yields

S(1, t) =
m∑
i=1

ti =
1

t− 1
(tm+1 − t) =

t(tm − 1)

t− 1
,

which is the classical formula for geometric progressions.
For discovering the polynomials, later called “Eulerian,” Euler further

rewrites identity (2.6) for n = 1, 2, 3, . . . by reporting the expressions already
derived for S(xk, t) (0 ≤ k ≤ n− 1) into S(xn, t). As a0(m) = 0 for n ≥ 1,
the successive reports lead to

S(x, t) =
1

t− 1
(mtm+1 − S(1, t)) =

1

t− 1

(
mtm+1 − t(tm − 1)

t− 1

)
=
mtm+1

t− 1
1− t(tm − 1)

(t− 1)2
1;

S(x2, t) =
1

t− 1

(
m2tm+1 − 2S(x, t) + S(1, t)

)
=
m2tm+1

t− 1
1− 2mtm+1

(t− 1)2
1 +

t(tm − 1)

(t− 1)3
(t + 1);

S(x3, t) =
1

t− 1

(
m3tm+1 − 3S(x2, t) + 3S(x, t)− S(1, t)

)
=
m3tm+1

t− 1
1− 3m2tm+1

(t− 1)2
1 +

3mtm+1

(t− 1)3
(t + 1)

− t(tm − 1)

(t− 1)4
(t2 + 4t + 1);

S(x4, t) =
1

t− 1

(
m4tm+1 − 4S(x3, t) + 6S(x2, t)− 4S(x, t) + S(1, t)

)
=
m4tm+1

t− 1
1− 4m3tm+1

(t− 1)2
1 +

6m2tm+1

(t− 1)3
(t + 1)

− 4mtm+1

(t− 1)4
(t2 + 4t + 1) +

t(tm − 1)

(t− 1)5
(t3 + 11t2 + 11t + 1);

S(x5, t) =
1

t− 1

(
m5tm+1 − 5S(x4, t) + 10S(x3, t)

− 10S(x2, t) + 5S(x, t)− S(1, t)
)

=
m5tm+1

t− 1
1− 5m4tm+1

(t− 1)2
1 +

10m3tm+1

(t− 1)3
(t + 1)

− 10m2tm+1

(t− 1)4
(t2 + 4t + 1) +

5mtm+1

(t− 1)5
(t3 + 11t2 + 11t + 1)

− t(tm − 1)

(t− 1)6
(t4 + 26t3 + 66t2 + 26t + 1).
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Let An(t) be the coefficient of
t(tm − 1)

(t− 1)n+1
in the above expansions of

S(xn, t) for n = 0, 1, 2, 3, 4, 5, so that A0(t) = A1(t) = 1, A2(t) = t + 1,
A3(t) = t2+4t+1, A4(t) = t3+11t2+11t+1, A5(t) = t4+26t3+66t2+26t+1.
We observe that the expression of An(t) in the expansion of S(xn, t) is
obtained by means of the formula

(2.7) An(t) =

n−1∑
k=0

(
n

k

)
Ak(t)(t− 1)n−1−k.

We also see that S(xn, t) =
m∑
i=1

inti can be expressed as

(2.8) S(xn, t) =
n∑
l=1

(−1)n+l
(
n

l

)
tm+1An−l(t)

(t− 1)n−l+1
ml + (−1)n

t(tm − 1)

(t− 1)n+1
An(t).

Once those two facts have been observed, it remains to prove that the new
expression found for S(xn, t) holds for every n ≥ 0, as stated next.

Theorem 2.1. Let A0(t) := 1 and let (An(t)) (n ≥ 0) be the sequence of
polynomials inductively defined by (2.7). Then identity (2.8) holds.

Proof. For proving such a theorem today we proceed by induction,
reporting (2.7) into (2.6) and making an appropriate change of variables
in the finite sums. This is the first proof that is now presented. At the time
of Euler the “

∑
” notation does not exist, and of course not the double

sums! For example, (2.6) is displayed as:

S.xnpx =
1

p− 1

(
xnpx+1 −Ap − nS.xn−1px +

n(n− 1)

1 · 2
S.xn−2px

− n(n− 1)(n− 2)

1 · 2 · 3
S.xn−3px

+
n(n− 1)(n− 2)(n− 3)

1 · 2 · 3 · 4
S.xn−4px −&c.

)
.

Euler is then led to imagine another proof based in fact on the concept of
linear independence.

For the first proof start with identity (2.6) and apply the induction
hypothesis to all the terms S(xn−k, t) of the sum, with k running from 1
to n:

S(xn, t) =
1

t− 1

(
mntm+1 +

n∑
k=1

(−1)k
(
n

k

)
S(xn−k, t)

)
7
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=
1

t− 1

(
mntm+1 +

n−1∑
j=0

(−1)n−j
(
n

j

)
S(xj , t)

)

=
1

t− 1

(
mntm+1 +

n−1∑
j=0

(−1)n−j
(
n

j

)
j∑
l=1

(−1)j+l
(
j

l

)
tm+1Aj−l(t)

(t− 1)j−l+1
ml + (−1)j

t(tm − 1)

(t− 1)j+1
Aj(t)

)
=
mntm+1

t− 1
+
n−1∑
l=1

n−1∑
j=l

(−1)n+l
n!

(n− j)! l! (j − l)!
tm+1Aj−l(t)

(t− 1)j−l+2
ml

+ (−1)n
t(tm − 1)

(t− 1)n+1

n−1∑
j=0

(
n

j

)
Aj(t)(t− 1)n−j−1.

With j = k − l we deduce

S(xn, t) =
mntm+1

t− 1
+
n−1∑
l=1

(−1)n+l
(
n

l

)
tm+1ml

n−1−l∑
k=0

(
n− l
k

)
Ak(t)

(t− 1)k+2

+ (−1)n
t(tm − 1)

(t− 1)n+1
An(t)

=
mntm+1

t− 1
+
n−1∑
l=1

(−1)n+l
(
n

l

)
tm+1ml

(t− 1)n−l+1

n−1−l∑
k=0

(
n− l
k

)
Ak(t)(t− 1)n−l−k−1 + (−1)n

t(tm − 1)

(t− 1)n+1
An(t)

=
mntm+1

t− 1
+
n−1∑
l=1

(−1)n+l
(
n

l

)
tm+1ml

(t− 1)n−l+1
An−l(t)

+ (−1)n
t(tm − 1)

(t− 1)n+1
An(t)

=
n∑
l=1

(−1)n+l
(
n

l

)
tm+1ml

(t− 1)n−l+1
An−l(t) + (−1)n

t(tm − 1)

(t− 1)n+1
An(t).

The original proof by Euler can be reproduced as follows. With p(x) = xn

(n ≥ 1) and l = 0, 1, . . . , n let

Yl := S(Dlp(x), t);

Zl :=


Dlp(m)

t− 1
tm+1, si 0 ≤ l ≤ n− 1;

Dnp(m)

t− 1
(tm+1 − t), si l = n.

8
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In formula (2.2) successively replace p(x) by Dlp(x) for l = 0, 1, . . . , n. We
obtain

(2.9) Yl = Zl +
n−l∑
j=1

(−1)j

j!

1

t− 1
Yl+j (0 ≤ l ≤ n),

remembering that a0(x) is null for x = m, and 1 for Yn = S(Dnp(x), t).
Now, each of the two sequences (Y0, Y1, . . . , Yn), (Z0, Z1, . . . , Zn) is a basis
for the algebra of polynomials of degree at most equal to n, since both Yl
and Zl are polynomials of degree n− l (l = 0, 1, . . . , n). Accordingly, there
exists a sequence (b0, b1, . . . , bn) of coefficients such that

Y0 =
n∑
l=0

bl(−1)lZl,(2.10)

so that, by using (2.9),

Y0 =

n∑
l=0

bl(−1)l
(
Yl −

n−l∑
j=1

(−1)j

j!

1

t− 1
Yl+j

)
=

n∑
k=0

(
bk(−1)k −

∑
l+j=k,
l≥0, j≥1

bl(−1)l
(−1)j

j!

1

t− 1

)
Yk.

Hence, b0 = 1; furthermore, for k = 1, 2, . . . , n,

bk =
1

t− 1

(bk−1
1!

+
bk−2

2!
+ · · ·+ b1

(k − 1)!
+
b0
k!

)
or still

k! (t− 1)kbk =
l−1∑
l=0

(
k

l

)
l! (t− 1)lbl(t− 1)k−1−l.

By comparison with the induction formula for the Eulerian polynomials

bn =
1

n! (t− 1)n
An(t) (n ≥ 0).

Finally, reporting bn into (2.10) yields (2.8).

3. A formulary for the Eulerian polynomials

The polynomials An(t) (n = 0, 1, . . . ), inductively defined by A0(t) := 1
and identity (2.7) for n ≥ 1 are unanimously called Eulerian polynomials.
It is hard to trace back the exact origin of their christening.

9



DOMINIQUE FOATA

Form the exponential generating function

A(t, u) :=
∑
n≥0

An(t)
un

n!
.

Then (2.7) is equivalent to the identity

A(t, u) = 1 +
∑
n≥1

∑
k+l=n

0≤k≤n−1

Ak(t)
uk

k!

(t− 1)l−1

l!
ul

= 1 +A(t, u)×
∑
l≥1

(t− 1)l−1

l!
ul

= 1 +A(t, u)
1

t− 1

(
exp(u(t− 1))− 1

)
;

hence

A(t, u) =
∑
n≥0

An(t)
un

n!
=

t− 1

t− exp(u(t− 1))
,(3.1)

which is the traditional exponential generating function for the Eulerian
polynomials, explicitly given by Euler himself in his memoir.

We may also write:

∑
n≥0

An(t)

(1− t)n+1

un

n!
=

eu

1− teu
= eu

∑
j≥0

(teu)j

=
∑
j≥0

tj
∑
n≥0

(u(j + 1))n

n!
=
∑
n≥0

u

n!

∑
j≥0

tj(j + 1)n,

which leads to another equivalent definition of the Eulerian polynomials

(3.2)
An(t)

(1− t)n+1
=
∑
j≥0

tj(j + 1)n (n ≥ 0),

which is the most common starting definition of those polynomials today.
Now rewrite identity (2.8) as

(3.3)
m∑
i=1

inti = −tm+1
n∑
k=0

(
n

k

)
Ak(t)

(1− t)k+1
mn−k +

tAn(t)

(1− t)n+1
.

A simple argument on the order of the formal series in t shows that, when
m tends to infinity, (3.3) implies (3.2). Conversely, replace each fraction

10



EULERIAN POLYNOMIALS

Ak(t)/(1− t)k+1 on the right-hand side of (3.3) by
∑
j≥0 t

j(j+1)k, which is
the right-hand side of (3.2). An easy calculation shows that the right-hand
side of (3.3) becomes

−
∑
j≥0

tm+1+j(m+ 1 + j)n + t
∑
j≥0

tj(j + 1)n =
m∑
i=1

inti.

Consequently, identity (3.2) and its finite form (3.3) are also equivalent.
The relation

(3.4) An(t) = (1 + (n− 1)t)An−1(t) + t(1− t) ·DAn−1(t) (n ≥ 1),

where D stands for the differential operator in t, can be proved from (3.2)
as follows: the right-hand side of (3.4) is equal to:

(1− t)n
∑
j≥0

tj(j + 1)n−1(1 + (n− 1)t− nt+ (1− t)j)

= (1− t)n
∑
j≥0

tj(j + 1)n−1(1− t)(j + 1)

= (1− t)n+1
∑
j≥0

tj(j + 1)n = An(t).

Finally, let

An(t) :=
∑
k≥0

An,kt
k.

By (3.2) A0(t) = (1 − t)/(1 − t) = 1 and the constant coefficient of each
polynomial An(t) is An,0 = 1. In (3.4) the coefficient of tk (k ≥ 1) is equal to
An,k on the left and An−1,k + (n− 1)An−1,k−1 + kAn−1,k− (k− 1)An−1,k−1
on the right. As An,k = 0 for k ≥ n ≥ 1,we obtain the recurrence relation

(3.5) An,k = (k + 1)An−1,k + (n− k)An−1,k−1 (1 ≤ k ≤ n− 1) ;

An,0 = 1 (n ≥ 0) ; An,k = 0 (k ≥ n),

so that each An(t) is a polynomial with positive integral coefficients. The
first values of the coefficients An,k, called Eulerian numbers, are shown in
the next table.

k= 0 1 2 3 4 5 6
n=1 1

2 1 1
3 1 4 1
4 1 11 11 1
5 1 26 66 26 1
6 1 57 302 302 57 1
7 1 120 1191 2416 1191 120 1

11
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In summary, the Eulerian polynomials An(t) =
n∑
k=0

An,kt
k (n ≥ 0) are

defined by the relations:

(2.7) A0(t) = 1; An(t) =

n−1∑
k=0

(
n

k

)
Ak(t)(t− 1)n−1−k (n ≥ 1);

(2.8)
m∑
i=1

inti =
n∑
l=1

(−1)n+l
(
n

l

)
tm+1An−l(t)

(t− 1)n−l+1
ml + (−1)n

t(tm − 1)

(t− 1)n+1
An(t),

for m ≥ 1, n ≥ 0, as previously mentioned, but also by:

(3.1)
∑
n≥0

An(t)
un

n!
=

t− 1

t− exp(u(t− 1))
;

(3.2)
An(t)

(1− t)n+1
=
∑
j≥0

tj(j + 1)n (n ≥ 0) ;

(3.3) A0(t) = 1, An(t) = (1+(n−1)t)An−1(t)+t(1−t)·DAn−1(t) (n ≥ 1);

(3.4) An,k = (k + 1)An−1,k + (n− k)An−1,k−1 (1 ≤ k ≤ n− 1),
An,0 = 1 (n ≥ 0) ; An,k = 0 (k ≥ n);

(3.5) An,k =
∑

0≤i≤k
(−1)i(k − i+ 1)n

(
n+ 1

i

)
(0 ≤ k ≤ n− 1);

(3.6) xn =
∑

0≤k≤n−1

(
x+ k

n

)
An,k (n ≥ 0).

The last two relations are easy to establish. For the first one make use
of (3.2), starting with An(t)(1− t)−(n+1). For the second, called Worpitzky
identity, simply calculate the coefficient of tk in (1− t)n+1

∑
n≥0 t

n(j+ 1)n.
As mentioned earlier, the first three relations (2.7), (2.8) and (3.1) are due
to Euler. The fourth relation (3.2) must also be attributed to him, as he
used it for t = −1 in a second memoir [Eul1768] to give a sense to the
divergent series

∑
j(−1)j(j + 1)m. Note that (2.8) is fundamental for the

next calculation involving tangent numbers. It seems to have been forgotten
in today’s studies.

4. A relation with the tangent numbers

The tangent numbers T2n−1 (n ≥ 1) are defined as the coefficients of the
Taylor expansion of tanu:

tanu =
∑
n≥1

u2n−1

(2n− 1)!
T2n−1

=
u

1!
1 +

u3

3!
2 +

u5

5!
16 +

u7

7!
272 +

u9

9!
7936 +

u11

11!
353792 + · · ·

But, starting with (1.6), the generating function for the Genocchi numbers

12
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G2n (n ≥ 1) can be evaluated as follows:∑
n≥1

u2n

(2n)!
G2n =

∑
n≥1

(iu)2n

(2n)!
(−1)nG2n

=
2iu

eiu + 1
− iu =

iu(1− eiu)

1 + eiu
= u tan(u/2).

Hence, ∑
n≥1

u2n

(2n)!
G2n = u tan(u/2) =

∑
n≥1

u2n

22n−1(2n− 1)!
T2n−1,

and then

nT2n−1 = 22n−2G2n = 22n−1(22n − 1)B2n (n ≥ 1).(4.1)

The first values of the tangent numbers T2n−1 (n ≥ 1), compared with the
Genocchi numbers, are shown in the next table.

n 1 2 3 4 5 6 7
G2n 1 1 3 17 155 2073 38227
T2n−1 1 2 16 272 7936 353.792 22.368.256

In the exponential generating function (3.1) for the Eulerian polynomials
An(t) replace t by −1 and u by iu with i =

√
−1. We get:∑

n≥0

An(−1)
(iu)n

n!
=

2

1 + e−2iu
.

Hence∑
n≥1

in−1An(−1)
un

n!
=

1

i

( 2

1 + e−2iu
− 1
)

=
1

i

1− e−2iu

1 + e−2iu
= tan u

=
∑
n≥1

T2n−1
u2n−1

(2n− 1)!
.

Accordingly,

A2n(−1) = 0, A2n−1(−1) = (−1)n−1T2n−1 (n ≥ 1).(4.2)

With t = −1 identity (2.8) becomes

m∑
k=1

kn(−1)k = (−1)m
n∑
k=0

(
n

k

)
Ak(−1)

2k+1
mn−k +

(−1)An(−1)

2n+1
.

When n = 2p ≥ 2 we get:

(4.3)
m∑
k=1

k2p(−1)k=(−1)m+1m
2p

2
+

p∑
k=1

(
2p

2k − 1

)
(−1)m+k−1T2k−1

22k
m2p−2k+1.

13
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Using the relation nT2n−1 = 22n−2G2n (n ≥ 1) this can be rewritten in
terms of the Genocchi numbers as:

(4.4)
m∑
k=1

k2p(−1)k = (−1)m
m2p

2
+

p∑
k=1

(
2p

2k − 1

)
(−1)m+k+1G2k

4k
m2p−2k+1.

When n = 2p+ 1 ≥ 1 we get:

(4.5)

m∑
k=1

k2p+1(−1)k

= (−1)m+1m
2p+1

2
+

p+1∑
k=1

(
2p+ 1

2k − 1

)
(−1)m+k T2k−1

22k
m2p−2k+2

+ (−1)p+1T2p+1

22p+2
;

so that in terms of the Genocchi numbers

(4.6)
m∑
k=1

k2p+1(−1)k

= (−1)m
m2p+1

2
+

p+1∑
k=1

(
2p+ 1

2k − 1

)
(−1)m+k+1G2k

4k
m2p−2k+2

+ (−1)p+1 G2p+2

4(p+ 1)
.

Both identities (4.4) and (4.6) were established by Euler. This achieves the
proof of Theorem 1.1.

5. The Carlitz q-Eulerian polynomials

Recall the traditional q-ascending factorial defined for each ring element ω
and each variable q by

(ω; q)k :=

{
1, if k = 0;
(1− ω)(1− ωq) · · · (1− ωqk−1), if k ≥ 1;

(ω; q)∞ :=
∏
k≥0

(1− ωqk);

the q-binomial coefficients[
n

k

]
q

:=
(q; q)n

(q; q)k (q; q)n−k
(0 ≤ k ≤ n)

and the q-analogs of integers and factorials

[n]q :=
(1− q)n

(1− q)n
= 1 + q + q2 + · · ·+ qn−1;

[n]!q := [n]q[n− 1]q · · · [1]q.

14
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As lim
q→1

(t; q)n+1 = (1 − t)n+1 and lim
q→1

[j + 1]q = j + 1, definition (3.2)

suggests that a new sequence of polynomials An(t, q), called the q-Eulerian
polynomials, can be defined by the identity

(5.1)
An(t, q)

(t; q)n+1
=
∑
j≥0

tj([j + 1]q)
n (n ≥ 0),

as was done by Carlitz [Ca54] in his seminal paper, thereby entering the
q-series environment initiated by Heine [He1847]. Also see Gasper and
Rahman [GR90].

By analogy with the Eulerian polynomials we can replace the infinite
series (5.1) by a finite sum and try to express the left-hand side as a linear
combination of fractions Ak(t, q)/(t; q)k+1 (0 ≤ k ≤ n). From (5.1) we get:

m∑
j=1

tj([j]q)
n =

m−1∑
k=0

tk+1([k + 1]q)
n

= t
∑
j≥0

tj([j + 1]q)
n −

∑
j≥0

tm+1+j([m+ 1 + j]q)
n

= t
An(t, q)

(t; q)n+1
− tm+1

∑
j≥0

tj(1 + q + · · ·+ qj + qj+1 + · · ·+ qj+m)n

= t
An(t, q)

(t; q)n+1
−tm+1

∑
j≥0

tj
n∑
k=0

(
n

k

)
(1+q+· · ·+qj)k(qj+1+· · ·+qj+m)n−k

= t
An(t, q)

(t; q)n+1
− tm+1

∑
j≥0

tj
n∑
k=0

(
n

k

)
[j + 1]kq q

(j+1)(n−k)[m]n−kq

= t
An(t, q)

(t; q)n+1
− tm+1

n∑
k=0

(
n

k

)
qn−k[m]n−kq

∑
j≥0

(tq(n−k))j [j + 1]kq .

This establishes the identity

(5.2)
m∑
j=1

tj([j]q)
n = t

An(t, q)

(t; q)n+1
− tm+1

n∑
k=0

(
n

k

)
qn−k[m]n−kq

Ak(tqn−k, q)

(tqn−k; q)k+1
,

apparently (?) new, that q-generalizes (2.8). Naturally, both definitions (5.1)
and (5.2) for the polynomials An(t, q) are equivalent.

Other equivalent definitions can be derived as follows. Starting with (5.1)
we can express An(t, q) as a polynomial in t as follows;

An(t, q)

(t; q)n+1
=
∑
j≥0

tj([j + 1]q)
n =

∑
j≥0

tj
(1− qj+1

1− q

)n
15
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=
1

(1− q)n
∑
j≥0

tj(1− qj+1)n =
1

(1− q)n
∑
j≥0

tj
n∑
k=0

(
n

k

)
(−1)kqjk+k

=
1

(1− q)n
n∑
k=0

(
n

k

)
(−1)kqk

∑
j≥0

(tqk)j =
1

(1− q)n
n∑
k=0

(
n

k

)
(−1)kqk

1− tqk
,

so that

(5.3) An(t, q) =
1

(1− q)n
n∑
k=0

(
n

k

)
(−1)kqk(t; q)k (tqk+1; q)n−k.

By examining (5.3) we can see that An(t, q) is a polynomial in t of degree
at most equal to (n−1), since the coefficient of tn in An(t, q) must be equal to

− 1

(1− q)n
n∑
k=0

(
n

k

)
(−1)k(−1)n+1qn(n+1)/2

= − (−1)n+1qn(n+1)/2

(1− q)n
n∑
k=0

(
n

k

)
(−1)k = 0.

To see that An(t, q) is a polynomial both in t and q we can use identity
(5.3) and write

(1− q)An(t, q) =

n∑
k=0

(
n

k

)
(−1)kqk

(t; q)k
(1− q)n−1

(tqk+1; q)n−k;

(1− tqn)An−1(t, q) =

n−1∑
k=0

(
n− 1

k

)
(−1)kqk

(t; q)k
(1− q)n−1

(tqk+1; q)n−k.

Hence

(1− q)An(t, q)− (1− tqn)An−1(t, q)

=
n−1∑
k=1

(
n− 1

k − 1

)
(−q)k (t; q)k

(1− q)n−1
(tqk+1; q)n−k + (−q)n (t; q)n

(1− q)n−1

=
n−2∑
j=0

(
n− 1

j

)
(−q)j+1 (1− t)(tq; q)j

(1− q)n−1
(tqqj+1; q)n−1−j

− q(1− t)(−q)n−1 (tq; q)n−1
(1− q)n−1

= −q(1− t)
n−1∑
j=0

(
n− 1

j

)
(−q)j (tq; q)j

(1− q)n−1
(tqqj+1; q)n−1−j

and consequently

(5.4) (1− q)An(t, q) = (1− tqn)An−1(t, q)− q(1− t)An−1(tq, q).
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With An(t, q) :=
n−1∑
j=0

tj An,j(q) we deduce from (5.4) that the coefficients

An,j(q) satisfy the recurrence

(5.5) An,j(q) = [j + 1]q An−1,j(q) + qj [n− j]q An−1,j−1(q).

This shows that each polynomial An(t, q) is a polynomial in t, q with positive
integral coefficients.

The first values of the polynomials An(t, q) are reproduced in the follow-
ing table:

A0(t, q) = A1(t, q) = 1; A2(t, q) = 1 + tq; A3(t, q) = 1 + 2tq(q + 1) + t2q3;
A4(t, q) = 1 + tq(3q2 + 5q + 3) + t2q3(3q2 + 5q + 3) + t3q6;
A5(t, q) = 1 + tq(4q3 + 9q2 + 9q + 4) + t2q3(6q4 + 16q3 + 22q2 + 16q + 6) +

t3q6(4q3 + 9q2 + 9q + 4) + t4q10.

Finally, from the identity 1/(t; q)n+1 =
∑
j≥0

[
n+j
n

]
q
tj we get

n−1∑
i=0

An,i(q) t
i
∑
j≥0

[
n+ j

n

]
q

tj =
∑
k≥0

([k + 1]q)
ntk,

and obtain for each k the formula à la Worpitzky

(5.6)
n−1∑
i=0

An,i(q)

[
k + n− i

n

]
q

= ([k + 1]q)
n.

Surprisingly, it took another twenty years to Carlitz [Ca75] to construct a
full combinatorial environment for the polynomials An(t, q) he introduced
in 1954.

6. A detour to Combinatorics

In contemporary combinatorics the following integral-valued statistics
for permutations have been widely used. For each permutation σ =
σ(1)σ(2) · · ·σ(n) of 12 · · ·n define:

excσ := #{i : 1 ≤ i ≤ n, σ(i) > i};
desσ := #{i : 1 ≤ i ≤ n− 1, σ(i) > σ(i+ 1)};

majσ :=
∑

σ(i)>σ(i+1)

i;

inv σ := #{
(
σ(i), σ(j)

)
: i < j, σ(i) > σ(j)};

called number of excedances, number of descents, major index and inversion
number, respectively. Those four statistics can also be defined for each
permutation with repetitions (“multiset”).

17
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For r ≥ 1 and each sequence m = (m1,m2, . . . ,mr) of nonnegative
integers let R(m) denote the class of all

(
m1+···+mr

m1,...,mr

)
permutations of the

multiset 1m12m2 · · · rmr . It was already known and proved by MacMahon
[Mac15] that “exc” and “des,” on the one hand, “maj” and “inv,” on the
other hand, were equidistributed on each class R(m), accordingly on each
symmetric group Sm.

However, we had to wait for Riordan [Ri58] for showing that if An,k is
defined to be the number of permutations σ from Sn having k descents (i.e.,
such that desσ = k), then An,k satisfies recurrence (3.5):

An,k = (k + 1)An−1,k + (n− k)An−1,k−1 (1 ≤ k ≤ n− 1);

An,0 = 1 (n ≥ 0); An,k = 0 (k ≥ n).

This result provides the following combinatorial interpretations for the
Eulerian polynomials An(t) =

∑
σ∈Sn

texcσ =
∑
σ∈Sn

tdesσ, the second
equality being due in fact to MacMahon! The latter author [Mac15, p. 97,
and p. 186] knew how to calculate the generating function for the classes
R(m) by “exc” by using his celebrated Master Theorem, but did not make
the connection with the Eulerian polynomials. A thorough combinatorial
study of those polynomials was made in the monograph [FS70] in 1970.

In 1974 Carlitz [Ca74] completes his study of his q-Eulerian polynomials
by showing that

An(t, q) =
∑
σ∈Sn

tdesσqmajσ (n ≥ 0).

As “inv” has the same distribution over Sn as “maj,” it was very
tantalizing to make a full statistical study of the pair (des, inv). Let
eq(u) :=

∑
n≥0

un/(q; q)n be the (first) q-exponential. First, a straightforward

calculation leads to the identity

1 +
∑
n≥1

t An(t)
un

n!
=

1− t
1− t exp((1− t)u)

.

In the above fraction make the substitution exp(u)← eq(u) and express the
fraction thereby transformed as a q-series:∑

n≥0

invAn(t, q)
un

(q; q)n
=

1− t
1− t eq((1− t)u)

.

The new coefficients invAn(t, q) are to be determined. They were character-
ized by Stanley [St76] who proved the identity:

invAn(t, q) = t
∑
σ∈Sn

tdesσqinv σ (n ≥ 1).
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Now rewrite the exponential generating function for the Eulerian poly-
nomials An(s) (see (3.1)) as

∑
n≥0

An(s)
un

n!
=

(1− s) expu

exp(su)− s expu
.

In the right-hand side make the substitutions s ← sq, exp(u) ← eq(u).
Again, express the fraction thereby transformed as a q-series:

∑
n≥0

excAn(s, q)
un

(q; q)n
=

(1− sq)eq(u)

eq(squ)− sq eq(u)
.

The combinatorial interpretation of the coefficients excAn(s, q) was found by
Shareshian and Wachs [SW07] in the form

excAn(s, q) =
∑
σ∈Sn

sexcσqmajσ (n ≥ 0).

A further step can be made by calculating the exponential generating
function for the polynomials An(s, t, q) :=

∑
σ∈Sn

sexcσtdesσqmajσ (n ≥ 0),
as was done in [FH08]:

∑
n≥0

An(s, t, q)
un

(t; q)n+1
=
∑
r≥0

tr
(1− sq)(usq; q)r

((u; q)r − sq(usq; q)r)(1− uqr)
.

Identities (4.2) that relate the evaluations of Eulerian polynomials at
t = −1 to tangent numbers can also be carried over to a q-environment.
This gives rise to a new family of q-analogs of tangent numbers using the
combinatorial model of doubloons (see [FH09a], [FH09b].)

Following Reiner [Re95a, Re95b] Eulerian polynomials attached to other
groups than the symmetric group have been defined and calculated, in
particular for Weyl groups. What is needed is the concept of descent, which
naturally occurs as soon as the notions of length and positive roots can be
introduced. The Eulerian polynomials for Coxeter groups of spherical type
have been explicitly calculated by Cohen [Co08], who gave the full answer
to a question raised by Hirzebruch [Hi08], who, on the other hand, pointed
out the relevance of Euler’s memoir [Eul1768] to contemporary Algebraic
Geometry.

Acknowledgements. The author is most thankful to Hyung Chan Jung
(Sogang University), who kindly proofread the paper and corrected several
typos.
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