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Doubloons and ¢-secant numbers

Dominique Foata and Guo-Niu Han

Abstract. Based on the evaluation at t = —1 of the generating polynomial for the hyper-
octahedral group by the number of descents, an observation recently made by Hirzebruch, a
new g-secant number is derived by working with the Chow-Gessel g-polynomial involving the
flag major index. Using the doubloon combinatorial model we show that this new g-secant
number is a polynomial with positive integral coefficients, a property apparently hard to
prove by analytical methods.

1. INTRODUCTION

This paper, in harmony with our previous two papers on doubloons [11, 12],
is motivated by our intention of finding a combinatorial connection between
the Eulerian polynomials, on the one hand, and the trigonometric functions,
tangent and secant, on the other hand, when the connection is further carried
over to a g-analog environment.

Let (t;q)n := (1 —t)(1 —tq)--- (1 —tqg" 1) if n > 1 and (¢;q)o := 1 be the
traditional g-ascending factorial and [j], := 1+ ¢+ ---+¢'~! be the g-analog
of the positive integer j. The g-analogs A, (t,q), introduced by Carlitz [3, 4],
of the Fulerian polynomials, may be defined by the identity
W) Sl S 1) (02 0),

(t; @)n+1 =

For each n > 0 the g-analog A, (t,q) is a polynomial with positive integral
coefficients [in short, a PIC polynomial], such that A,(t,1) is equal to the
traditional Eulerian polynomial A, (t) introduced by Euler himself [7], who
also derived the exponential generating function:

@ YDEINT —

=  —t+exp(u(t—1))
As A,(1,1) = A,(1) = n!, each PIC polynomial A, (t) (resp. A,(t,q)) has
been regarded as a generating function for the symmetric group &,, by several

integral-valued statistics (resp. pairs of such statistics) [20, 13, 4]. Note that
(2) is easily derived from (1).
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In the same manner, the next two identities

Bn(t7Q) _ J - n n .
(3) Cro j;t (27 +1]g)"  (n>0);
u" (I —=t)exp(u(t—1))
(4) Z HBn(t)  —t+expu(t — 1))’

n>0

may serve to define two families of polynomials (B, (t)), (Bn.(t,q)) (n > 0).

Again, both B, (t) and B, (t,q) are PIC polynomials and B, (t) = B,(t,1).
Moreover, (4) is easily derived from (3). The interpretation of B, (t) as a
generating polynomial for the hyperoctahedral group B,, together with the
derivations of (3) for ¢ = 1 and (4), was first obtained by Reiner [19], also
by Cohen [6] in the general context of the Coxeter groups of spherical type.
Formula (3) was derived and fully interpreted by Chow and Gessel [5].

While studying the signatures of the toric varieties, Hirzebruch [16] is led
to calculate the values of both polynomials A, (t) and B,(t) at ¢t = —1. He
first quotes Euler’s identities [7]

(5) Az (=1) =0 (n=1); (=1)"Azn41(—-1) = Ton41 (n 2 0),

where the coefficients To,+1 (n > 0) are the tangent numbers occurring in the
Taylor expansion of tan u:

u2n+l

(6) tanu = ————Top1
7; (2n +1)!
w B B o’ uwd 11
= —1 —2 16 —272 —7936 + — 353792
+gy2 516+ 272 4 7936+ 353792 + -

Then, he notes that
(7) Bant1(=1)=0(n =0

)
where the coefficients Fs,, (n > 0) are the secant numbers occurring in the
Taylor expansion of secu

(=1)"Bap(—1) = 22" Fy,, (n > 0),

1 2n

u
8 = = ——FEsy,
(8) secu cos u Z (2n)! 2
n>0
u2 ut ub u® 10
= 1 —1 —5 —61 —1385 —50621
gL B g6l 51385+ o +-
since, by (4)
(fu)™ 2 u?n
Sy et eu=Y " E,
Ny iu —iu |
4 2mn! e 4 e = (2n)!

It so happens that (7) is just the relation needed to construct a new g¢-
analog of the secant number, in parallel with what has been done already for
the tangent number.
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Theorem 1.1. Let (B, (t,q)) (n > 0) be the sequence of polynomials defined
by (3) and let

(9) Ban(q) = (~1)" ¢" Ban(—q~2",q) (n>1).

Then,
(a) each Ea,(q) is a PIC polynomial;
(b) it admits the factorization

(10) Ean(q) = A+ ¢*)(1+¢") - (1+¢*") Fan(q),

where Fo,(q) is a PIC polynomial;
(€) Eon(1) = 2" Fy, (1) = 22" By, (Ea, the secant number);
(d) Bans1(—q~ " q) =0 (n > 0).

Property (c) follows from (7) and (9). Property (d) is proved in Section 5.
As is often the case, it is much harder to derive the factorization shown in
(b) and prove that the coefficients of Ea,(q) are positive. It requires a long
combinatorial development, given in the next three Sections. We reproduce
the first values of the polynomials B, (¢, ¢) and Fs,(q) in Tables 1.1 and 1.2.

Bi(t,q) =1+4qt;  Ba(t,q) =1+ (2¢ + 2¢* + 2¢°)t + ¢*t%;
Bs(t,q) = 1+ (3q+ 5¢% + 7¢% + 5¢* + 3¢°)t
+ (3¢* +5¢° +7¢° + 5¢7 + 3¢®)t? + ¢°t3;
By(t,q) =1+ (4q +9¢* + 164> + 18¢* + 16¢° + 9¢° + 44" )t
+ (6¢* +16¢° + 30¢° + 40¢" + 46¢° + 40¢° + 30¢'° + 164 + 6¢2)t2
+ (4¢° +9¢"0 + 16¢"" + 18¢"% + 164" + 9¢™* + 4¢'%)t* + ¢"0t*.

Table 1.1. The polynomials B, (¢, q).

Ea(q) = (1+¢*)2  Ea(q) = (1+¢*)(1+q")(6+8q+6¢);

Eos(q) = (1 +¢®)(1 + ¢*)(1 + ¢°)(20 4 60q + 104¢> + 120> + 1044*
+60¢° + 204¢°);

Es(q) = (1+¢®)(1 +¢*) (1 +¢%) (1 +¢®)(70 + 336¢ + 910¢> + 17604>
+2702¢* + 3440q° + 37244° + 344047 + 2702¢® + 17604¢° + 910¢*°
+ 336¢' + 704¢'2).

Table 1.2. The polynomials Es,(q).

Following the method developed in [11] and [12], the proof of Theorem 1.1 (a)
and (b) will consist of making the polynomial Eo,12(q), defined in (9), appear

as a generating function by an appropriate statistic “smaj,” combined with a
sign “sgn”

Eapiz(@)= ) sgnwg™i"  (n>1)
wEBan 12

and constructing a sign-reversing involution on Bag, 12, in such a way that after
its application the remaining terms in the sum have positive signs. We leave
out the banal case: F(q) = 2(1+ ¢?).
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The final step is then to prove the identity

(11) E2n+2(q) = (1 + q2)(1 + q4) - (1 + q2n+2) Z qsmajw’
wWESN 2 12

where the sum is over a specific class SN ,,42 of signed permutations, called
normalized signed doubloons (see Section 4).

More importantly, the generating polynomial for SN 2,42 occurring in (11)
will be explicitly calculated by means of the doubloon polynomials (dn ;(q))
(n>1, 2 <j < 2n), which are defined by the recurrence

(D1) do,j(q) = d1,; (Kronecker symbol);

(D2) dy,j(g) =0forn>1and j <1lorj>2n+1,

(D3) dp2(q) = Zqﬂ Ydy—1,5(q) for n > 1;

(D4) dn j(q) — 2d m,j— 1( ) +dnj—2(q)

3 . .
= (=) X ¢ d ()
2n—1
(1 +¢" Y dno1-2(@) +(1—q) 3 1 ¢ dn1.i(q)

i=j—

forn>2and 3 <j < 2n;
the first values being:
dio(q) =1;  dop(q) =q; dos(q) =q+1; daulq) =1;
d32(q) = 2¢° +2¢°%; dss(q) = 2¢° +4¢* +2¢; ds3a(q) = ¢* +4¢* +4q+1;
dss5(q) =2¢° +4q+2; dse(q) =2¢+2;
dao(q) =55 +12¢° +12¢* +5¢%  da3(q) = 5¢° +17¢° +24¢* + 17¢% + 5¢%;
(9)
(9)
(9)

da,4(q) = 3¢° + 15¢° + 29¢* + 29¢° + 15¢° + 3¢;
das(q) = ¢° +9¢° + 25¢* + 3443 + 25¢> + 9¢ + 1
ds6(q) = 3¢° + 15¢* + 29¢> + 29¢* + 15 + 3

ds7(q) =5¢* +17¢3 + 24¢> + 17+ 5; duas(q) = 5¢> + 12¢® + 12¢ + 5.

Those polynomials were introduced and used in [12] to evaluate a new ¢-
analog

(12) Tons1(q) = (—1)"q(3) Agy i1 (g7, q)
of the tangent number based on the Carlitz ¢-Eulerian polynomial A, (t,q)
defined in (1). It was shown that T5,11(¢) was a PIC polynomial equal to

2n+2
(13) Tpsr(@) = 1+ q)(1+¢%) - (1 +¢" Z 1o (

The parallel expression for the PIC polynomials E2n+2(q) is next stated.

Theorem 1.2. For each n > 1 the polynomial Eant2(q) has the following
expression:

2n

(14)  Eang2(g) =1+ @)1+ 1+ ") dni(@®) Pi(e),
k=2
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where the coefficients Py, 1(q) (n > 1,2 < j < 2n) are defined by

2n+1—k i+k om+2
— n—1—24 l
(15) Pu@= 3 q z;( 7

The quantities Q, (q) := ¢""1 %P, x(q) are PIC polynomials. Their first
values are listed in Table 1.3.

Q1,2(q) = 6 + 8q + 6¢%

Q2.2(q) = 15+ 26q + 30¢> + 264> + 15¢%;

Q2,3(¢) = 20 + 30 + 32¢* 4+ 30¢° + 20¢*;  Q2,4(q) = Q2,2(q)

Q3.2(q) = 28 + 64q + 98¢ + 112¢° + 98¢* + 64¢° + 28¢°%;

Q3.3(q) = 56 + 98¢ + 120¢% + 126> + 120¢* + 98¢5 + 56¢°;

Q3.4(q) = 70 + 112¢ + 1264 + 128¢3 + 126¢* + 112¢° + 704%;

Q35(q) = Q33(q); Q36(q) = Q32(q);

Qa2(q) = 45 + 130g + 255¢° + 372¢> + 420¢* + 372¢° + 255¢° + 13047 + 45¢%;
Q4.3(q) = 120+ 255¢ + 382¢% + 465¢> + 492¢* + 465¢° + 3824¢° + 255¢" + 1204%;
Qu4,4(q) = 210+ 372¢ + 465¢> + 502¢° + 510¢* + 502¢° + 46545 + 372¢" + 210¢5;
Qa5(q) = 252+ 420+ 492¢% + 51043 + 512¢* + 510¢° + 4924¢° + 420¢" + 2524¢%;
Qa6(q) = Q1.4(q); Qar(q) = Qu3(q); Qaslq) = Qu2(q).

Table 1.3. The polynomials Qn £ (q)-

The proofs of Theorems 1.1 and 1.2 are given in Sections 3 and 4. In the
last Section we obtain a global expression for the generating polynomial for
the group B,, by a five-variable statistic, which takes the two classical descent
definitions into account.

To end this introduction we point out that the identity

2n
(16) Tonp1 =2"Y  dn,

k=2
which is the ¢ = 1 version of (13), is originally due to Christiane Poupard [18],
who worked out the recurrence for the now called Poupard triangle d, . =
dn k(1) (n>1, 2 <k < 2n), obtainable from (D1)—(D4) for ¢ = 1.

We reproduce the first values of the Poupard triangle (d, i), together with
the first values of

(17) Qni = Qui(1) = Pop(l)= > >

2n+1—k i+k (2n+2>
=0 I=i+1 !

Both dy ; and @ are displayed in triangles (2 < k < 2n,1 < n < 4), as
shown in Fig. 1.4.
The ¢ = 1 version of identity (14) reads:

2n
(18) 2" Eynga = Y dnkQui-
k=2
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For instance, (18) for n = 2 yields: 23Es = 8 x 61 = 488 = 1 x 112+ 2 x
132+ 1 x 112. There exists a rich formulary of relations for tangent and secant
numbers (see, e.g., the old monograph by Nielsen [17]). Identities (16) and (18)
provide a new parametrization of those coefficients by means of the Poupard
triangle (dy, k).

1 20
1 2 1 112 132 112
4 8 10 8 4 492 674 744 674 492
34 68 94 104 94 68 34 2024 2936 3608 3860 3608 2936 2024
The Poupard triangle (dy, 1) The coefficients (Qn. k)
Fig. 1.4.

2. STATISTICS ON THE HYPEROCTAHEDRAL GROUP

The elements of the hyperoctahedral group B,,, usually called signed per-
mutations, may be viewed as words w = x1x3 - - - Ty, where each x; belongs to
the set {—n,...,—1,1,...,n} and |z1||z2|- - - |z,| is a permutation of 12...n.
The set (resp. the number) of negative letters among the x;’s is denoted by
Negw (resp. negw). In the same manner, let Posw (resp. posw) be the set
(resp. the number) of all positive letters in w. It is convenient to write i := —i
for each integer 7. There are 2"n! signed permutations of order n. The sym-
metric group &,, may be considered as the subset of all w from B,, such that
Negw = @.

For each statement A let x(A) = 1 or 0 depending on whether A is true
or not. The usual number of descents and major indexr of each word w =
T1%2 - - T, are defined by

1
L

(19) desw := X(®i > wiy1);

.
Il
-

S
|

(20) majw = ix(xs > Tit1)-
i=1

When B, is regarded as a Coxeter group, an extra descent is counted, when
the first letter x; of the signed permutation w = x5 - - - z, is negative. In the
literature two definitions are then used:

(21) desp w x(z1 < 0) + desw;

(22) fdesw = x(z1 <0)+ 2desw.

Furthermore, a flag major index “fmaj” defined by
(23) fmajw := 2majw + neg w,

has been adopted for B,,, because it is equidistributed with the Cozeter length
“0” for B, (see, e.g., [1, 8]), a property that extends the corresponding property
for the symmetric group &,,, which says that the major index “maj” and the
number of inversions “inv” (the Coxeter length for &,,) are equidistributed.
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Proposition 2.1. The polynomial By(t,q) defined by (3) has the following
combinatorial interpretation:

(24) Byu(t,q) = Y tlemgmaiv,

weBy,
In other words, By (t,q) is the generating polynomial for the hyperoctahedral
group B, by the pair (desp, fmaj).

The proof of the proposition can be found in [5]. This is also a consequence
of Theorem 6.2, that takes both “desp” and “fdes” into account (see (75) and

(76)).
From the definition of the polynomials Es,12(g) given in (9) and (24) it
follows that

2 —an
Bania(q) = (—1)" gt By o (—g7 "2 q)
may be expressed as
(25) E2ﬂ+2(q) = (_1)n+1 Z (_1)X(11<0)+dcsqumajw’
W=x1 - Tant+2€Bant2

where “smaj” is a new statistic — call it signed major index — defined for
each signed permutation w = z122 - - - Tapy2 € Bant2 by

(26) smajw := (n+1)*> —2(n+1)(x(z1 < 0) + desw) + 2majw + negw.

A compressed major index “cmaj” was defined in [11, 12] on the symmetric
group G,,. Extend its definition to each w € Ba, 2, as follows

(27) cmajw :=majw — (n+ 1)desw + (n — 1)n/2.
The next lemma only needs a straightforward calculation.

Lemma 2.2. For each w = 2122 - - - Tant+2 € Bapt2 we have:

(28) smajw — 2cmajw = 3n+ 1 +negw — 2(n + 1)x(z1 < 0);
so that
(29) smajw — 2cmajw = n +negw — 1, if x1 <.

The mirror image of a signed permutation w = z122 - - - Xop42 is defined by
rw = Topya- - Toxy. It is easily verified that

(30) desrw = (2n+1)— desw;

(31) majrw = (2n+2)2n+1)/2 — (2n + 2)desw + majw.
Those two relations suffice to prove the next lemma.

Lemma 2.3. For each w = 2122 - - Tant+2 € Bapto we have:

(32) smajrw —smajw = 2(n + 1)(X(9C1 < 0) — x(Tango < O));
(33) (_1)dcsrw+x(z2n+2<0) > (_1)dcsw+x(zl<0) _ _(_1)X(I1<O)+X(z2n+2<())'

Minster Journal of Mathematics VoL. 1 (2008), 99999-99999
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The sum displayed in (25) may be decomposed into four subsums:

D DO D VLD

W=x1 - Tan4+2EBant2 T1T2n4+2>0, T122p42>0, 1 <0, z1>0,
x1<T2n+2 T1>Tan+2 Ton42>0 T2,42<0

Z +rz +Z +rz.

T1ZT2n42>0, T1T2n42>0, 1 <0, 1 <0,
x1<T2n+2 x1<T2n+2 Ton42>0 Tan+2>0

It follows from Lemma 2.3 that the sum of the first two subsums vanishes, and
the fourth one is equal to the product of the third one by ¢?"*2. Thus,

(34) E2n+2(q) — (—1)n+1(1 + q2n+2) Z (_l)desw-i-lqsmajw

W=T1 ' Tan+2€Bany2,
71 <0<x2n 42

since x(z1 < 0) = 1 for every w occurring in the sum. To pursue the calculation
of Fan12(q) we use the doubloon calculus, as developed in our previous two
papers.

3. DOUBLOONS

A doubloon of order (2n + 1) is defined to be a permutation of the word
012---(2n 4 1), represented as a 2 x (n 4+ 1)-matrix § = (abg :::Z:). The word
ag - by -+ by is called the reading p(§) of 0. Define statd := stat p(J),
whenever “stat” is equal to “des,” “maj,” “fmaj,” “cmaj,” or “smaj.” Let
F§ :=ag, LS :=bg. The set of all doubloons of order (2n + 1) is denoted by
Dan+1. The subset of all doubloons § such that L§ = j (resp. F'6 = i and
L§ = j) is denoted by Doy 1,5 (resp. Dy, ;)-

Each doubloon § = (‘;Z:::Z;) from Day,y1 is said to be interlaced (resp.
normalized), if for every k = 1,2, ..., n the sequence (ax—1, ag,br—1,bg) or one
of its three cyclic rearrangements is monotonic increasing or decreasing (resp.
decreasing). Let 73, (resp. I3, ;, resp. N3, .y, resp. N3, ., ;) denote the
set of all doubloons § from D}, ,,, which are interlaced (resp. interlaced with
L§ = j, resp. normalized, resp. normalized with L J = j).

For instance, the doubloon § = (g%g) is normalized, since both sequences

(4,2,1,0) and (5,4,3,1), which are cyclic rearrangements of (0,4,2,1) and
(4,3,1,5), respectively, are decreasing.
The geometry of interlaced and normalized doubloons has been studied

in [11]. The connection between interlaced doubloons and split-pair arrange-
ments, introduced by Graham and Zang [14], is explicitly made in [12].

We now recall several properties on doubloons already proved in [11, 12].
For each doubloon ¢ = (‘ZZ Zi :_fg") from Da,+1 and each integer h let 6 + h be
the doubloon

(35) 5+h::<b0+h bith - byth

where each entry is expressed as a residue mod(2n + 2).

ap+h ar+h --- an—i—h)

Miinster Journal of Mathematics VoL. 1 (2008), 99999-99999
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Property 3.1. The mapping 6 — 6-+h is a bijection of T4, ; (resp. N3,y ;)
onto I;n—i—l b (resp. N2n+1 j+h) (superscript and subscript being taken
mod(2n + 2) ).

See [12], Proposition 2.1.
Property 3.2. Let0<i< j and d = (aO ar ) be a doubloon from Dj, 4 E

bo by -
s0 that 0 —i = (jo_i‘zll:; oz ?) belongs to D2n+1 j—i- Then,
(36) des(d — i) = desd, cmaj(d — i) = cmajd + 1.

See [12], Lemma 3.2.

Property 3.3. For each integer k there is a sign-reversing involution on
Dgn+17k \Ign—i-Lk having the property that

(37) Z (_1)n+dcs6qcmaj6 _ Z qcmajé'

5eDY €19

2n+1,k 2n+1,k

Moreover,

(38) Y ™=+ ) A+ Y ™

5€I2n+1 & 6,€N20n+1,k

Proof. Refer to the proofs of Theorems 4.2 and 1.6 in [11], and observe that
the first column (2) is left invariant under each macro flip. O

4. SIGNED DOUBLOONS

Now, we extend the notion of doubloon to the group of signed permutations
and speak of signed doubloons, but only for those signed permutations w =
T1T2 -+ Topt2a € Bapto occurring in the summation displayed in (34). They
have the property that Fw =z < 0 < z9,4+2 =: Lw. We represent them as
Ty T2 - Tp4l

Toan+2 L2n+1 " Tn+2
doubloons will be denoted by SDa;, 2.

For each w = < ot x”ﬂ) from SD2j42 let ¢, be the in-

Ton+2 L2n+1 """ Tn42

creasing bijection of {x1,za,...,22,42} onto {0,1,2,...,2n + 1} and form

d)w(xl) ¢w(x2) ¢w($n+l>

. The

¢w($2n+2)¢w($2n+1) * Guw(Tn2)
signed doubloon w is characterized by the pair (0., — Negw). Moreover,
statw = statd,, whenever “stat” is equal to “des,” “ v

2 x (n + 1)-matrices w = < ) The set of all those signed

the (un signed) doubloon 4,

maj,” “fmaj,” “cmaj,”
or “smaj.” The signed doubloon w is said to be interlaced (resp. normalized),
if §,, is interlaced (resp. normalized).

As Fw < 0 < Lw when w belongs to SDa;,+2, the mapping
(39) w — (0, — Negw)

is a bijection of the set SDa,,+2 onto the set of pairs (4, J) such that § € Day11,
and J a subset of {1,2,...,2n + 2} such that Fd+1 < #J < L§.
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For instance, if § = (gﬁ) € D5, then Fod+1=1< #J <3 = L§. Take

J = {3},{1,3},{2,3,5} for example, the three signed doubloons w € SDg
associated with those three subsets J are the following:

((312): {3},
() = (i) {13D),
: ((312).{2,3,5}).

—
ol i Lol
=] = Ot
L oR
S~—

—
ol
S—

If (6, — Negw) = (4, J), then (see (29))
(40) desw = desd; smajw =2cmajd + #J +n— 1.

We next make the composition product of the two mappings described in
(35) and (39).

Theorem 4.1. For each pair (i,k) of integers such that 1 < k < 2n and
0<i:<2n+1—k the mapping
(41) w — (§y — i, — Negw)

s a bijection of the set SDén-i-Z,i-i—k of the signed doubloons w satisfying F 6, =
i, Léy = i+ k onto the set of pairs (3,J) such that § € DY, , and J C
[1,2n + 2] with i + 1 < #J < i+ k. Moreover, if w is interlaced (resp.
normalized), so is 6, — i, and conversely. Finally, if § = 0, — 1, then

(42) desw = desd; smajw =2cmajd—2i+ #J+n— 1.

Proof. The theorem is a consequence of Properties 3.1 and 3.2 and the prop-
erties of the bijection w — (d,,, — Negw) given in (40). O

Identity (34) may be rewritten as

Eont2(q) = (_1)n+1(1+(]2n+2) Z (—1)dcsw+lqsmaj“’
wWESDay 12
2n 2n+1—k

(1 + q2n+2) Z Z Z (_1)n+desqumajw.
k=1 =0

WGSDEn+2,i+k

Let

i+k
h—1—2i 2n+2
(43) Puin(g):=q"""7% > ( z )ql-

I=i+1
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Using the preceding theorem and Property 3.3 we evaluate the third sum
as follows.

Z (_1)n+dcsqumaj w

weSD!
— E E (_1)n+d086q2cmaj6—2i+#J+n—1

§€DY, ,, , iHI<HISi+k

. L son 42
— qn—l—Ql Z (_1)n+dc56q20maJ6 Z ( l )ql

6€D3, 11 I=it+1

= Paiale) Y (yrhaessgrannis

0
6€D2n+1,k

= Poir(a) Y,

0
661271+1,k

=1+ 1+ Puikle) Y ¢*°
5€N20n+1,k

(44) = (1+¢%) - (1+¢*") Puin(q) dnr(a?),

where the last equality follows from [12], Theorem 1.2. By multiplying (44)
by (1 + ¢?"*?) and summing over all pairs (k,i) such that 1 < k < 2n and
0 <i<2n+1-—k we derive identity (14), keeping in mind that P, x(q) =

Z Pn,i,k-

0<i<2n+1—k

i
2n+2,i+k

This achieves the proofs of both Theorems 1.1 and 1.2, except part (d).

Let SV, +2,i+% De the set of the normalized signed doubloons w satisfying
Fé, =1, Lé, =1+ k. It also follows from Theorem 4.1 that

(45) Z qsmajw — Pmi,k(q) Z q2cmaj6.

wem%n+2,¢+k 6€N20n+1,k
From (44) it follows that
(46) Z(_l)n+dcsqumajw — (1 + L]Q) . (1 + q2n) Z qsmajw.
we&);n+2,i+k wem%n+2,¢+k

By multiplying (46) by (1 + ¢*"*2) and summing over all pairs (k, ) such that
1<k<2nand 0<i<2n+1-—Fk we derive identity (11).

5. PROOF OF THEOREM 1.1 (D)

Recall that for each w = 122 - - - Top41 € Ban41 we have used the notations

Fw :=z; and Lw := Zony1. As Bonii(t,q) = . tdesrwgmalv we may
write wEBan 41
(47) Bansr(—q Cm gy = 30 (—1pemugmain,

wEB2p 1
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where
(48) sgnw = (_l)dcsw+x(Fw<0);
(49)  smajw = 2majw +negw — (2n+ 1)(desw + x(Fw < 0),

as there is no ambiguity to adopt this definition of “smaj” for signed permu-
tations from Baj,41.

For proving the identity As,(—¢~™,q) = 0 in [11] we had recourse to the
classical properties of the dihedral group acting on Gs,,. Actually, the mirror
image r provided the sign-reversing involution that was needed. With the
group Bs, 41 the supplementary descent to be counted, when the first letter is
negative, makes it necessary to include another dihedral group involution, as
well as a sign change operation.

In this section the elements of By, 1 will be regarded as two-row matrices
w = (‘f‘) = (‘zélll ‘:;‘_:'gii”), where |w| := |z1]||x2| - |T2n+1| Decomes an
ordinary permutation and € := €y€3 - - - €9,41 is the sign word defined by €; := 1
or —1, depending on whether z; is positive or negative (1 < i < 2n + 1).

Three operations r, ¢, s are now introduced and further extended to all
of Bay,y1: first, the mirror image

r:y1Yy2 - Yon+1 = Y2n+1 " Y2Y1,

defined for every arbitrary word; second, the complement to (2n + 2), defined
for each permutation from Gop,41, by

C: Y1Y2 * - Yan+1 — (2n—|—2—y1)(2n—|—2—y2)(2n+2—y2n+1),

third, the sign change s, defined for each binary word, such as € = €1€5 -+ - €941,
whose letters are equal to +1 or —1, by

S:€1€3 €1 F> €E1E2 - E2pt].

We use the same symbols for their extensions to Baj,y1:

(50) ro (W) = (il menl) o (1) = (el feele);
(51) c: (':") — (‘ii\:::‘jijlﬂ) — (C |E“’|) _ ((2n+2€1—|$1\):::(2n+§2—n|f12n+1\));
(52) s o (1) = (Il lzannly oy (Il = (Il Jrn ),

Note that the three involutions r, c, s, defined on Ba,+1 by (50), (51) and
(52) commute. The composition product b := csr can also be written as

(53) b: (\w\) — (\11\"'|$2n+1\) — (Cflwl) — ((”+2_—|502n+1|)"'(n+2_—\11\)).

€1 *r €2n 41 rse €2n+41 €1

Theorem 5.1. The composition product b defined in (53) is a sign-reversing
involution of Bapy1, i.€.,

(54) (sgn, smaj) (1) = (—sgn, smaj)b(1*!).

The proof of the theorem is based on the next three lemmas. The first two
ones being easy to verify are given without proofs.
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Lemma 5.2. For each w = (‘f‘) € By, 41 we have

(55) sgnrw = sgnw - (—1)XEw<OFX(Fw<0),

(56) smajrw = smajw+ (2n+ 1)(x(Fw < 0) — x(Lw < 0)).

w]

Lemma 5.3. For each w = ( .

) € Byp11 we have:

(57) sgnsw = — sgnuw;

(58) smajsw = —smajw.
The third lemma requires a careful analysis.

Lemma 5.4. For each w = (‘IE”‘) — (‘””1| |z - ‘12“1') € Bony1 we have:

€1 €2t €2np41
(59) sgncw = (—1)X(Fw<0)=x(Lw<0) gy q;
(60)  smajcw = —smajw— (2n+ 1)(x(Fw <0) — x(Lw < 0)).

Proof. If (‘f”) > (I?ilﬂ) (resp. (‘f”) < (‘fjlll)) say that i is an interior
descent (resp. rise), if |z;| > |ziy1| (vesp. |x;| < |zi+1]|) and €; = €;41. Denote
the set of all descents (resp. rises) of w by DESw (resp. RISEw), the set of
all interior descents (resp. rises) being designated by DES’ w (resp. RISE w),
so that DESw = DES’ w + DES € and RISEw = RISE’ w + RISEe.

First, DES' w = RISE’ cw and RISE' w = DES’ c w. Hence,
desw+descw = (#DESe+ #DES w) + (#DESe+ #DES' cw)
(#DES* w+# DES€) 4 (# RISE" w+# RISE¢)
+ (#DES e—# RISE¢)
= 2n+ (#DESe— #RISE¢)
= 2n + drisee.

In the same way, let DRISE e := }"i (x(i € DESe€) — x(i € RISE€)). Then,
majw +majcw = Z(zx(z € DES¢) + i x(i € DES' w))
+ (ix(i € DES€) + i x(i € DES' cw))

> (ix(i € DESw) + i x(i € RISEw))

K2

+ > i (x(i € DESe) — (i € RISE«))
= (14+2+---+2n)+DRISEe¢
— n(2n+1)+DRISEe.

Let di < d2 < --- (resp. r1 < ro < ---) denote the sequence of the descents
(resp. rises) of €, when reading the word e from left to right. Four cases are
now considered.
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(a) €1 = €ap41 = —1; the rises and descents alternate in such a way that
1<r <d <ro<dsg <--<r,<dr <2nandk > 0. Hence, drisee = 0
k

and DRISEe = > (d; — ;) = posw.
i=1

(b) €1 = +1, €apt1 = —1; the alternation becomes: 1 < dj < r; < do <
ro < -0 < dp < 1 < di41 < 2n (k> 0). In this case, drisee = 1 and
DRISE € = posw.

(c) €1 = €241 = 1; the sequence is then: 1 < d; <r; <dy <ry < -+ <
di, <rp <2n (k> 0). Hence, drisee = 0 and DRISE € = — negw.

(d)el=—1,62n+1:1;then1§r1<d2<7"2<~-~<7“k<dk<rr+1§2n
(k > 0). Hence, drisee = —1 and DRISE ¢ = — negw.

Thus, sgnw +sgncw = desw + x(e1 < 0) +descw + x(e1 < 0) = drisee
(mod 2), which is 0 when €; and g, are of the same sign (cases (a) and (c)),
equal to 1 when e; = 1, ez,41 = —1 (case (b)) and —1 when ¢; = —1 and
€an+1 = +1 (case (d)). Gathering in a common formula: sgnw + sgncw =
x(e1 = 1) — x(€2p+1 = 1). This implies (59).

Finally,

smajcw +smajw = 2(majcw + majw) + negcw + neg w
—(2n+1)(descw + desw + 2x(e1 < 0))
= 2n(2n+1)+2DRISE € + 2negw
— (2n +1)(2n + drisee + 2x(€e; < 0))
= 2DRISEe€ + 2negw
— (2n+ 1)(drise e + 2x(e1 < 0))
2posw 4 2negw — (2n + 1)2 =0, in case (a);
b);
c);
—2negw + 2negw — (2n+1) = —(2n+ 1), in case (d).

(

2posw + 2negw — (2n+ 1) = 2n + 1, in case (

| —2negw + 2negw — (2n+1)0 =0, in case (
(

Altogether, smajcw = —smajw — (2n + 1)(x(€1 — x(€2n41 = —1)).
This proves (60) and also Lemma 5. 4 O

Proof of Theorem 5.1. Let w € Bay,41. By the previous three lemmas

sgnrcw = sgncw - (—1)X(E cw<OFx(Few<0)

_ sgnw(—l)X(F w<0)—x(L w<0)(_1)x(L w<0)+x(F w<0)
= sgnw;

smajrcw = smajcw+ (2n+ 1)(x(Fcw <0)— x(Lcw < 0))
= smajcw+ (2n+ 1)(x(Fw < 0) — x(Lw < 0))
= —smajw;

SgNSrcw = —SgNrcw = —Sgnuw;

smajsrcw = —smajrcw = smajuw. (]
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6. WHICH DESCENT FOR THE HYPEROCTAHEDRAL GROUP?

The purpose of this Section is to work out a global expression for the generat-
ing polynomial for B,, by the five-term statistic (neg, pos, Z, des, fmaj), where
Zw is equal to 1 or 0, depending on whether the first letter of w is negative
or positive, and to derive the specializations when the pair (=, des) is replaced
either by “desp,” or by “fdes,” defined in (21) and (22). Our main result is
the following.

Theorem 6.1. Let

(61) Bn(X, Y, Z;t, q) _ Z chgwyposwzx(zl<0)tdcswquajw.

weBy,
Then,
62 = t*((gX +Y)[s+ 1],2
+ Ezts((qX-i-Y)[S-i-l] , _Xq25+1)".
-1 !

When ¢ = 1, write B,(X,Y,Z;t) := B,(X,Y,Z;t,1). The exponential
generating function for the latter polynomials can be derived in the following
form.

Theorem 6.2. The following identity holds:
u” Z—t+(1—-2Z)exp(uX(t—1))

(63) nZZOHB"(X’ Y,Z;t) = —t+exp(u(X +Y)(t—1))

Proof of Theorem 6.1. Let w = x122-- -z, be a signed permutation from B,
and ¢ be the unique increasing bijection of the set {1, x2,...,2,} onto the
interval [n]:={1,2,...,n}. The word

o=0(1)a(2)---o(n):=d(x1)¢(z2) - - - (wn)

is then an (ordinary) permutation from &, and the map w — (Negw,o) a
bijection of B, onto the Cartesian product 2"} x &, having the following
properties:

x(z1 < 0) =x(c(1) <negw); desw =deso; fmajw = fmajo.
For convenience, introduce the polynomial

AR (Zst,q) =Y zxrEhdesogmaic (5 = (1) o(n) € 6,)

o
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and express B, (X,Y, Z;t,q) in terms of the latter polynomials, to get:

Bn(X, Y, Z,t,q) _ Z Z Z (qX)ncgwyposwzx(m1<0)tdcswq2majw
k=0 |E|=k Negw=FE

n

= Z(qX)kY"_k Z Z ZX(O'(l)Sk)tdcsoquajo

k=0 |E|=k (E,o0)
n n -

= Z(k)@X)’“Y LAL(Zt¢P).
k=0

Next, with each permutation o = ko (2)--- o(n) starting with k associate the
permutation ¢/ = ¢'(1)---0'(n — 1) := ¥(c(2))---¢¥(o(n)), where 9 is the
unique increasing bijection of [n] \ {k} onto [n — 1]. If 0(2) < k — 1, then
deso = deso’ + 1, while majo = majo’ +deso’ +1 and 0/(1) < k—1. If
0(2) > k+1, then deso = des¢’, while majo = majo’ +deso’ and /(1) > k.
Hence,

Z ZX(a(l)gk)tdes quajo - 7 Z tdesa’+1qmaj o' +deso’+1
o(1)=k,0(2)<k—1 o’ (1)<k-1
= Z ) (tgX W=k ggydesc’ qmaic,
o/ (1)<k—1
while
ZZX(U(ng)tdesaqmaja - g Z fdeso’ gmajo’+deso’
o(1)=k, o' (1)>k
o(2)>k+1
= Z ) (tgXeWsk=) (gg)des o’ gmaie’,
o' (1)>k
Altogether
> zxloshipdesogmaio — 7 AR (tg; tq, q).
o(1)=k
In the same manner,
> zxloshmlydesogmajo - — AR (tg;tq, ).

o(1)=k
Consequently, we have the relation:
(64) Ab(Zst,q) = AyN(Z5tq) + (Z = DAL (tg; g, q)-
By iteration we are led to:
(65)  AN(Z;t.q) = AN(Z;t,q)

k
Z -1 k o o
ST (M) v 0 A0 1)

=1 =
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But, the variable Z vanishes from A¥(Z;t,q) when k = 0 and then A%(Z;t,q) =
Ay (t,q), which is the Carlitz g-analog of the Eulerian polynomial ([3, 4]) ap-
pearing in (1). Hence,

Z -1

k - k
Mztg) = Ao+ IS (

. j> (—=1)7 (t;9); An—j(td’, q)

j=1

%A —Z( > (t;:9); An—j(te’, q).

The next step is to report this new expression of A¥(Z;t,q) into the poly-
nomial B, (X,Y, Z;t,q). We get:
n

n —
Bax vzt =3 () @)yl zi )

k=0
+5 }k <k.>(—1)j (t50%); An—s(ta™ %))
X Y AL )

Z -1 n! , . .
JHNy M1V (4 42 . 2j 2
+ t_llZ T @)Y ) (54 A (b7, 47),
J,l,m=>0
jH+l+m=n

where k = j + 1.
Next, with r = [ + m we get
(t;q*)n+1 t—1 (t;6*)n+1
Z -1 n! A (tg%, ¢?) d .
F IS gy D) aX)y
t— 1J;nr!j!( Y (tqg¥;¢?)r41 2:_ ! (aX)

t—-Z An(t,q®)
=g " (t;q*)n+1

t—1

Z -1 n! CAR(tg¥ q?)

e E— ——(—qX) L (qX +Y)".
" t_lj;nr!j!( e )(tq2j§q2)r+1 (@X+Y)

Furthermore,
3 Bu(X,Y, Zit,q)u" _ t =7~ An(t,¢®) (X +Y)u)"
= (G 0l =1 A (g)am nl

Lz > (—qXu)’ > Ar(tg®,q%) ((¢X +Y)u)"

— il 25 g2 !
t=1& = ,¢%)rm r!
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Now, make use of the classical identity on the Carlitz ¢-Eulerian polynomials

Z Ztsexp [s +1]q),

t
n>0 ( q n+tl s>0

to obtain

Bn(X,KZ7taQ) u” t_ s
n>0 47 )n+ : s>0

+ f__ll Z (—q?'('u)J Z(tqu)s exp((¢X + Y)u[s+ 1]q2)_
j=0 ’ 5>0

There remains to extract the coefficient of ™ on both sides. This leads to:

B.(X,Y,Zit,q) t—2 Z-1
67 ts (X +Y 1 —C
6 Edm t—1§ X+ V)l + 1) + 57 €
where C is the coeflicient of u™ in
(—qXu)’ 2iye N~ (@X +Y)uls +1]2)"
3 X gy 3 (X Vbt )
Jj=0 s>0 m>0
that is,
s (X +Y)[s+ 1)
C = Z 15 Z q2]s . q
>0 >0 ]' (n —j)!
= Xy ( ) (—aXa®) (X +Y) [s + 1]2)"
s>0 720
= - Z t*((gX +Y)[s + 1,2 — Xg*t1)"
s>0
Reporting the last expression in (67) yields identity (62). O
Proof of Theorem 6.2. When ¢ =1 in (62), we obtain
B.(X,Y, Z;t) t
68 —_— Y = ts (X+Y 1
(68) (1= t)nt t—1§ +Y)(s+1)"
+ Z—Zts (X +Y)(s+1)—X)".
t=1 5>0
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Hence,

n

(1—=tm
n>0

o (WX +Y)(s+1)"
2oy S

s>0 n>0

o (WX +Y)(s+1) - Xx)"
DD )

n!
>0 n>0

=(Z-1) Ztsexp (X+Y)(s+1))
5>0

—2)> ) exp(u(X +Y)(s+1) - X)
s>0 n>0
= ((Z = t)(exp(u(X +Y)) + (1 — Z) exp(uY)) Zts exp(u(X +Y)s)
5>0
_(Z—-t)exp(u(X +Y)(1 - Z))exp(uY)
B 1—texp(u(X +Y)) ’

which is identity (63) by replacing u by u(1 — t). O

Next, we derive specializations of Theorems 6.1 and 6.2 when the pair
(2, des) is replaced by “desp” and “fdes” (see (21) and (22)). We get:

(69) Z X negwypos wtdcsB wquaj wo B, (X, Y, t:t, q),
weBy,
(70) Z X negwy pos wtfdes wqfrnaj v — B, (X, Y, t; t2, q)
weB,

Also, note that B, (0,1,1;¢,q) is the Carlitz g-Eulerian polynomial A, (¢ q).
First,

Bn(X7Kt3t7Q) s s n
) n $>0
By, (1,1,t;t,q) d £
(12) S = Y plesmugimaie =N T ([25 41,
(t;4®)nt1 el o
Second,
B,(X,Y,t;t%,q) 2 —t 9 n
—_— 1 = t°((gX +Y)[s+ 1],
. 1 2 (X bl
t—1 s s n
7 2 (X +Y)[s 4+ U — Xg?)"
s>0
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so that
1+1)Bn(X,Y, t; 12 n
(73) ( ) > ( 5 2) ZtZSH (¢X +Y)[s+1]4)
(%5 4% nt1 =
+ > 12 ((gX +Y)[s]g2 + YV*)"
s>0
In particular,
(1+t)Bn(1713t7taq) fd f
(74) _ idesw majw __ ts S + 1
(t% ¢?)n+1 w;n S;

The specializations of (72) and (74) for ¢ = 1 are banal and not repro-
duced. However, it is worth writing the exponential generating functions for
the polynomials By, (1,1,¢;t) and B, (1,1,t;¢%) directly obtained from (63):

" | wpw (1= texp(u(t — 1)
(75) Z n Bn(1,1,8;) Z Z t  —t+exp(2u(t — 1))’

n>0 n>0 wGB
n 1-— 2 -1
S e = GO enu -~ D),
! —t2 + exp(2u(t? — 1))
n>0
so that
u_n 2 fdcsw _ 1-1
(76) Z n! Ba(1,1,6:87) Z Z  —t4exp(u(t?2 — 1))

n>0 n>0 wGB

The statistics “fdes” and “fmaj” were introduced by Adin and Roichman [2].
Identity (74) with their equivalent adaptations were derived by Brenti et al.
[1], Haglund et al. [15] and reproved by the authors (]9, 10]) as specializations
of identities involving several-variable statistics. Note that (76) implies that
> we Bn(—l)fdesw is null for every n > 1. Accordingly, the statistic “fdes”
would have been a wrong choice for obtaining a ¢-extension!
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