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Multivariable Tangent and Secant

q-derivative Polynomials

Dominique Foata, Guo-Niu Han

Abstract. The derivative polynomials introduced by Knuth and Buckholtz in their
calculations of the tangent and secant numbers are extended to a multivariable q–
environment. The n-th q-derivatives of the classical q-tangent and q-secant are each
given two polynomial expressions. The first polynomial expression is indexed by triples
of integers, the second by compositions of integers. The functional relation between
those two classes is fully given by means of combinatorial techniques. Moreover, those
polynomials are proved to be generating functions for so-called t-permutations by
multivariable statistics. By giving special values to those polynomials we recover clas-
sical q-polynomials such as the Carlitz q-Eulerian polynomials and the (t, q)-tangent
and -secant analogs recently introduced. They also provide q-analogs for the Springer
numbers. Finally, the t-compositions used in this paper furnish a combinatorial inter-
pretation to one of the Fibonacci triangles.

Summary

1. Introduction
1. The derivative polynomials
2. Towards a multivariable q-analog
3. The numerical and combinatorial background
4. The underlying statistics
5. The main results

2. A detour to the theory of q-trigonometic functions
3. Transformations on t-permutations
4. Proof of Theorem 1.1
5. Proof of Theorem 1.2
6. Proof of Theorem 1.3
7. More on q-trigonometric functions
8. Proof of Theorem 1.4
9. Proof of Theorem 1.5

10. Specializations
1. The first column of (An,k,a,b(q)), (Bn,k,a,b(q))
2. The super-diagonal (n, n+ 1) of the matrix (An,k,a,b(q))
3. The subdiagonal (n, n− 1) of the matrix (An,k,a,b(q))
4. The subdiagonal (n, n− 2) of the matrix (Bn,k,a,b(q))
5. Two q-analogs of the Springer numbers
6. t-compositions and Fibonacci triangle
7. Further comment

11. Tables
References

Key words and phrases. q-derivative polynomials, q-secant numbers, q-tangent numbers,
t-permutations, t-compositions, s-compositions, tq-secant numbers, tq-tangent numbers, q-
Springer numbers, alternating permutations, inversion number, inverse major index.

Mathematics Subject Classifications. 05A15, 05A30, 11B68, 33B10.

1



DOMINIQUE FOATA AND GUO-NIU HAN

1. Introduction

Back in 1967, Knuth and Buckholtz [KB67] devised a clever method for
computing the tangent and secant numbers T2n+1 and E2n for large values of
the subscripts n. For that purpose they introduced two sequences of polyno-
mials, referred to as derivative polynomials. A few years later, Hoffman [Ho95,
Ho99] calculated the exponential generating functions for those polynomials,
and found a combinatorial interpretation for their coefficients, in terms of so-
called snakes. The goal of this paper is to obtain a multivariable q-analog of
all those results. We first recall the contributions made by those authors, then,
introduce the q-environment that makes it possible to derive a handy algebra
for these new q-derivative polynomials.

1.1. The derivative polynomials. Recall that tangent and secant numbers
T2n+1 and E2n occur as coefficients in the Taylor expansions of tanu and sec u:

tanu =
∑

n≥0

u2n+1

(2n+ 1)!
T2n+1(1.1)

=
u

1!
1 +

u3

3!
2 +

u5

5!
16 +

u7

7!
272 +

u9

9!
7936 + · · ·

sec u =
1

cosu
=

∑

n≥0

u2n

(2n)!
E2n(1.2)

= 1 +
u2

2!
1 +

u4

4!
5 +

u6

6!
61 +

u8

8!
1385 +

u10

10!
50521 + · · ·

See, e.g., [Ni23, p. 177-178], [Co74, p. 258-259].
Let (An(x)) (n ≥ 1) be the sequence of polynomials defined by

A0(x) = x, An+1 = (1 + x2)DAn(x),

with D being the differential operator. When writing An(x) =
∑

m≥0

a(n,m)xm,
the coefficients (a(n,m)) satisfy the recurrence

(1.3) a(0, m) = δ1,m, a(n+1, m) = (m−1)a(n,m−1)+(m+1)a(n,m+1).

The a(n,m)’s form a triangle of integral numbers (see Table 1 in Section 11,
where the numbers a(n,m) are reproduced in boldface), now registered as the
sequence A101343 in Sloane’s Encyclopedia of Integer Sequences [Sl06] with
an abundant bibliography. Knuth and Buckholtz [KB67] showed that the n-th
derivative Dn tanu was equal to the polynomial

(1.4) Dn tanu =
∑

m≥0

a(n,m) tanm u.

The same two authors also introduced the sequence (b(n,m)) by

b0,m = δ0,m, b(n+ 1, m) = mb(n,m− 1) + (m+ 1)b(n,m+ 1).
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Again, Knuth and Buckholtz [KB67] showed that the n-th derivative of secu
could be expressed as

(1.5) Dn secu :=
∑

m≥0

b(n,m) tanm u sec u.

The triangle of numbers (b(n,m)) also appears in Sloane’s Enclycopedia
[Sl06] with reference A008294. The first values of the numbers b(n,m) are
reproduced in Table 1 in plain type (not bold). From their very definitions the
a(n,m)’s and b(n,m)’s can be imbricated in the same table, as done in Table 1.
The meanings of the entries to the right of the table will be further explained.

The exponential generating functions for the polynomials

An(x) :=
∑

m≥0

a(n,m)xm and Bn(x) :=
∑

m≥0

b(n,m)xm,

called derivative polynomials, have been derived by Hoffman [Ho95] in the form
∑

n≥0

An(x)
un

n!
=

x+ tanu

1− x tanu
;(1.6)

∑

n≥0

Bn(x)
un

n!
=

1

cosu− x sinu
.(1.7)

Those two exponential generating functions and recurrences for the a(n,m)’s
and b(n,m)’s have also been obtained by other people in different contexts, in
particular, by Carlitz and Scoville [CS72], Françon [Fr78].

By plugging x = 1 in (1.6) the right-hand side becomes tan 2u + sec 2u,
so that the sum

∑

m a(n,m) is equal to 2nEn, if n is even, and to 2nTn if
n is odd. Likewise, (1.7) yields

∑

nBn(1)u
n/n! = 1/(cosu − sinu), which is

the exponential generating function for the so-called Springer numbers (1, 1,
3, 11, 57, 361, 2763, . . . ) (see [Sp71], [Du95]) originally considered by Glaisher
[Gl98, Gl99, Gl14], as noted in Sloane’s Encyclopedia, under reference A001586.
In Table 1 we have indicated the values of the row sums

∑

m a(n,m) and
∑

m b(n,m) to the right.
Finally, the combinatorial interpretations of the a(n,m)’s and b(n,m)’s are

due to Hoffman in a later paper [Ho99]. An equivalent interpretation is also
due to Josuat-Vergès [Jo11]. Both authors use the word snake of length n, a
notion made popular by Arnold [Ar92, Ar92a] in the study of morsification of
singularities, to designate each word w = x1x2 · · ·xn, whose letters are integers,
positive or negative, with the further property that x1 > x2, x2 < x3, x3 > x4,
. . . in an alternating way and |x1| |x2| · · · |xn| is a permutation of 1 2 · · · n.
Note that Josuat-Vergès, Novelli and Thibon [JNT12] have recently developed
an algebraic combinatorics of snakes from the Hopf algebra point of view. In
[Ho99] and [Jo11] Hoffman and Josuat-Vergès show that An(x) is the generating
polynomial for the set of all snakes of length n by the number of sign changes;
they also prove an analogous result for Bn(x).
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1.2. Towards a multivariable q-analog. In parallel with (1.4) and (1.5) the
q-derivative operator Dq (see [GR90, p. 22]), as well as the q-analogs of tangent
and secant (see [St76], [AG78], [AF80], [Fo81], [St97, p. 148-149], [St10]) are
to be introduced. The first problem is to see whether the n-th q-derivatives
of those q-analogs can be expressed as polynomials in those functions, and
they can! But, contrary to formulas (1.4) and (1.5), those n-th q-derivatives
have several polynomial forms. As will be seen, two such polynomial forms
are derived in this paper for each q-analog of tangent and secant. The second
problem is to work out an appropriate algebra for the polynomials involved
that must appear as natural multivariable q-analogs of the entries a(n,m) and
b(n,m).

Before stating the first results of this paper we recall a few basic notions on
q-Calculus. The t-ascending factorial in a variable t is traditionally defined by

(t; q)n :=

{

1, if n = 0;
(1− t)(1− tq) · · · (1− tqn−1), if n ≥ 1;

in its finite version and

(t; q)∞ := limn(t; q)n =
∏

n≥0

(1− tqn);

in its infinite version. By q-series it is meant a series of the form f(u) =
∑

n≥0 f(n; q)u
n/(q; q)n, whose coefficients f(n; q) belong to some ring [AAR00,

chap. 10]. The q-derivative operator for fixed q used below is defined by

Dqf(u) :=
f(u)− f(qu)

u
,

instead of the traditional (f(u)− f(qu))/(u(1− q)).
At this stage we just have to note (see Section 2) that there is only one

q-tangent attached to the classical Jackson definitions [Ja04] of the q-sine and
q-cosine, namely,

tanq(u) :=

∑

n≥0

(−1)nu2n+1/(q; q)2n+1

∑

n≥0

(−1)nu2n/(q; q)2n
,

but, as it has been rarely noticed, there are two q-secants

secq(u) :=
1

∑

n≥0

(−1)nu2n/(q; q)2n
;

Secq(u) :=
1

∑

n≥0

(−1)nqn(2n−1)u2n/(q; q)2n
.
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1.3. The numerical and combinatorial background. Following Andrews
[An76, chap. 4] a composition of a positive integer n is defined to be a sequence
c = (c0, c1, . . . , cm) of nonnegative integers such that c0 + c1 + · · · + cm = n,
with the restriction that only c0 and cm can be zero; the ci’s are the parts of
the composition and m+ 1 is the number of parts, denoted by µ c+ 1. A com-
position c = (c0, c1, . . . , cm) of n is said to be a t-composition, if the following
two conditions hold:

(1) either m = 0, so that c = (c0) and c0 = n is an odd integer, or m ≥ 1
and both c0, cm are even;

(2) if m ≥ 2, then all the parts c1, c2, . . . , cm−1 are odd.
For each n ≥ 1 the set of all t-compositions of n is denoted by Θn. It is further
assumed that Θ0 consists of a unique empty composition denoted by (0, 0).

The first t-compositions are the following:
Θ0: (0, 0);
Θ1: (1), (0, 1, 0);
Θ2: (0, 2), (2, 0), (0, 1, 1, 0);
Θ3: (3), (0, 1, 2), (2, 1, 0), (0, 3, 0), (0, 1, 1, 1, 0);
Θ4: (0, 4), (2, 2), (4, 0), (0, 3, 1, 0), (0, 1, 3, 0), (0, 1, 1, 2), (2, 1, 1, 0),

(0, 1, 1, 1, 1, 0).

A t-composition c = (c0, c1, . . . , cm−1, cm) from Θn such that cm = 0 is
called an s-composition. We write c− = (c0, c1, . . . , cm−1). The subset of Θn of
all s-compositions is denoted by Θ−

n .

For each composition c = (c0, c1, . . . , cm) of n ≥ 1 let tanq(q
cu) := 1 if

m = 0 and for m ≥ 1, whatever n ≥ 1, let

tanq(q
cu) := tanq(q

c0u) tanq(q
c0+c1u) · · · tanq(q

c0+c1+···+cm−1u).

Note that the rightmost part cm does not occur in the previous expression.
Also let ρ c := (cm, . . . , c1, c0) denote the mirror-image of c.

A word w = y1y2 · · · ym, whose letters are positive integers, is said to be
falling alternating, or simply alternating (resp. rising alternating), if y1 > y2,
y2 < y3, y3 > y4, . . . (resp. if y1 < y2, y2 > y3, y3 < y4, . . . ) in an
alternating manner. The notion goes back to Désiré André [An79, An81],
who showed that the number of falling (resp. rising) alternating permutations
σ = σ(1)σ(2) · · ·σ(n) of 1 2 . . . n is equal to Tn when n is odd, and to En

when n is even. The length of each word w is denoted by λw and the empty
word is the word of length 0, denoted by ǫ.

Definition. A t-permutation of order n is defined to be a nonempty sequence
w = (w0, w1, . . . , wm) of words having the properties:

(i) the juxtaposition product w0w1 · · ·wm is a permutation of 12 · · ·n;
(ii) either m = 0 and w0 is rising alternating of odd length, or m ≥ 1 and

then w0 is rising alternating of even length and wm is (falling) alternating of
even length;
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(iii) if m ≥ 2, then all the components w1, w2, . . . , wm−1 are (falling)
alternating of odd length.

For each n ≥ 0 the set of all t-permutations of order n will be denoted by Tn.
The first t-permutations are the following:
T0: (ǫ, ǫ) ;
T1: (1); (ǫ, 1, ǫ);
T2: (ǫ, 21), (12, ǫ); (ǫ, 2, 1, ǫ), (ǫ, 1, 2, ǫ);
T3: (132), (231);

(ǫ, 3, 21), (ǫ, 312, ǫ), (ǫ, 213, ǫ), (12, 3, ǫ), (ǫ, 1, 32), (23, 1, ǫ),
(13, 2, ǫ), (ǫ, 2, 31);
(ǫ, 1, 2, 3, ǫ), (ǫ, 1, 3, 2, ǫ), (ǫ, 2, 1, 3, ǫ), (ǫ, 2, 3, 1, ǫ),
(ǫ, 3, 1, 2, ǫ), (ǫ, 3, 2, 1, ǫ).

1.4. The underlying statistics. The number of factors in each t-permutation
w = (w0, w1, . . . , wm), minus one, is denoted by µw = m. If w is of order n,
the sequence (λw0, λw1, . . . , λwm) is a t-composition of n, denoted by Λw. For
each n ≥ 0 the set of all t-permutations w from Tn, such that µw = m, with
0 ≤ m ≤ n+ 1 and m ≡ n+ 1 mod 2, will be denoted by Tn,m.

Recall that the ligne of route of a permutation σ = σ(1)σ(2) · · ·σ(n)
of 12 · · ·n, denoted by Ligneσ, is defined to be the set of all i such that
1 ≤ i ≤ n−1 and σ(i) > σ(i+1); also, the inverse ligne of route, Iligneσ, to be
the set of all σ(i) such that σ(j) = σ(i)+1 for some j ≤ i− 1. In an equivalent
manner, Iligneσ = Ligneσ−1. Next, let

ides σ = #Iligneσ;

imajσ =
∑

i

σ(i) (σ(i) ∈ Iligneσ);

and let inv σ be the number of inversions of σ, as being the number of pairs
(i, j) such that 1 ≤ i < j ≤ n and σ(i) > σ(j).

The inverse ligne of route, Ilignew, of a t-permutation w = (w0, w1, . . . , wm)
is then defined by

Ilignew := Iligne(w0w1 · · ·wm);

and the number of inversions, invw, by

invw := inv(w0w1 · · ·wm).

This makes sense, as the latter juxtaposition product is a permutation, say, σ
of 12 · · ·n if w ∈ Tn. Finally, let minw := a if 1 is a letter in wa.

For example, with the t-permutation w = (4 5, 11 13, 10 79, 6, 82), the
elements of Ilignew being reproduced in boldface, we have: idesw = 6,
imajw = 3+ 10+ 9+ 6+ 8+ 2 = 38, invw = 27 and minw = 1.

1.5. The main results. For each triple (k, a, b) let Tn,k,a,b denote the set of
all t-permutations w from Tn such that idesw = k, minw = a and a+ b = µw.
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Theorem 1.1 (Multivariable q-analog of (1.4)). Let

(1.8) An,k,a,b(q) =
∑

w∈Tn,k,a,b

qimajw

be the generating polynomial for the set Tn,k,a,b by the statistic “ imaj.” Then

(1.9) Dn
q tanq(u) =

∑

k,a,b

An,k,a,b(q) (tanq(q
k+1u))b (tanq(q

ku))a;

where 0 ≤ k ≤ n− 1 and 0 ≤ a+ b ≤ n+ 1.

In the same manner, for each (k, a, b) let T −
n,k,a,b+1 denote the set of all

t-permutations w = (w0, w1, . . . , wm, wm+1) in Tn,k,a,b+1 such that wm+1 = ǫ.

Theorem 1.2 (Multivariable q-analog of (1.5)). Let

(1.10) Bn,k,a,b(q) =
∑

w∈T −

n,k,a,b+1

qimajw

be the generating polynomial for the set T −
n,k,a,b+1 by “ imaj.” Then

Dn
q secq(u) =

∑

k,a,b

Bn,k,a,b(q)
(

tanq(q
k+1u)

)b
secq(q

k+1u)
(

tanq(q
ku)

)a
;(1.11)

Dn
q Secq(u) =

∑

k,a,b

qn(n−1)/2Bn,n−1−k,b,a(q
−1)(1.12)

×
(

tanq(q
k+1u)

)b
Secq(q

ku)
(

tanq(q
ku)

)a
.

where 0 ≤ k ≤ n− 1 and 0 ≤ a+ b ≤ n.

Theorem 1.3 (Composition q-analogs of (1.4) and (1.5)). For each n ≥ 1 and
each t-composition c of n let An,c(q) be the polynomial

An,c(q) =
∑

w∈Tn,Λw=c

qinvw.(1.13)

Then,

Dn
q tanq(u) =

∑

c∈Θn

An,c(q) tanq(q
cu);(1.14)

Dn
q secq(u) =

∑

c∈Θ−

n

An,c(q) tanq(q
c
−

u) secq(q
nu);(1.15)

Dn
q Secq(u) =

∑

c∈Θ−

n

qn(n−1)/2An,c(q
−1) tanq(q

ρc−

u) Secq(u).(1.16)

Remark. The polynomials An,k,a,b(q) are not uniquely defined by identity
(1.9). On the contrary, both (1.11) and (1.12) uniquely define the polynomials
Bn,k,a,b(q) and An,c(q).

Polynomials indexed by triples (k, a, b) and those by compositions c are
related to each other, as indicated in the next theorem.
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Theorem 1.4. We have
∑

k≥0, a+b=m

An,k,a,b(q) =
∑

c∈Θn,m

An,c(q);(1.17)

∑

k≥0, a+b=m

Bn,k,a,b(q) =
∑

c∈Θ−

n,m+1

An,c(q).(1.18)

Now, form the generating polynomials

An(x, q) :=
∑

m≥0

xm
∑

k≥0, a+b=m

An,k,a,b(q) =
∑

m≥0

xm
∑

c∈Θn,m

An,c(q);

Bn(x, q) :=
∑

m≥0

xm
∑

k≥0, a+b=m

Bn,k,a,b(q) =
∑

m≥0

xm
∑

c∈Θ−

n,m+1

An,c(q).

Theorem 1.5. The factorial generating functions for the polynomials An(x, q)
and Bn(x, q) are given by:

∑

n≥0

An(x, q)
un

(q; q)n
= tanq(u) + secq(u)(1− x tanq(u))

−1x Secq(u);(1.19)

∑

n≥0

Bn(x, q)
un

(q; q)n
= secq(u)(1− x tanq(u))

−1.(1.20)

Those two formulas, derived in Section 9, are true q-analogs of Hoffman’s
identities (1.6) and (1.7), as the latter ones can be rewritten as:

∑

n≥0

An(x)
un

n!
= tan(u) + sec(u)(1− x tan(u))−1x sec(u),

∑

n≥0

Bn(x)
un

n!
= sec(u)(1− x tan(u))−1.(1.21)

The four-variable polynomials An(t, x, y, q) =
∑

k,a,b

An,k,a,b(q)t
kxayb and

Bn(t, x, y, q) :=
∑

k,a,b

Bn,k,a,b(q)t
kxayb, that may be considered as multivari-

able q-analogs of the entries a(n,m) and b(n,m), have several interesting
specializations studied in Section 10. First, tAn(t, 0, 0, q) and tBn(t, 0, 0, q)
are shown to be the (t, q)-analogs Tn(t, q) and En(t, q) of tangent and se-
cant numbers, only defined so far [FH11] by their factorial generating func-
tions

∑

n T2n+1(t, q)u
2n+1/(t; q)2n+2 and

∑

nE2n(t, q)u
2n/(t; q)2n+1. The re-

currences of the polynomials An,k,a,b(q) and Bn,k,a,b(q) provide a handy
method for calculating them. We also prove that the polynomial An(t, x, q) :=
∑

k,aAn,k,a,n+1−a(q)t
kxa is a refinement of the Carlitz q-analog [Ca54] An(t, q)
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of the Eulerian polynomial, as An(t, 1, q) = An(t, q), with an explicit combina-
torial interpretation. Referring to Tables 2 and 3 of the polynomials An,k,a,b(q)
and Bn,k,a,b(q) displayed at the end of the paper, it is shown that the sum of
the polynomials occurring in each box along the two top diagonals can be ex-
plicitly evaluated. Furthermore, the Springer numbers are given two q-analogs.
Finally, generating functions and recurrence relations are provided for both t-
and s-compositions.

2. A detour to the theory of q-trigonometric functions

By means of the q-binomial theorem ([GR90, § 1.3]; [AAR00, § 10.2]) we can
express the first q-exponential eq(u) and the second q-exponential Eq(u), either
as an infinite q-series, or an infinite product:

(2.1) eq(u) =
∑

n≥0

un

(q; q)n
=

1

(u; q)∞
;

(2.2) Eq(u) =
∑

n≥0

qn(n−1)/2 un

(q; q)n
= (−u; q)∞,

two results that go back to Euler [Eu48]. As already done by Jackson [Ja04]
(also see [GR90, p. 23]), they both serve to define the q-trigonometric functions
q-sine and q-cosine:

sinq(u) :=
eq(iu)− eq(−iu)

2i
=

∑

n≥0

(−1)n
u2n+1

(q; q)2n+1
;

cosq(u) :=
eq(iu) + eq(−iu)

2
=

∑

n≥0

(−1)n
u2n

(q; q)2n
;

Sinq(u) :=
Eq(iu)− Eq(−iu)

2i
and Cosq(u) :=

Eq(iu) +Eq(−iu)

2
.

We can also define: tanq(u) :=sinq(u)/ cosq(u) and Tanq(u) :=Sinq(u)/Cosq(u);
but, as sinq(u) Cosq(u)− Sinq(u) cosq(u) = 0, we have:

tanq(u) =
sinq(u)

cosq(u)
=

Sinq(u)

Cosq(u)
= Tanq(u),

so that there is only one q-tangent. However, there are two q-secants:

secq(u) :=
1

cosq(u)
=

1
∑

n≥0

(−1)nu2n/(q; q)2n
;

Secq(u) :=
1

Cosq(u)
=

1
∑

n≥0

(−1)nqn(2n−1)u2n/(q; q)2n
.
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Theorem 2.1. The q-derivatives of the series tanq(u), secq(u), Secq(u) can be
evaluated as follows:

Dq tanq(u) = 1 + tanq(u) tanq(qu);(2.3)

Dq secq(u) = secq(qu) tanq(u);(2.4)

Dq Secq(u) = Secq(u) tanq(qu).(2.5)

Proof. These three identities can be proved, either by working with eq(u)
and Eq(u), when expressed as infinite q-series, or by using the infinite products
appearing in (2.1) and (2.2). We choose the former way, because of its closeness
to the traditional trigonometric calculus.

First,

eq(αu)− eq(αqu) =
∑

n≥1

(αu)n(1− qn)

(q; q)n
= αu

∑

n≥1

(αu)n−1

(q; q)n−1
= αu eq(αu);

Eq(αu)− Eq(αqu) =
∑

n≥1

(αu)nqn(n−1)/2(1− qn)

(q; q)n

= αu
∑

n≥1

(αuq)n−1q(n−1)(n−2)/2

(q; q)n−1
= αuEq(αqu).

Hence,

Dq eq(αu) = αeq(αu); Dq Eq(αu) = αEq(αqu).

Next, by applying Dq to the familiar identities: eq(iu) = cosq(u)+ i sinq(u) and
Eq(iu) = Cosq(u) + i Sinq(u), we get

Dq cosq(u) = − sinq(u); Dq sinq(u) = cosq(u);

Dq Cosq(u) = − Sinq(u); Dq Sinq(u) = Cosq(u).

Finally, we take advantage of the next formula that yields an expression for the
q-derivative of a ratio f(u)/g(u) of two q-series

Dq
f(u)

g(u)
=
g(qu)Dqf(u)− f(qu)Dqg(u)

g(u)g(qu)
,

and use it for the ratios sinq(u)/ cosq(u), 1/ cosq(u), 1/Cosq(u) to get:

Dq tanq(u) =
cosq(qu) cosq(u)− sinq(qu)(− sinq(u))

cosq(u) cosq(qu)
= 1 + tanq(u) tanq(qu);

Dq secq(u) =
sinq(u)

cosq(u) cosq(qu)
= secq(qu) tanq(u);

Dq Secq(u) =
Sinq(qu)

Cosq(u) Cosq(qu)
= Secq(u) tanq(qu).

10
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Identities (2.4) and (2.5) above show a certain duality between the q-
derivatives of secu and Secu, which is to be explored by using the base q−1

instead of q. First, for each q-series f(u) let Qf(u) := f(qu) and Uf(u) :=
(1/u)f(u). We have the identities:

UQ = q QU, Q−1U = q UQ−1.

Next, the q-difference operators Dq and Dq−1 , the latter being defined by
Dq−1f(u) := (1/u)(f(u)− f(q−1u)), also read

(2.6) Dq = U(I −Q); Dq−1 = U(I −Q−1).

Hence,

(2.7) Dq = −Dq−1Q.

Next, we have the relations:

(2.8) eq−1(u) = QEq(−u), Eq−1(u) = Qeq(−u).

(2.9) sinq−1(u) = −Q Sinq(u); cosq−1(u) = QCosq(u);

(2.10) tanq−1(u) = −Q tanq(u); secq−1(u) = Q Secq(u).

We end this Section with three technical lemmas that will be used in Section 5
(resp. Section 6) to show how identity (1.12) (resp. (1.16)) in Theorem 1.2
(resp. in Theorem 1.3) can be obtained from (1.11) (resp. from (1.15)).

Lemma 2.2. We have Dq−1Q = q QDq−1 , so that for each n ≥ 1

(2.11) (Dq−1Q)n = q(n+1)n/2QnDn
q−1 .

Proof. By (2.6) we have: Dq−1Q = U(I − Q−1)Q = UQ − U = q QU −
q QUQ = q QU(I − Q−1) = q QDq−1 . Identity (2.11) is then a simple conse-
quence, as there are (n+1)n/2 transpositions QDq−1 ↔ Dq−1Q to be made to
go from (QDq−1)n to QnDn

q−1 .

Lemma 2.3. For each composition c = (c0, c1, . . . , cm) of an integer n ≥ 1,
we have

(2.12) Qn tanq((q
−1)ρ cu) = tanq(q

cu).

Proof. A simple verification:

tanq((q
−1)ρ cu) = tanq((q

−1)cmu) tanq((q
−1)cm+cm−1u)

× · · · × tanq((q
−1)cm+···+c1u).

11
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Hence, the left-hand side of (2.12) is equal to

Qn tanq((q
−1)ρ cu)

= tanq(q
n−cmu) tanq(q

n−cm−cm−1u)× · · · × tanq(q
n−cm−···−c1u)

= tanq(q
c0+···+cm−1u) tanq(q

c0+···+cm−2u)× · · · × tanq(q
c0u)

= tanq(q
cu).

Lemma 2.4. We have:

Dn
q Secq(u) = (−1)nqn(n−1)/2Qn−1Dn

q−1 secq−1(u).

Proof. Just write

Dn
q Secq(u) = (−Dq−1Q)nQ−1 secq−1(u) [by (2.7) and (2.10)]

= (−1)n(Dq−1Q)n−1Dq−1 secq−1(u)

= (−1)nqn(n−1)/2Qn−1Dn
q−1 secq−1(u). [by (2.11)]

3. Transformations on t-permutations

Say that a t-permutation w = (w0, w1, . . . , wm) is of the first (resp. second)
kind, if 1 appears (resp. does not appear) as a one-letter factor among the wi’s.
Each set Tn,m can be partitioned into two subsets T ∗

n,m and ∗Tn,m, the former
one consisting of all permutations from Tn,m of the first kind, the latter one
of those of the second kind. Let [m] := {1, 2, . . . , m} and for each integer y let
y+ := y+1 and v+ := y+1 y

+
2 . . . y

+
m for each word v = y1y2 . . . ym, whose letters

are integers.
For each pair (m,n) such that 0 ≤ m ≤ n + 1 and m ≡ n + 1 mod 2, we

construct two bijections

(3.1) ∆∗ : [m]× Tn,m → T ∗
n+1,m+1;

∗∆ : [m]× Tn,m → ∗Tn+1,m−1;

Let w = (w0, w1, w2, . . . , wm) belong to Tn,m and 1 ≤ i ≤ m. The sequence

(3.2) (w+
0 , . . . , w

+
i−2, w

+
i−1, 1 , w

+
i , w

+
i+1, . . . , w

+
m)

is obviously from T ∗
n+1,m+1; denote it by ∆∗(i, w). Next, the sequence

(3.3) (w+
0 , . . . , w

+
i−2, (w

+
i−1 1w

+
i ), w

+
i+1, . . . , w

+
m)

is then from ∗Tn+1,m−1, and will be denoted by ∗∆(i, w); its i-th factor appears
as w+

i−1 1 w
+
i , as indicated in the inner parentheses in (3.3). By the above two

bijections, recurrence (1.3) holds with the interpretation a(n,m) = #Tn,m.
The next step is to study the actions of the transformations ∗∆ and ∆∗

on the statistics “ides,”, “imaj,” “min,” “inv” introduced in Subsection 1.4.
Taking again the example used in that Subsection, namely the t-permutation
w = (4 5, 11 13, 10 79, 6, 82), whose underlying statistics are idesw = 6,
imajw = 38, invw = 27 and minw = 1, we get:

12
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ides imaj min inv
w = (4 5, 11 13, 10 79, 6, 82) 6 38 1 27

∆∗(1, w) = (5 6, 1, 12 24, 11 810, 7, 93) 6 44 1 29
∆∗(2, w) = (5 6, 12 24, 1, 11 810, 7, 93) 7 45 2 32
∆∗(3, w) = (5 6, 12 24, 11 810, 1, 7, 93) 7 45 3 35
∆∗(4, w) = (5 6, 12 24, 11 810, 7, 1, 93) 7 45 4 36

∗∆(1, w) = (5 6 1 12 2 4, 11 810, 7, 93) 6 44 0 29
∗∆(2, w) = (5 6, 12 24 111 810, 7, 93) 7 45 1 32
∗∆(3, w) = (5 6, 12 24, 11 81017, 93) 7 45 2 35
∗∆(4, w) = (5 6, 12 24, 11 810, 7193) 7 45 3 36

The proof of the next theorem is a simple verification and will not be
reproduced here.

Theorem 3.1. Let w be a t-permutation and let Ilignew := {j1 < j2 < · · · <
jr}. Furthermore, let ∆∗(i, w) and ∗∆(i, w) be defined as in (3.1) - (3.3). Then,

Iligne∆∗(i, w)

= Iligne ∗∆(i, w) =

{

{(j1 + 1), (j2 + 1), . . . , (jr + 1)}, if i ≤ minw;
{1, (j1 + 1), (j2 + 1), . . . , (jr + 1)}, if minw < i.

Hence,

ides∆∗(i, w) = ides ∗∆(i, w) =

{

idesw, if i ≤ minw;
1 + idesw, if minw < i.

imaj∆∗(i, w) = imaj ∗∆(i, w) =

{

idesw + imajw, if i ≤ minw;
1 + idesw + imajw, if minw < i;

Furthermore,

inv∆∗(i, w) = inv ∗∆(i, w) = invw + λ(w0w1 · · ·wi−1),

min(∆∗(i, w)) = i, min(∗∆(i, w)) = i− 1, for i ≥ 1.

4. Proof of Theorem 1.1

Two steps are needed to achieve the proof: first, the derivation of a recurrence
relation for the polynomials An,k,a,b(q), presented in the next theorem, then,
an explicit algorithm for calculating them, described in Lemma 4.2.

Theorem 4.1 (Recurrence for the polynomials An,k,a,b(q)). With m := a+ b
and m′ := a′ + b′ we have:

(4.1) An+1,k′,a′,b′(q)=q
k′

(

∑

0≤a≤a′−1≤m′−2

An,k′−1,a,m′−1−a(q)+
∑

1≤a′≤a≤m′−1

An,k′,a,m′−1−a(q)

+
∑

0≤a≤a′

An,k′−1,a,m′+1−a(q) +
∑

a′+1≤a≤m′+1

An,k′,a,m′+1−a(q)
)

,

valid for n ≥ 0 with the initial condition: A0,k,a,b(q) = δk,0δa,1δb,0.

13
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Proof. Let w′ = (w′
0, w

′
1, . . . , w

′
m′) ∈ Tn+1,k′,a′,b′ . When w′ is of the

first kind, the inverse ∆∗−1(w′) is obtained by deleting the unique w′
a′ equal

to 1 and subtracting 1 from all the other letters of the components w′
j

(j = 0, . . . , a′ − 1, a′ + 1, . . . , m′). When w′ is of the second kind, the inverse
∗∆−1(w′) is obtained by deleting 1 from the component w′

a′ = u′a′1v′a′ and
subtracting 1 from all the letters of the components w′

0, . . . , w′
a′−1, u

′
a′ ,

v′a′ , w′
a′+1, . . . , w′

m′ . The t-permutations w′ from Tn+1,k′,a′,b′ fall into four
categories:

(1) w′ is of the first kind and 2 is to the left of 1 in the product w′
0w

′
1 · · ·w

′
m′ ;

then 1 ≤ a′ ≤ m′−1, because, when n+1 ≥ 2, the components w′
0 and w′

m′ are,
either empty, or their lengths are at least equal to 2. Hence, ∆∗−1(w′) = (a, w)
with w ∈ Tn,k′−1,a,m′−1−a and 0 ≤ a ≤ a′− 1 ≤ m′ − 2, as idesw = idesw′ − 1.
Also, imajw′ = 1 + idesw + imajw = k′ + imajw. [By Theorem 3.1]

(2) w′ is of the first kind and 2 is to the right of 1 in w′
0w

′
1 · · ·w

′
m′ ;

for an analogous reason as in case (1) we have: ∆∗−1(w′) = (a, w) with
w ∈ Tn,k′,a,m′−1−a and a′ ≤ a ≤ m′−1. In this case imajw′ = idesw+imajw =
k′ + imajw.

(3) w′ is of the second kind and 2 is to the left of 1 in w′
0w

′
1 · · ·w

′
m′ , so that 2

can still belong to w′
a′ , or to any one of the components w′

0, . . . , w
′
a′−1. Hence,

∆∗−1(w′) = (a, w) with w ∈ Tn,k′−1,a,m′+1−a and 0 ≤ a ≤ a′, for the number
of components has increased by 1. Again, imajw′ = k′ + imajw.

(4) w′ is of the second kind and 2 is to the right of 1 in w′
0w

′
1 · · ·w

′
m′ , so

that 2 can still belong to w′
a′ , or to any one of the components w′

a′+1, . . . , w
′
m′ .

Hence, ∆∗−1(w′) = (a, w) with w ∈ Tn,k′,a,m′+1−a and a′ + 1 ≤ a ≤ m′ + 1′.
Also, imajw′ = k′ + imajw.

Thus, identity (4.1) holds.

A consequence of the combinatorial interpretation is the symmetry property

qn(n−1)/2An,n−1−k,b,a(q
−1) = An,k,a,b(q),

whose proof is easy and will be omitted.

Lemma 4.2. Let [k, a, b] := (tanq(q
k+1u))b (tanq(q

ku))a. Then,

Dq[k, a, b] = qk
∑

0≤i≤a−1

[k, i, a+ b− 1− i] + qk+1
∑

0≤i≤b−1

[k + 1, a+ i, b− 1− i]

+ qk
∑

1≤i≤a

[k, i, a+ b+ 1− i] + qk+1
∑

1≤i≤b

[k + 1, a+ i, b+ 1− i].

Proof. For taking the q-derivative of a product f1(u)f2(u) · · ·fn(u) of q-series
we use the formula:

Dq

∏

1≤i≤n

fi(u) =
∑

1≤i≤n

f1(u) · · ·fi−1(u) (Dqfi(u)) fi+1(qu) · · ·fn(qu).(4.2)
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In particular,

Dq(tanq(q
k+1u))b (tanq(q

ku))a

=
∑

0≤i≤a−1

(tanq(q
k+1u))b (tanq(q

ku))i(Dq tanq(q
ku))(tanq(q

k+1u))a−1−i

+
∑

0≤j≤b−1

(tanq(q
k+1u))j(Dq tanq(q

k+1u))(tanq(q
k+2u))b−1−j(tanq(q

k+1u))a

= qk
∑

0≤i≤a−1

(tanq(q
k+1u))a+b−1−i (tanq(q

ku))i

+ qk
∑

0≤i≤a−1

(tanq(q
k+1u))a+b−i (tanq(q

ku))i+1

+ qk+1
∑

0≤j≤b−1

(tanq(q
k+2u))b−1−j(tanq(q

k+1u))a+j

+ qk+1
∑

0≤j≤b−1

(tanq(q
k+2u))b−j(tanq(q

k+1u))a+j+1.

With the notation [k, a, b] we have [0, 1, 0] = tanq(u), and identity (1.9) can
be rewritten

Dn
q tanq(u) =

∑

k,a,b

An,k,a,b(q) [k, a, b],

so that Lemma 4.2 can be used to calculate the polynomials An,k,a,b(q) by
iteration :

Dq[0, 1, 0] (= Dq tanq(u)) = [0, 0, 0] + [0, 1, 1],

so that A1,0,0,0(q) = A1,0,1,1(q) = 1;

D2
q [0, 1, 0] (= D2

q tanq(u)) = Dq [0, 1, 1] = [0, 0, 1] + q[1, 1, 0] + [0, 1, 2] + q[1, 2, 1],

so that A2,0,0,1(q) = 1, A2,1,1,0(q) = q, A2,0,1,2(q) = 1, A2,1,2,1(q) = q;

D3
q [0, 1, 0] (= D3

q tanq(u)) = (q + q2)[1, 0, 0]

+ [0, 0, 2] + q2[1, 0, 2] + (2q + 2q2)[1, 1, 1] + q[1, 2, 0] + q3[2, 2, 0]

+ [0, 1, 3] + q2[1, 1, 3] + (q + q2)[1, 2, 2] + q[1, 3, 1] + q3[2, 3, 1],

so that A3,1,0,0(q) = q + q2, A3,0,0,2(q) = 1, etc.

The polynomials An,k,a,b(q) in Table 2 (Section 11) have been obtained using
the previous calculation.

Proof of Theorem 1.1. By induction. Assume that (1.9) is true for n.

Dn+1
q [0, 1, 0] = DqD

n
q [0, 1, 0]
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= Dq

∑

k,a,b

An,k,a,b(q)[k, a, b] =
∑

k,a,b

An,k,a,b(q)Dq[k, a, b]

=
∑

k,a,b

An,k,a,b(q)
(

qk
∑

0≤i≤a−1

[k, i, a+ b− 1− i]

+ qk+1
∑

0≤i≤b−1

[k + 1, a+ i, b− 1− i]

+ qk
∑

1≤i≤a

[k, i, a+ b+ 1− i] + qk+1
∑

1≤i≤b

[k + 1, a+ i, b+ 1− i]
)

.

We calculate the contribution of each sum to the triple [k′, a′, b′]. For the first
sum we have [k, i, a+ b−1− i] = [k′, a′, b′] (0 ≤ i ≤ a−1) if and only if k = k′,
i = a′, a+ b− 1 = a′ + b′, a′ + 1 ≤ a ≤ a′ + b′ + 1, so that the contribution is

qk
′

∑

a′+1≤a≤a′+b′+1

An,k′,a,a′+b′+1−a(q).

For the second sum we have [k + 1, a+ i, b− 1− i] = [k′, a′, b′] (0 ≤ i ≤ b− 1)
if and only if k = k′ − 1, a + i = a′, b − 1− i = b′, 0 ≤ a′ − a ≤ b− 1, that is,
k = k′−1, i = a′−a, a+ b = a′+ b′+1, 0 ≤ a ≤ a′, so that the contribution is

qk
′

∑

0≤a≤a′

An,k′−1,a,a′+b′+1−a(q).

with the convention that An,−1,a,a′+b′+1−a(q) = 0. For the third sum we have
[k, i, a + b + 1 − i] = [k′, a′, b′] (1 ≤ i ≤ a) if and only if k = k′, i = a′,
a+ b+ 1 = a′ + b′, 1 ≤ a′ ≤ a ≤ a+ b = a′ + b′ − 1, so that the contribution is

qk
′

∑

1≤a′≤a≤a′+b′−1

An,k′,a,a′+b′−1−a(q).

For the fourth sum we have [k + 1, a + i, b + 1 − i] = [k′, a′, b′] (1 ≤ i ≤ b) if
and only if k = k′ − 1, a+ i = a′, b+ 1− i = b′, 1 ≤ i ≤ b, that is, k = k′ − 1,
i = a′−a, a+ b+1 = a′+ b′, 0 ≤ a ≤ a′−1 = a+ i−1 ≤ a+ b−1 ≤ a′+ b′−2.

The contribution is then

qk
′

∑

0≤a≤a′−1≤a′+b′−2

An,k′−1,a,a′+b′−1−a(q).

By Theorem 4.1 we have

Dn+1
q [0, 1, 0] =

∑

k′,a′,b′

An+1,k′,a′,b′ [k
′, a′, b′].

5. Proof of Theorem 1.2

As for Theorem 1.1, two steps are used to complete the proof of Theorem 1.2:
first, the derivation of a recurrence relation, then, the construction of an explicit
algorithm.
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Theorem 5.1 (Recurrence relation for the polynomials Bn,k,a,b(q)). With
m := a+ b and m′ := a′ + b′ we have:

(5.1) Bn+1,k′,a′,b′(q) = qk
′

(

∑

0≤a≤a′−1

Bn,k′−1,a,m′−1−a(q) +
∑

1≤a′≤a≤m′−1

Bn,k′,a,m′−1−a(q)

+
∑

0≤a≤a′

Bn,k′−1,a,m′+1−a(q) +
∑

a′+1≤a≤m′+1

Bn,k′,a,m′+1−a(q)
)

,

valid for n ≥ 0 with the initial condition: B0,k,a,b(q) = δk,−1δa,0δb,0.

Proof. Let w′ = (w′
0, w

′
1, . . . , w

′
m′ , ǫ) ∈ T ′

n+1,k′,a′,b′+1. What has been said
for recurrence (4.1) can be reproduced, except for the first sum, when w′ is
of the first kind and 2 is to the left of 1 in the product w′

0w
′
1 · · ·w

′
m′ ; now,

1 ≤ a′ ≤ m′ and not m′−1. Hence, ∆∗−1(w′) = (a, w) with w ∈ T ′
n,k′−1,a,m′−a

and 0 ≤ a ≤ a′ − 1 ≤ m′ − 1. Thus, identity (5.1) holds.

Lemma 5.2. Let 〈k, a, b〉 := (tanq(q
k+1u))b secq(q

k+1u)(tanq(q
ku))a. Then

(5.2) Dq〈k, a, b〉 := qk
∑

0≤i≤a−1

〈k, i, a+ b− 1− i〉+ qk
∑

1≤i≤a

〈k, i, a+ b+ 1− i〉

+ qk+1
∑

0≤i≤b−1

〈k+1, a+ i, b− 1− i〉+ qk+1
∑

1≤i≤b+1

〈k+1, a+ i, b+1− i〉.

Proof. By using (4.2) we derive

Dq(tanq(q
k+1u))b secq(q

k+1u) (tanq(q
ku))a

=
∑

0≤i≤a−1

(tanq(q
k+1u))a+b−1−i secq(q

k+1u)(tanq(q
ku))i(Dq tanq(q

ku))

+
∑

0≤j≤b−1

(tanq(q
k+1u))a+j(Dq tanq(q

k+1u))(tanq(q
k+2u))b−1−j secq(q

k+2u)

+ (tanq(q
k+1u))bDq(secq(q

k+1u)) (tanq(q
ku))a

= qk
∑

0≤i≤a−1

(tanq(q
k+1u))a+b−1−i secq(q

k+1u)(tanq(q
ku))i

+ qk
∑

0≤i≤a−1

(tanq(q
k+1u))a+b−i secq(q

k+1u)(tanq(q
ku))i+1

+ qk+1
∑

0≤j≤b−1

(tanq(q
k+2u))b−1−j secq(q

k+2u)(tanq(q
k+1u))a+j

+ qk+1
∑

0≤j≤b−1

(tanq(q
k+2u))b−j secq(q

k+2u)(tanq(q
k+1u))a+j+1

+ qk+1(tanq(q
k+1u))a+b+1 secq(q

k+2u).
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Lemma 5.2 provides a way to calculate the polynomials Bn,k,a,b(q). As
〈−1, 0, 0〉 = secq(u), we get

Dq〈−1, 0, 0〉 = 〈0, 1, 0〉, so that B1,0,1,0(q) = 1;

D2
q〈−1, 0, 0〉 = Dq〈0, 1, 0〉 = 〈0, 0, 0〉+ 〈0, 1, 1〉+ q〈1, 2, 0〉,

so that B2,0,0,0(q) = B2,0,1,1(q) = 1, B2,1,2,0(q) = q;

D3
q〈−1, 0, 0〉 = Dq

(

〈0, 0, 0〉+ 〈0, 1, 1〉+ q〈1, 2, 0〉
)

= q〈1, 1, 0〉

+
(

〈0, 0, 1〉+ 〈0, 1, 2〉+ q〈1, 1, 0〉+ q〈1, 2, 1〉+ q〈1, 3, 0〉
)

+
(

q2〈1, 0, 1〉+q2〈1, 1, 0〉+q2〈1, 1, 2〉+q2〈1, 2, 1〉+q3〈2, 3, 0〉
)

= 〈0, 0, 1〉+ q2〈1, 0, 1〉+ (2q + q2)〈1, 1, 0〉

+〈0, 1, 2〉+q2〈1, 1, 2〉+(q+ q2)〈1, 2, 1〉+q〈1, 3, 0〉+q3〈2, 3, 0〉,

so that B3,0,0,1(q) = 1, B3,1,0,1(q) = q2, B3,1,1,0(q) = 2q+q2, B3,0,1,2(q) = 1,
B3,1,1,2(q) = q2, B3,1,2,1(q) = q + q2, B3,1,3,0(q) = q, B3,2,3,0(q) = q3.

The polynomials Bn,k,a,b(q) in Table 2 have been calculated by means of the
previous algorithm.

Proof of (1.11). By induction. Assume that (1.11) is true for n. Then,

Dn+1
q 〈−1, 0, 0〉 = DqD

n
q 〈−1, 0, 0〉

= Dq

∑

k,a,b

Bn,k,a,b(q)〈k, a, b〉 =
∑

k,a,b

Bn,k,a,b(q)Dq〈k, a, b〉

=
∑

k,a,b

Bn,k,a,b(q)
(

qk
∑

0≤i≤a−1

〈k, i, a+ b− 1− i〉

+ qk+1
∑

0≤i≤b−1

〈k + 1, a+ i, b− 1− i〉

+ qk
∑

1≤i≤a

〈k, i, a+ b+ 1− i〉+ qk+1
∑

1≤i≤b+1

〈k + 1, a+ i, b+ 1− i〉
)

.

We calculate the contribution of each sum to the triple 〈k′, a′, b′〉. For the first
three sums we can simply reproduce the arguments developed in the proof
of Theorem 1.1. Only the fourth sum is to be checked. This time, the double
inequality 1 ≤ i ≤ b+1 prevails, instead of 1 ≤ i ≤ b. This leads to the sequence
0 ≤ a ≤ a′ − 1 = a+ i− 1 ≤ a + (b + 1) − 1 ≤ a+ b ≤ a′ + b′ − 1. Hence, the
contribution is

qk
′

∑

0≤a≤a′−1≤a′+b′−1

Bn,k′−1,a,a′+b′−1−a(q).

By Theorem 5.1 we have
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Dn+1
q 〈−1, 0, 0〉 =

∑

k′,a′,b′

Bn+1,k′,a′,b′(q)〈k
′, a′, b′〉.

Proof of (1.12). Rewrite identity (1.11) taking (2.10) into account:

Dn
q−1 secq−1(u)

=
∑

k,a,b

Bn,k,a,b(q
−1)(tanq−1(q−k−1u))b secq−1(q−k−1u)(tanq−1(q−ku))a

=
∑

k,a,b

Bn,k,a,b(q
−1)(−1)b(tanq(q

−ku))b Secq(q
−ku)(−1)a(tanq(q

−k+1u))a.

Hence, as 0 ≤ k ≤ n− 1,

Qn−1Dn
q−1 secq−1(u)

=
∑

k,a,b

Bn,k,a,b(q
−1)(−1)a+b(tanq(q

n−1−ku))b Secq(q
n−1−ku)(tanq(q

n−ku))a

=
∑

k,a,b

Bn,n−1−k,a,b(q
−1)(−1)a+b(tanq(q

ku))b Secq(q
ku)(tanq(q

k+1u))a.

Finally, as n and a+ b are of the same parity, we have by Lemma 2.4

Dn
q Secq(u) = (−1)nqn(n−1)/2Qn−1Dn

q−1 secq−1(u),

=
∑

k,a,b

qn(n−1)/2Bn,n−1−k,a,b(q
−1)(tanq(q

ku))b Secq(q
ku)(tanq(q

k+1u))a.

This establishes identity (1.12).

6. Proof of Theorem 1.3

Let c′ = (c′0, c
′
1, . . . , c

′
m′) ∈ Θn+1 and 0 ≤ i ≤ m′. If c′0 ≥ 2, and if

1 ≤ 2j + 1 ≤ c′0, let

(6.1) c′[0, 2j + 1] := (2j, c′0 − (2j + 1), c′1, . . . , c
′
m′).

If 1 ≤ i ≤ m′ and 2 ≤ 2j ≤ c′i, let

(6.2) c′[i, 2j] := (c′0, . . . , c
′
i−1, 2j − 1, c′i − 2j, c′i+1, . . . , c

′
m′).

Finally, if 1 ≤ i ≤ m′ − 1 and c′i = 1, let

(6.3) c′[i, 1] := (c′0, . . . , c
′
i−1, c

′
i+1, . . . , c

′
m′).
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Theorem 6.1 (Recurrence relation for the polynomial An,c(q)). With c′ =
(c′0, c

′
1, . . . , c

′
m′) we have:

An+1,c′(q) =
∑

0≤2j+1≤c′0

q2jAn,c′[0,2j+1](q)(6.4)

+
∑

1≤i≤m′

qc
′

0+···+c′i−1

∑

2≤2j≤c′
i

q2j−1An,c′[i,2j](q)

+
∑

1≤i≤m′−1

χ(c′i = 1)qc
′

0+···+c′i−1An,c′[i,1](q),

where χ(c′i = 1) is equal to 1 if c′i = 1 holds and 0 otherwise.

Proof. Let w′ = (w′
0, w

′
1, . . . , w

′
m′) be a t-permutation from Tn+1 such that

Λw′ = c′ = (c′0, c
′
1, . . . , c

′
m′). Two cases are to consider: (i) 1 belongs to the

component wi (0 ≤ i ≤ m′) having at least two letters: write w ∈ Tn+1,c′,2;
(ii) the component wi is equal to the one-letter 1: write w ∈ Tn+1,c′,1. For each
word v, whose letters are integers, let v− designate the word obtained from v
by subtracting 1 from each of its letters. By convention, ǫ− := ǫ.

Case (i): we may write: w′
i = u′i1v

′
i, where at least one of the factors u′i,

v′i is nonempty. To w′ there corresponds a unique triple (w, i, λ(u′i1)) where
w := (w′−

0 , . . . , w′−
i−1, u

′−
i , v′−i , w′−

i+1, w
′−
m′). As w′

0 is rising alternating (when
nonempty) and the other components falling alternating, the length λ(u′i1) of
the word u′i1 is odd, say, 2j + 1, when i = 0 and even, say, 2j, when i ≥ 1.

Thus, the mapping w 7→ (w, i, λ(u′i1)) is a bijection of Tn+1,c′,2 to the set of
triples (w, i, j), where 0 ≤ i ≤ m′; w ∈ Tn, Λw is equal to c′[0, 2j + 1] when
i = 0 and to c′[i, 2j] when 1 ≤ i ≤ m′; 0 ≤ 2j + 1 ≤ c′0 when i = 0 and
2 ≤ 2j ≤ c′i when 1 ≤ i ≤ m′. Moreover,

invw′ =

{

2j + invw, when i = 0;
c′0 + · · ·+ c′i−1 + 2j − 1 + invw, when 1 ≤ i ≤ m′.

Case (ii): the mapping w′ 7→ (w, i) is a bijection of Tn+1,c′,1 to the set of the
pairs (w, i), where w := (w′−

0 , . . . , w′−
i−1, w

′−
i+1, w

′−
m′) and 1 ≤ i ≤ m′ − 1. Thus,

Λw = c′[i, 1]. Moreover, invw′ = c′0 + · · ·+ c′i−1 + invw.
Accordingly, (6.4) holds.

Let c = (c0, c1, . . . , cm) be a composition of a nonnegative integer n. If
1 ≤ i ≤ m, let

(i)c := (c0, . . . , ci−2, ci−1 + 1 + ci, ci+1, . . . , cm);(6.5)

c(i) := (c0, . . . , ci−1, 1, ci, · · · , cm).(6.6)

With the notations of (6.1)–(6.3) and (6.5)–(6.6) we then have:
(1)(c′[0, 2j + 1]) = c′.(6.7)

(i+1)(c′[i, 2j]) = c′.(6.8)

(c′[i, 1])(i) = c′.(6.9)
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Lemma 6.2. Let c = (c0, c1, . . . , cm) ∈ Θn. Then,

Dq tanq(q
cu) =

∑

1≤i≤m

qc0+···+ci−1
(

tanq(q
(i)

cu) + tanq(q
c
(i)

u)
)

.

Proof.

Dq tanq(q
cu) = Dq

∏

1≤i≤m

tanq(q
c0+···+ci−1u)

=
∑

1≤i≤m

tanq(q
c0u) · · · tanq(q

c0+···+ci−2u)

× qc0+···+ci−1
(

1 + tanq(q
c0+···+ci−1u) tanq(q

c0+···+ci−1+1u)
)

× tanq(q
c0+···+ci−1+1+ciu) · · · tanq(q

c0+···+ci−1+1+ci+···+cm−1u)

=
∑

1≤i≤m

qc0+···+ci−1
(

tanq(q
(i)

cu) + tanq(q
c
(i)

u)
)

.

In the next example, let c := tanq(q
cu) by convention, so that

Dqc =
∑

1≤i≤m

qc0+···+ci−1
(

(i)c+ c(i)
)

.

We get

Dq((0, 0)) := (1) + (0, 1, 0)

D2
q((0, 0)) := Dq

(

(1) + (0, 1, 0)
)

= 0 +
(

(2, 0) + q(0, 2) + (0, 1, 1, 0) + q(0, 1, 1, 0)
)

= (2, 0) + q(0, 2) + (1 + q)(0, 1, 1, 0);

D3
q((0, 0)) := Dq

(

(2, 0) + q(0, 2) + (1 + q)(0, 1, 1, 0)
)

=
(

q2(3) + q2(2, 1, 0)
)

+ q
(

(3) + (0, 1, 2)
)

+ (1 + q)((2, 1, 0) + q(0, 3, 0) + q2(0, 1, 2)

+ (0, 1, 1, 1, 0) + q(0, 1, 1, 1, 1, 0)+ q2(0, 1, 1, 1, 0)
)

= (q + q2)(3) + (1 + q + q2)(2, 1, 0) + (q + q2 + q3)(0, 1, 2)

+ (q + q2)(0, 3, 0) + (1 + q)(1 + q + q2)(0, 1, 1, 1, 0).

We can then calculate the polynomials (see also Table 3): A1,(1)(q) =
A1,(0,1,0)(q) = 1;
A2,(2,0)(q) = 1, A2,(0,2)(q) = q, A2,(0,1,1,0)(q) = 1, A2,(0,1,1,0)(q) = q;
A3,(3)(q) = q + q2, A3,(2,1,0)(q) = 1 + q + q2, A3,(0,1,2)(q) = q + q2 + q3,
A3,(0,3,0)(q) = q + q2, A3,(0,1,1,1,0)(q) = (1 + q)(1 + q + q2).
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Proof of (1.14). Let c′ = (c′0, c
′
1, . . . , c

′
m′). By (6.1) and (6.7) we have

(1)c = c′ when c′0 ≥ 2, if and only if c = c′[0, 2j + 1] for some j such that
1 ≤ 2j + 1 ≤ c′0. By (6.2) and (6.8) the relation (i)c = c′ holds for i such
that 1 ≤ i ≤ m′ and c′i ≥ 2, if and only if c = c′[i, 2j] for some j such that
2 ≤ 2j ≤ c′i. Finally, c

(i) = c′ holds for i such that 1 ≤ i ≤ m′ − 1 and c′i = 1,
if and only if c = c′[1, i].

Finally, (1.14) is proved by induction. Assume it is rue for n. Then,

Dn+1
q tanq(u) = DqD

n
q tanq(u) = Dq

(

∑

c∈Θn

An,c(q) tanq(q
cu)

)

=
∑

c∈Θn

An,c(q)Dq tanq(q
cu)

=
∑

c∈Θn

An,c(q)
∑

1≤i≤m

qc0+···+ci−1
(

tanq(q
(i)

cu) + tanq(q
c
(i)

u)
)

.

=
∑

c′∈Θn+1

(

∑

0≤2j+1≤c′0

q2jAn,c′[0,2j+1](q)

+
∑

1≤i≤m′

qc
′

0+···+c′i−1

∑

2≤2j≤c′
i

q2j−1An,c′[i,2j](q)

+
∑

1≤i≤m′−1

χ(c′i = 1)qc
′

0+···+c′i−1An,c′[i,1](q)
)

tanq(q
c
′

u)

=
∑

c′∈Θn+1

(

An+1,c′(q)
)

tanq(q
c
′

u). [By Theorem 6.1]

For each c = (c0, c1, . . . , cm, 0) ∈ Θ−
n , let Φ(c) := tanq(q

c
−

u) secq(q
nu).

Lemma 6.3. Let c = (c0, c1, . . . , cm, 0) ∈ Θ−
n . Then,

DqΦ(c) =
∑

1≤i≤m

(

qc0+···+ci−1(Φ((i)c) + Φ(c(i))
)

+ qnΦc(m+1).

Proof.

DqΦ(c) = Dq tanq(q
c
−

u) secq(q
nu)

=
∑

1≤i≤m

tanq(q
c0u) · · · tanq(q

c0+···+ci−2u)

× qc0+···+ci−1
(

1 + tanq(q
c0+···+ci−1u) tanq(q

c0+···+ci−1+1u)
)

× tanq(q
c0+···+ci−1+1+ciu) · · · tanq(q

c0+···+ci−1+1+ci+···+cm−1u)

× secq(q
n+1u)

+ qn tanq(q
c
−

u) tanq(q
nu) secq(q

n+1u)

=
∑

1≤i≤m

(

qc0+···+ci−1(Φ((i)c) + Φ(c(i))
)

+ qnΦc(m+1).
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Proof of (1.15). Again (1.15) is proved by induction. Assume that (1.15)
holds for n. Then,

Dn+1
q secq(u) = DqD

n
q secq(u) = Dq

(

∑

c∈Θ−

n

An,c(q) Φ(c)
)

=
∑

c∈Θ−

n

An,c(q)DqΦ(c)

=
∑

c∈Θ−

n

An,c(q)
∑

1≤i≤m

(

qc0+···+ci−1(Φ((i)c) + Φ(c(i))
)

+ qnΦc(m+1)

=
∑

c′∈Θ−

n+1

(

∑

0≤2j+1≤c′0

q2jAn,c′[0,2j+1](q)

+
∑

1≤i≤m′

qc
′

0+···+c′i−1

∑

2≤2j≤c′
i

q2j−1An,c′[i,2j](q)

+
∑

1≤i≤m′−1

χ(c′i = 1)qc
′

0+···+c′i−1An,c′[i,1](q)
)

Φ(c′)

=
∑

c′∈Θ−

n+1

An+1,c′(q) Φ(c′). [By Theorem 6.1]

Proof of (1.16). In our proof of (1.16) given next we again make a
full use of the duality derived in Section 2 between the q-series Secq(u),

tanq(u) and their analogs secq−1(u), tanq−1(u). Since tanq−1((q−1)c
−

u) =

(−1)µc tanq((q
−1)c

−

qu), identity (1.15) can be rewritten

Dn
q−1 secq−1(u) =

∑

c∈Θ−

n

An,c(q
−1) tanq−1((q−1)c

−

u) secq−1((q−1)nu)

= (−1)µc
∑

c∈Θ−

n

An,c(q
−1) tanq((q

−1)c
−

qu) Secq((q
−1)nqu).

By Lemma 2.3,

Qn−1Dn
q−1 secq−1(u) = (−1)µc

∑

c∈Θ−

n

An,c(q
−1) tanq(q

ρc−

u) Secq(u).

By Lemma 2.4, and since n and µc are of the same parity, we get

Dn
q Secq(u) = (−1)nqn(n−1)/2Qn−1Dn

q−1 secq−1(u)

=
∑

c∈Θ−

n

qn(n−1)/2An,c(q
−1) tanq(q

ρc−

u) Secq(u).

This proves identity (1.16).
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7. More on q-trigonometric functions

Some parts of this section are of semi-expository nature, although, to our
knowledge, the combinatorial properties of “Secq(u)” have not been explicitly
written down. Let

tanq(u) =
∑

n≥0

A2n+1(q)
u2n+1

(q; q)2n+1
;(7.1)

secq(u) =
∑

n≥0

A2n(q)
u2n

(q; q)2n
;(7.2)

Secq(u) =
∑

n≥0

ASec
2n (q)

u2n

(q; q)2n
;(7.3)

be the q-expansions of the three series tanq(u), secq(u), Secq(u), respectively.

Let
[

N
M

]

q
:= (q; q)N/((q; q)M (q; q)N−M ) (0 ≤ M ≤ N) be the Gaussian

polynomial. Identities (2.3)-(2.5) yield

A2n+1(q) =
∑

0≤k≤n−1

[

2n

2k + 1

]

q2k+1A2k+1(q)A2n−2k−1(q),(7.4)

A2n(q) =
∑

0≤k≤n−1

[

2n− 1

2k

]

q

q2kA2k(q)A2n−2k−1(q),(7.5)

ASec
2n (q) =

∑

0≤k≤n−1

[

2n− 1

2k

]

q

ASec
2k (q) q2n−2k−1A2n−2k−1(q),(7.6)

for n ≥ 1 with the initial conditions A1(q) = 1, A0(q) = 1 and ASec
0 (q) = 1.

Hence, the coefficients An(q), A
Sec
2n (q) (n ≥ 0) occurring in the q-expansions of

tanq(u), secq(u), Secq(u) in (7.1)–(7.2) are polynomials with positive integral
coefficients.

The first values of the polynomials An(q) and ASec
2n (q) (n ≥ 0) can be

calculated by means of (7.4)—(7.6):
A1(q)=1; A3(q)=q + q2; A5(q)=q

2 + 2q3 + 3q4 + 4q5 + 3q6 + 2q7 + q8;

A0(q) = A2(q) = 1; A4(q) = q + 2q2 + q3 + q4;
A6(q) = q2 + 3q3 + 5q4 + 8q5 + 10q6 + 10q7 + 9q8 + 7q9 + 5q10 + 2q11 + q12;

ASec
0 (q) = ASec

2 (q) = q; ASec
4 (q) = q2 + q3 + 2q4 + q5;

ASec
6 (q) = q3+2q4+5q5+7q6+9q7+10q8+10q9+8q10+5q11+3q12+ q13;

We note that the two identities (7.5) and (7.6) can be combined into the
following single formula, valid for n ≥ 1 with A0(q) = 1:

An(q) =
∑

0≤k≤⌊n/2⌋−1

[

n− 1

2k + 1

]

q

qn−2k−2A2k+1(q)An−2k−2(q).
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The polynomials A2n+1(q) (resp. A2n(q)) defined by (7.1) and (7.2) are usually
called the q-tangent numbers and q-secant numbers, respectively. No traditional
name exists for the polynomials ASec

2n (q), as they are intimately related to the
A2n+1(q)’s by identity (7.12).

For each n ≥ 0 the set of all rising (resp. falling) alternating permutations
σ = σ(1)σ(2) · · ·σ(n) of 1 2 . . . n is denoted by RAn (resp. FAn). As already
mentioned in Section 7, the old result by Désiré André [An81] asserts that both
#RA2n+1 and #FA2n+1 (resp. #RA2n and #FA2n) are equal to the tangent
number T2n+1 (resp. secant number E2n) occurring in (1.1) and (1.2)

For the q-analog of this result we keep the same combinatorial set-up,
namely, RAn and FAn (n ≥ 0), but, as there are two different q-secants,
secq(u) and Secq(u), the coefficients in their q-expansions will have different
combinatorial interpretations. For each permutation σ = σ(1)σ(2) · · ·σ(n)
of 12 · · ·n (not necesarily an alternating permutation), let inv σ denote the
traditional number of inversions of σ.

Theorem 7.1. Let A2n+1(q) (resp. A2n(q), resp. A
Sec
2n (q)) be the coefficients

in the q-expansion of tanq(u) (resp. of secq(u), resp. of Secq(u)), as defined in
(7.1)–(7.2). Then,

A2n+1(q) =
∑

σ∈RA2n+1

qinv σ =
∑

σ∈FA2n+1

qinv σ;(7.7)

A2n(q) =
∑

σ∈RA2n

qinv σ;(7.8)

ASec
2n (q) =

∑

σ∈FA2n

qinv σ.(7.9)

The proofs of (7.7) – (7.9) are not reproduced here. It suffices to q-mimick
Desiré André’s [An81] classical proof.

The statistics “Ligne” and “imaj” have been defined in Section 8. By means
of the so-called “second fundamental transformation” (see, e.g., [Lo83, § 10.6],
[Fo68], [FS78]) we can construct a bijection Φ of the group of all permutations
onto itself with the property that

(7.10) Ligneσ = LigneΦ(σ) and inv σ = imajΦ(σ).

Saying that a permutation σ is falling (resp. rising) alternating is equivalent to
saying that Ligneσ = {1, 3, 5, . . .} (resp. = {2, 4, 6, . . .}). Accordingly, we also
have

A2n+1(q) =
∑

σ∈RA2n+1

qimaj σ =
∑

σ∈FA2n+1

qimaj σ;
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A2n(q) =
∑

σ∈RA2n

qimajσ;

ASec
2n (q) =

∑

σ∈FA2n

qimaj σ.

For each permutation σ = σ(1)σ(2) · · ·σ(n) let ρ (the mirror-image) and γ
(the complement) be defined by

γ σ(i) := n+ 1− σ(i); ρ σ(i) := σ(n+ 1− i) (1 ≤ i ≤ n).

The transformation ργ is a bijection of RA2n+1 onto FA2n+1 preserving the
number of inversions. This makes up a combinatorial proof of the second
identity in (7.7).

Proposition 10.1. We have

q(2n+1)(2n)/2A2n+1(q
−1) = A2n+1(q);(7.11)

q(2n)(2n−1)/2A2n(q
−1) = ASec

2n (q).(7.12)

Proof. The transformation ρ is a bijection of RA2n+1 onto RA2n+1 with
the property that: inv σ + inv ρ σ = (2n)(2n + 1)/2. By (7.7) we have
A2n+1(q) =

∑

σ∈FA2n+1

qinv σ =
∑

σ∈FA2n+1

qinv ρ σ = q2n(2n+1)/2
∑

σ∈FA2n+1

q− inv σ =

q2n(2n+1)/2A2n+1(q
−1). In the same manner, the transformation ρ is a bijection

of RA2n onto FA2n with the property that: inv σ + inv ρ σ = (2n)(2n− 1)/2.
Hence, ASec

2n (q) =
∑

σ∈FA2n

qinv σ =
∑

σ∈RA2n

qinv ρ σ = q2n(2n−1)/2
∑

σ∈RA2n

q− inv σ =

q2n(2n−1)/2A2n(q
−1)

8. Proof of Theorem 1.4

By means of the second fundamental transformation Φ, already mentioned
in (7.10), and the bijection i that maps each permutation σ from the symmetric
group Sn onto its inverse σ−1, we can form ψ := iΦ i. The latter bijection has
the following properties:

Ligneψ(σ) = Ligneσ; invψ(σ) = imajσ.

If c = (c0, c1, . . . , cm) is a composition of n and σ = σ(1)σ(2) · · ·σ(n) a
permutation from Sn, let

(Ligne \c)σ := Ligneσ \ {c0, c0 + c1, . . . , c0 + c1 + · · ·+ cm−1},

so that for every composition c of n

(Ligne \c)ψ(σ) = (Ligne \c)σ; invψ(σ) = imajσ.(8.1)
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Now, consider a t-permutation w = (w0, w1, . . . , wm) of order n such that
Λw = c = (c0, c1, . . . , cm). The transformation ψ maps the permutation
σ := w0w1 · · ·wm to another permutation ψ(σ). Let (w′

0, w
′
1, . . . , w

′
m) be the

factorization of ψ(σ), written as a word of n letters, defined by: λw′
0 = c0,

λw′
1 = c1, . . . , λw

′
m = cm. Property (8.1) implies that the mapping

ψ : w = (w0, w1, . . . , wm) 7→ w′ := (w′
0, w

′
1, . . . , w

′
m)

is a bijection of Tn onto itself having the properties:

(8.2) Λw′ = Λw = c, invw′ = imajw.

For instance, (see [FS78, p. 147] where the same numerical example is here
reproduced) we have: Φ(7 4 9 2 6 1 5 8 3) = 4 7 2 6 1 9 5 8 3. Hence,

w=6 4 9 2 7 5 1 8 3
i

−→ 7 4 9 2 6 1 5 8 3
Φ

−→ 4 7 2 6 1 9 5 8 3
i

−→ 5 3 9 1 7 4 2 8 6=w′.

The t-permutation w = (ǫ, 6, 4, 927, 5183) is then mapped under ψ onto w′ =
(ǫ, 5, 3, 917, 4286).Moreover, imajw = 1+3+5+8 = 17 = 1+3+1+3+5+1+3 =
invw′.

From Theorem 1.3 and (8.2) it then follows that

An,c(q) =
∑

w∈Tn,Λw=c

qinvw =
∑

w∈Tn,Λw=c

qimajw.

Now, sum the previous identity over all t-compositions of n. We get:
∑

µ c=m

An,c(q) =
∑

µ c=m

∑

w∈Tn,Λw=c

qinvw =
∑

µ c=m

∑

w∈Tn,Λw=c

qimajw

=
∑

k≥0, a+b=m
w∈Tn,k,a,b

qimajw =
∑

k≥0
a+b=m

An,k,a,b(q).

This proves (1.17).

For instance, from the tables 2 and 3 we can verify that (1.17) holds for n = 3
and for m = 2: A3,0,0,2(q)+A3,1,0,2(q) +A3,1,1,1(q)+A3,1,2,0(q)+A3,2,2,0(q) =
1 + q2 + (2q + 2q2) + q + q3 = (q + q2) + (1 + q + q2) + (q + q2 + q3) =
A3,(3)(q) +A3,(2,1,0)(q) +A3,(0,1,2)(q).

The same technique of proof can be used for the s-permutations. We get:
∑

c∈Θ−

n,m+1

An,c(q) =
∑

c∈Θ−

n,m+1

∑

w∈T −

n ,Λw=c

qinvw =
∑

c∈Θ−

n,m+1

∑

w∈T −

n ,Λw=c

qimajw

=
∑

k≥0, a+b=m

w∈T −

n,k,a,b+1

qimajw =
∑

k≥0
a+b=m

Bn,k,a,b(q).

This proves (1.18).
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9. Proof of Theorem 1.5

If J = (J0, J1, . . . , Jm−1, Jm) is a sequence of disjoint subsets of the interval
[n ] := {1, 2, . . . , n} of union [n ] with m ≥ 1, then (#J0,#J1, . . . ,#Jm) is a
composition c= (c0, c1, . . . , cm) of n. We then write #J := c. Also, let invJ
denote the number of ordered pairs (x, y) where x ∈ Jk, y ∈ Jl, k < l and
x > y. A classical result that goes back to MacMahon (see, e.g. [An76, § 3.4])
makes it possible to write for each composition c of n

∑

J,#J=c

qinvJ =

[

n

c0, c1, . . . , cm

]

q

,

where the right-hand side is the q-multinomial coefficient equal to

(q; q)n
(q; q)c0 (q; q)c1 · · · (q; q)cm

.

Theorem 9.1. For each t-composition c = (c0, c1, . . . , cm−1, cm) of n (n ≥ 1)
we have:

An,c(q) =
[

n
c0,c1,...,cm−1,cm

]

q
Ac0(q)Ac1(q) · · ·Acm−1

(q)ASec
cm (q).

Proof. Each t-permutation w from Tn such that Λw = c and µ c = m ≥ 1
is completely characterized by a sequence

(

(I0, σ0), (I1, σ1), . . . , (Im, σm)
)

,

having the following properties:
(i) the sequence I(w) := (I0, I1, . . . , Im) consists of disjoint subsets of the

interval [n ] := {1, 2, . . . , n} of union [n ]; moreover, #I(w) := c ;
(ii) σ0 ∈ RAc0 , σ1 ∈ FAc1 , . . . , σm ∈ FAcm .

If I(w) = J , then invw = invJ + inv σ0 + inv σ1 + · · · + inv σm−1 + inv σm.
Hence,

An,c(q) =
∑

w∈Tn,Λw=c

qinvw =
∑

w∈Tn,#I(w)=c

qinvw

=
∑

J,#J=c

∑

w,I(w)=J

qinvw

=
∑

J,#J=c

qinvJ
∑

σ0∈RAc0

qinv σ0

∑

σ1∈FAc1

qinv σ1 × · · · ×
∑

σm∈FAcm

qinv σm

=
[

n
c0,c1,...,cm

]

q
Ac0(q)Ac1(q) · · ·A

Sec
cm

(q).
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The factorial generating functions for the polynomials

An(x, q) :=
∑

c∈Θn

xµ cAn,c(q), Bn(x, q) :=
∑

c∈Θ−

n

xµ c−1Bn,c(q),

can be derived from Theorem 9.1.

Proof of Theorem 1.5. For m ≥ 1 we have:
∑

n≥0

un

(q; q)n

∑

w∈Θn
µ c=m

An,c(q)

=
∑

n≥0

un

(q; q)n

∑

c0+c1+···
+cm=n

[

n
c0,c1,...,cm

]

q
Ac0(q)Ac1(q) · · ·A

Sec
cm

(q)

=
∑

n≥0

un
∑

c0+c1+···
+cm=n

Ac0(q)

(q; q)c0

Ac1(q)

(q; q)c1
· · ·

Acm−1
(q)

(q; q)cm−1+1

ASec
cm

(q)

(q; q)cm
.

When m ≥ 1, the integers c0 and cm are even; if, furthermore, m ≥ 2, then c1,
. . . , cm−1 are odd. Hence, the previous identity may be rewritten as
∑

n≥0

un

(q; q)n

∑

w∈Θn
µ c=m

An,c(q)

=
∑

j0≥0

A2j0(q)
u2j0

(q; q)2j0

(

∑

j≥0

A2j+1(q)
u2j+1

(q; q)2j+1

)m−1 ∑

jm≥0

ASec
2jm

(q)
u2jm

(q; q)2jm

= secq(u)
(

tanq(u)
)m−1

Secq(u).

When m = 0, then n is odd. Hence, An,c(q) = An(q) (n odd) and
∑

n≥0

un

(q; q)n

∑

w∈Θn

µ c=0

An,c(q) = tanq(u).

Thus,
∑

n≥0

An(x, q)
un

(q; q)n
=

∑

n≥0

un

(q; q)n

∑

m≥0

xm
∑

w∈Θn
µ c=m

An,c(q)

=
∑

n≥0

un

(q; q)n

∑

w∈Θn

µ c=0

An,c(q) +
∑

m≥1

xm
∑

n≥0

un

(q; q)n

∑

w∈Θn
µ c=m

An,c(q)

= tanq(u) +
∑

m≥1

secq(u)
(

x tanq(u)
)m−1

x Secq(u)

= tanq(u) + secq(u)(1− x tanq(u))
−1x Secq(u),

which proves (1.19).

29



DOMINIQUE FOATA AND GUO-NIU HAN

The proof of (1.20) is quite similar. The only difference is the fact that
c = (c0, c1, . . . , cm, 0) is now an s-composition, so that, c0 is even and if m ≥ 1
all the other ci’s are odd. We then get:

∑

n≥0

un

(q; q)n

∑

w∈Θ−

n

µ c=m+1

An,c(q) =
∑

j0≥0

A2j0(q)
u2j0

(q; q)2j0

(

∑

j≥0

A2j+1(q)
u2j+1

(q; q)2j+1

)m

= secq(u)
(

tanq(u)
)m
.

Then
∑

n≥0

Bn(x, q)
un

(q; q)n
=

∑

m≥0

xm
∑

n≥0

un

(q; q)n

∑

w∈Θ−

n

µ c=m+1

An,c(q)

=
∑

m≥0

secq(u)
(

x tanq(u)
)m

= secq(u)(1− x tanq(u))
−1,

which proves (1.20).

10. Specializations

Our three families of polynomials (An,k,a,b(q)), (Bn,k,a,b(q)), and (An,c(q))
involve specializations that relate to other classes of generating polynomials or
classical numbers that have been studied in previous works. Those polynomials
are displayed in Tables 2–4 at the end of the paper. Each table appears as
a matrix, whose (n,m)-cell contains several polynomials. In the (n,m)-cell
of Table 2 (resp. Table 3) are reproduced all the polynomials An,k,a,b(q) (or
Bn,k,a,b(q)) such that a+ b = m (resp. An,c(q) (or Bn,c(q)) such that µ c = m.
The specializations we deal with refer to rows, columns or diagonals of those
tables. Others are obtained by summing the above polynomials with respect to
certain subscripts.

To this end we use the following notations:

An,k,a+b=m(q) :=
∑

a+b=m

An,k,a,b(q);(10.1)

An,a+b=m(q) :=
∑

k≥0
a+b=m

An,k,a,b(q);(10.2)

By Theorem 1.4 we also have:

An,a+b=m(q) :=
∑

µ c=m

An,c(q).

Analogous definitions are made for the polynomials Bn,k,a,b(q).
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10.1. The first column of (An,k,a,b(q)), (Bn,k,a,b(q)). The (t, q)-analogs of
tangent and secant have been introduced in our previous paper [FH11]. For
each r ≥ 0 form the q-series:

sin(r)q (u) :=
∑

n≥0

(−1)n
(qr; q)2n+1

(q; q)2n+1
u2n+1;

cos(r)q (u) :=
∑

n≥0

(−1)n
(qr; q)2n
(q; q)2n

u2n;

tan(r)q (u) :=
sin(r)q (u)

cos
(r)
q (u)

;

sec(r)q (u) :=
1

cos
(r)
q (u)

.

The (t, q)-analogs of the tangent and secant numbers have been defined as the
coefficients T2n+1(t, q) and E2n(t, q), respectively, in the following two series:

∑

r≥0

tr tan(r)q (u) =
∑

n≥0

u2n+1

(t; q)2n+2
T2n+1(t, q);(10.3)

∑

r≥0

tr sec(r)q (u) =
∑

n≥0

u2n

(t; q)2n+1
E2n(t, q).(10.4)

It was then proved that T2n+1(t, q) and E2n(t, q) have the following combina-
torial interpretations:

T2n+1(t, q) =
∑

σ∈RA2n+1

t1+idesσqimajσ;

E2n(t, q) =
∑

σ∈RA2n

t1+idesσqimajσ.

Now, the set T2n+1,k,0,0 is the set of all t-permutations w = (w0) of order
(2n+1), where w0 is simply an element of RA2n+1, that is, a rising alternating
permutation of order (2n+ 1). Hence,

T2n+1(t, q) =
∑

k≥1

tk+1A2n+1,k,0,0(q).

Accordingly, Theorem 4.1 provides a method for calculating the polynomials
T2n+1(t, q), only defined so far by their generating function (10.3). In an
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equivalent manner, we can also say that the factorial generating function for
the first column of the matrix (An,k,a,b(q)) is given by

∑

r≥0

tr tan(r)q (u) =
∑

n≥0

u2n+1

(t; q)2n+2

∑

k≥1

tk+1A2n+1,k,0,0(q).

In the same way, we get:

E2n(t, q) =
∑

k≥1

tk+1B2n,k,0,0(q),

which also provides, either a way of calculating the (t, q)-analogs E2n(t, q) of
the secant numbers, or writing the factorial generating function for the first
column of the matrix (Bn,k,a,b(q)).

10.2. The super-diagonal (n, n + 1) of the matrix (An,k,a,b(q)). As will be
shown, the polynomials An,k,a,b(q) (a + b = n + 1) of that super-diagonal
provide a refinement of the Carlitz q-analogs of the Eulerian polynomials [Ca54].
Twenty-one years later [Ca75] Carlitz also showed that they were generating
polynomials for the symmetric groups by the pair “des” (number of descents)
and “maj” (major index). Let (An(t, q)) be the sequence of those polynomials,
written as An(t, q) =

∑

j≥0

An,j(q) (n ≥ 0). The recurrence

An,j(q) = (1+q+· · ·+qj)An−1,j(q)+(qj+qj+1+· · ·+qn−1)An−1,j−1(q),

with the initial conditions A0,j(q) = A1,j(q) = δ0,j, provides a method for
calculating them.

Their first values are reproduced in the following table:

A0(t, q) = A1(t, q) = 1; A2(t, q) = 1 + tq; A3(t, q) = 1 + 2tq(q + 1) + t2q3;
A4(t, q) = 1 + tq(3q2 + 5q + 3) + t2q3(3q2 + 5q + 3) + t3q6;
A5(t, q) = 1 + tq(4q3 + 9q2 + 9q + 4) + t2q3(6q4 + 16q3 + 22q2 + 16q + 6) +

t3q6(4q3 + 9q2 + 9q + 4) + t4q10.

Now, go back to the recurrence for the polynmials An,k,a,b(q) shown in (4.1)
and rewrite it when a′+b′ = m′ = n+2. The coefficients An,k′−1,a,m′+1−a(q) =
An,k′−1,a,n+3−a(q) and An,k′,a,m′+1−a(q) = An,k′,a,n+3−a(q) vanish, because
An,k,a,b(q) = 0 when a+ b ≥ n+ 2. Hence,

An+1,k′,a′,n+2−a′(q)=qk
′

(

∑

0≤a≤a′−1≤n

An,k′−1,a,n+1−a(q)

+
∑

1≤a′≤a≤n+1

An,k′,a,n+1−a(q)
)

,

32



TANGENT AND SECANT q-DERIVATIVE POLYNOMIALS

valid for n ≥ 0 with the initial condition: A0,k,a,b(q) = δk,0δa,1δb,0. For n ≥ 0
let An,k,a(q) := An,k,a,n+1−a(q), so that the previous recurrence can be written
in the form

An+1,k′,a′(q)=qk
′

(

∑

0≤a≤a′−1≤n

An,k′−1,a(q) +
∑

1≤a′≤a≤n+1

An,k′,a(q)
)

,

with 0 ≤ a′ ≤ n+2 and makes it possible the calculations of those polynomials:

A1,0,1(q) = 1;

A2,0,1(q) = 1, A2,1,2(q) = q;

A3,0,1(q)=1, A3,1,1(q)=q
2, A3,1,2(q)=q + q2, A3,1,3(q)=q, A3,2,3(q)=q

3;

A4,0,1(q) = 1,A4,1,1(q) = 2q2+2q3, A4,1,2(q) = q+2q2+q3, A4,1,3(q) = q+q2,
A4,1,4(q) = q, A4,2,1(q) = q5, A4,2,2(q) = q4 + q5, A4,2,3(q) = q3 + 2q4 + q5,
A4,2,4(q) = 2q3 + 2q4, A4,3,4(q) = q6.

Theorem 10.1. For each n ≥ 0 and each j ≥ 0 the coefficient An,j(q) of t
j in

the Carlitz q-Eulerian polynomial An(t, q) admits the following refinement:

(10.5) An,j(q) =
∑

a≥0

An,j,a(q).

For instance, A4,1(q) = 3q+5q2+3q3 = (2q2+2q3)+(q+2q2+q3)+(q+q2)+q =
A4,1,1(q)+A4,1,2(q)+A4,1,3(q) +A4,1,4(q).

Proof. Each polynomial An(t, q) is the generating polynomial for Sn by the
pair (“number of descents”,“major index”), as established by Carlitz [Ca75], or,
in an equivalent manner, by the pair (ides, imaj). This can also be expressed by

(10.6) An,j(q) =
∑

σ∈Sn,idesσ=j

qimajσ,

By Theorem 9.1 An,j,a(q) = An,j,a,n+1−a(q) is the generating polynomial
for the set of all t-permutations w of order n such that µw = n + 1,
idesw = j and minw = a by “imaj.” Such t-permutations are of the form
w = (w0, w1, w2, . . . , wn+1), so that necessarily, w0 = wn+1 = ǫ, and the other
components wi are one-letter words. Accordingly, An,j,a(q) is the generating
polynomial for all (ordinary) permutations σ = w1w2 · · ·wn of 12 · · ·n such
that idesσ = j and wa = 1, that is,

(10.7) An,j,a(q) =
∑

σ∈Sn,idesσ=j,
min σ=a

qimajσ.

Thus (10.5) is a consequence of (10.6) and (10.7).
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For each integer n ≥ 1 let [n]q := (q; q)n/(1− q)n = 1 + q + · · ·+ qn−1. By
summing the An,j,a’s over the pair (j, a) we get the polynomial An,a+b=n+1(q)
defined in (10.2), which is the generating polynomial for Sn by “inv,” well-
known to be equal to

(10.8) An,a+b=n+1(q) = [1]q [2]q · · · [n]q,

also equal (using the same combinatorial interpretation) to Bn,a+b=n(q) =
∑

k≥0,a+b=n

Bn,k,a,b(q).

10.3. The subdiagonal (n, n − 1) of the matrix (An,k,a,b(q)). Our purpose
is to evaluate the polynomial An,a+b=n−1(q) for each n ≥ 1, which is the
generating function for all t-permutations of order n such that µw = n− 1 by
“inv.” Such t-permutations w have one of the three forms:

(1) w = (x1x2, x3, x4, . . . , xn, ǫ) with x1 < x2;
(2) w = (ǫ, x1, x2, . . . , xn−2, xn−1xn) with xn−1 > xn;
(3) (ǫ, x1, . . . , xi−1, xixi+1xi+2, xi+3, . . . , xn, ǫ) with 1 ≤ i ≤ n−2, xi > xi+1,

xi+1 < xi+2.

The g.f. of the t-permutations of form (1) or (2) by “inv” is equal to

(1 + q)

[

n

2, 1n−2

]

q

= [2]q [3]q [4]q · · · [n]q.

The g.f. of the t-permutations of form (3) by “inv” is equal to

∑

1≤i≤n−2

[

n

1i−1, 3, 1n−i−2

]

q

× q(q + 1) = (n− 2)q(q + 1)

[

n

3, 1n−3

]

q

= (n− 2)q [2]q [4]q · · · [n]q,

so that the total g.f. is equal to

[2]q [4]q · · · [n]q([3]q + (n− 2)q)

= [2]q [4]q · · · [n]q(1 + q + q2 + (n− 2)q)

= [1]q [2]q
(

1 + (n− 1)q + q2
)

[4]q · · · [n]q.

Thus, An,a+b=n−1(q) = [1]q [2]q
(

1 + (n− 1)q + q2
)

[4]q · · · [n]q.

10.4. The subdiagonal (n, n − 2) of the matrix (Bn,k,a,b(q)). Using the
same combinatorial technique as in 10.3, but this time operating with the s-
permutations we get the following evaluation for each n ≥ 2:

Bn,a+b=n−2(q) = (1 + (n− 1)q + (n− 1)q2) [4]q · · · [n]q.
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10.5. Two q-analogs of the Springer numbers. It was recalled in the In-
troduction ((1.7) and (1.20)) that sec(u)(1 − x tan(u))−1 for x = 1 was the
exponential generating function for the Springer numbers. Referring to (1.21)
we then see that secq(u)(1 − tanq(u))

−1 is the factorial generating function
for the q-analogs of the Springer numbers, which are simply the generating
polynomials for the s-permutations by “imaj” or “inv.”

Note that Secq(u)(1 − tanq(u))
−1 is also the factorial generating for such

q-analogs, but this time for the S-permutations by “imaj” or “inv;”

10.6. t-compositions and Fibonacci triangle. Let α(n,m) := #Θn,m (resp.
β(n,m) := #Θ−

n,m+1) be the number of t-compositions (resp. s-compositons).
From the previous lists of the Θi’s made in Section 1 we have the next table,
where the α(n,m)’s (resp. β(n,m)’s) have been reproduced in bold face (resp.
plain type). To the right are displayed the row sums of those entries, which will
be proven to be the classical Fibonacci numbers.





















m = 0 1 2 3 4 5 6 7

n = 0 1 1

1 1 1 1

2 1 2 1 1

3 1 2 3 1 1

4 1 3 3 4 1 1

5 1 3 6 4 5 1 1

6 1 4 6 10 5 6 1 1





















1 1
2 1
3 2
5 3
8 5
13 8
21 13

Fig. 10.1. The coefficients α(n,m) and β(n,m)

The mapping (c0, c1, . . . , cm, 0) 7→ (c0, c1, . . . , cm−1) is a bijection of Θ−
n,m+1

onto Θn−1,m, because cm is odd. Hence β(n,m) = α(n − 1, m) (n ≥ 1). We
now only study the numbers α(n,m).

Proposition 10.2. With the initial values α(0, m) = δ1,m, α(1, m) = δ0,m +
δ2,m, the entries α(n,m) are inductively given by

α(n,m) = α(n− 1, m− 1) + α(n− 2, m) (n ≥ 2).

Proof. Let c = (c0, c1, . . . , cm−1, cm) ∈ Θn,m. If cm = 0 we define
φ(c) = (c0, c1, . . . , cm−1 − 1) ∈ Θn−1,m−1. If cm ≥ 1, then cm ≥ 2 because
cm is even. We define φ(c) = (c0, c1, . . . , cm−1, cm − 2) ∈ Θn−2,m. We verify
that φ is a bijection between Θn,m and Θn−1,m−1 +Θn−2,m.

For each n ≥ 0 let An(x) =
∑

m≥0 α(n,m)xm be the generating polynomials
of the coefficients α(n,m). From Proposition 10.23 it follows that A0(x) = x,
A1(x) = 1 + x2 and the recurrence formula

An+1(x) = xAn(x) + An−1(x) (n ≥ 1).
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Let A(x; u) :=
∑

n≥0An(x)u
n. Then, A(x; u)−x−u(1+x2) = xu(A(x; u)−

x) + u2A(x; u), so that A(x; u)(1− xu− u2) = x+ u and

A(x; u) =
∑

n≥0

An(x)u
n =

∑

c∈Θ

xµ cu|c| =
x+ u

1− u(x+ u)
.

Let x = 1 we obtain the generating function for the row sums An(1) =
∑

α(n,m) (m ≥ 0), which is equal to (1 + u)/(1 − u − u2). Thus, the row
sums are the classical Fibonacci numbers.

The polynomials An(x) are related to the polynomials Fn(x) already in-
troduced in Sloane’s Integer Encyclopedia [Sl06] under reference A102426 by
An(x) = xn+1Fn+1(x

−2) for n ≥ 0. Accordingly, the t-compositions provide a
natural combinatorial interpretation for their coefficients.

10.7. Further comment. Dominique Dumont [Du12] has drawn our atten-
tion to the two papers by Carlitz-Scoville [CS72] and Françon [Fr78]. Instead
of t-permutations or snakes, Carlitz and Scoville have dealt with “up-down se-
quences of length n+m with m infinite elements.” Such a sequence is a rising
alternating permutation x1x2 · · ·xn+m containing all the integers 1, 2, . . . , n
and m letters equal to −∞. Note that replacing all the commas in each t-
permutation w = (w0, w1, . . . , wm) by −∞ makes up a bijection of the set
of all t-permutations onto the set of all Carlitz-Scoville sequences. In Françon
[Fr78] can be found an unexpected combinatorial interpretation of the entries
b(n,m) in terms of computer file histories.

11. Tables

Four tables are being displayed, the first one containing the values of a(n,m)
and b(n,m) for 0 ≤ n ≤ 6, the second one containing the values of the
polynomials An,k,a,b(q) and Bn,k,a,b(q) for 0 ≤ n ≤ 4, the third one for
the polynomials An,c(q) for 0 ≤ n ≤ 4. The last one contains the values of
the polynomials An,a+b=n(q) and Bn,a+b=n(q), whose definitions are given in
(10.1)–(10.2).





















m = 0 1 2 3 4 5 6 7

n = 0 1 1

1 1 1 1

2 1 2 2 2

3 2 5 8 6 6

4 5 16 28 40 24 24

5 16 61 136 180 240 120 120

6 61 272 662 1232 1320 1680 720 720





















1.20 1
1.21 1
1.22 3
2.23 11
5.24 57
16.25 361
61.26 2763

Table 1. The coefficients a(n,m) and b(n,m)
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m= 0 1 2 3

n=0 B0,−1,0,0=1 A0,0,1,0=1

1 A1,0,0,0=1 B1,0,1,0=1 A1,0,1,1=1

2 B2,0,0,0=1 A2,0,0,1=1 B2,0,1,1=1 A2,0,1,2=1

A2,1,1,0=q B2,1,2,0=q A2,1,2,1=q

3 A3,1,0,0=q+q2 B3,0,0,1=1 A3,0,0,2=1 B3,0,1,2=1

B3,1,0,1=q2 A3,1,0,2=q2 B3,1,1,2=q2

B3,1,1,0=2q+q2 A3,1,1,1=2q+2q2 B3,1,2,1=q+q2

A3,1,2,0=q B3,1,3,0=q

A3,2,2,0=q3 B3,2,3,0=q3

4 B4,1,0,0=q+2q2+q3 A4,1,0,1=q+3q2+2q3 B4,0,0,2=1 A4,0,0,3=1

B4,2,0,0=q4 A4,1,1,0=q+q2 B4,1,0,2=2q2+2q3 A4,1,0,3=2q2+2q3

A4,2,0,1=q4+q5 B4,1,1,1=2q+4q2+2q3 A4,1,1,2=2q+5q2+3q3

A4,2,1,0=2q3+3q4+q5 B4,1,2,0=2q+q2 A4,1,2,1=2q+2q2

B4,2,0,2=q5 A4,1,3,0=q

B4,2,1,1=2q4+q5 A4,2,0,3= q5

B4,2,2,0=3q3+4q4+q5 A4,2,1,2=2q4+2q5

A4,2,2,1=3q3+5q4+2q5

A4,2,3,0=2q3+2q4

A4,3,3,0=q6

m= 4 5

n=3 A3,0,1,3=1

A3,1,1,3=q2

A3,1,2,2=q+q2

A3,1,3,1=q

A3,2,3,1=q3

4 B4,0,1,3=1 A4,0,1,4=1

B4,1,1,3=2q2+2q3 A4,1,1,4=2q2+2q3

B4,1,2,2=q+2q2+q3 A4,1,2,3=q+2q2+q3

B4,1,3,1=q+q2 A4,1,3,2=q+q2

B4,1,4,0=q A4,1,4,1=q

B4,2,1,3=q5 A4,2,1,4=q5

B4,2,2,2=q4+q5 A4,2,2,3=q4+q5

B4,2,3,1=q3+2q4+q5 A4,2,3,2=q3+2q4+q5

B4,2,4,0=2q3+2q4 A4,2,4,1=2q3+2q4

B4,3,4,0=q6 A4,3,4,1=q6

Table 2. Polynomials An,k,a,b(q) and Bn,k,a,b(q) for 0 ≤ n ≤ 4
(An,k,a,b := An,k,a,b(q) and Bn,k,a,b := Bn,k,a,b(q))
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m= 0 1 2 3

n=0 A0(00)=1

1 A1(1)=1 A1(010)=1

2 A2(20)=1 A2(010)=1+q

A2(02)=q

3 A3(3)=q+q2 A3(210)=1+q+q2

A3(012)=q+q2+q3

A3(030)=q+q2

4 A4(04)=q2+q3+2q4+q5 A4(0112)=(1+q+q2)(q+q2+q3+q4)

A4(22)= (q+q3)(1+q+q2) A4(0130)=(q+q2)(1+q+q2 +q3)

A4(40)=q+2q2+q3+q4 A4(0310)=(q+q2)(1+q+q2+q3)

A4(2110)=(1+q+q2)(1+q+q2+q3)

m= 4 5

n=3 A3(01110)=(1+q)(1+q+q2)

4 A4(011110)=(1+q)(1+q+q2)(1+q+q2+q3)

Table 3. Polynomials An,c(q) for 0 ≤ n ≤ 4, (An(c0···cm) := An,(c0,...,cm)(q))

m= 0 1 2 3 4 5

n=0 1 1

1 1 1 1

2 1 1+q 1+q 1+q

3 q+q2 1+2q+2q2 1+3q+3q2+q3 1+2q+2q2+q3 1+2q+2q2+q3

4 q+2q2+q3+q4 2q+4q2+4q3 1+4q+7q2+7q3 1+5q+9q2+10q3 1+3q+5q2+6q3 1+3q+5q2+6q3

+4q4+2q5 +6q4+3q5 +9q4+5q5+q6 +5q4+3q5+q6 +5q4+3q5+q6

Table 4. Polynomials An,a+b=m(q) (n ≡ m+ 1 (mod 2)) and
Bn,a+b=m(q) (n ≡ m (mod 2)) for 0 ≤ n ≤ 4
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