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Finite Difference Calculus for Alternating Permutations

Dominique Foata and Guo-Niu Han

Abstract. The finite difference equation system introduced by Chris-
tiane Poupard in the study of tangent trees is reinterpreted in the alter-
nating permutation environment. It makes it possible to make a joint study
of both tangent and secant trees and calculate the generating polynomial
for alternating permutations by a new statistic, referred to as being the
greater neighbor of the maximum.

1. Introduction

Let f = (fn(k)) (n ≥ 1, 1 ≤ k ≤ 2n − 1) be a family of rational
numbers, displayed in a triangular array of the form

(1.1) f =

f1(1)
f2(1) f2(2) f2(3)

f3(1) f3(2) f3(3) f3(4) f3(5)
f4(1) f4(2) f4(3) f4(4) f4(5) f4(6) f4(7)

· · · · · · · · · · · · · · · · · · · · · · · · · · ·

and consider the finite difference equation system

(1.2) ∆2fn(k) + 4 fn−1(k) = 0 (n ≥ 2, 1 ≤ k ≤ 2n− 3),

where ∆ stands for the classical finite difference operator (see, e.g., [Jo39])

∆fn(k) := fn(k + 1)− fn(k),(1.3)

so that

∆2fn(k) = fn(k + 2)− 2fn(k + 1) + fn(k).(1.4)

If at each step n ≥ 2 the two entries fn(1) and fn(2) are given explicit
values, the whole system (1.2) has a unique solution, as the equation
∆2fn(1) + 4 fn−1(1) = 0 yields the value of fn(3), then ∆2fn(2) +
4 fn−1(2) = 0 the value of fn(4), etc.

The same conclusion holds if the two bordered diagonals

(f1(1), f2(1), f3(1), f4(1), . . . , fn(1), . . . ),

(f1(1), f2(3), f3(5), f4(7), . . . , fn(2n− 1), . . . )
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are taken as initial values. To see this we first note that the equation
f2(1)− 2f2(2) + f2(3) + 4f1(1) = 0 determines f2(2) uniquely. Assuming
that the triangle (fn′(m)) (1 ≤ m ≤ 2n′−1, n′ ≤ n) has been determined,
the system ∆2fn+1(m)+4 fn(m) = 0 (1 ≤ m ≤ 2n−1) consists of (2n−1)
linear equations with (2n− 1) unknowns, namely, fn+1(2), fn+1(3), . . . ,
fn+1(2n), the underlying matrix being trigonal of the form

Fn+1 :=



−2 1 0 0 · · · 0 0 0
1 −2 1 0 · · · 0 0 0
0 1 −2 1 · · · 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 · · · 1−2 1
0 0 0 0 · · · 0 1 −2

 .

As detFn+1 = −2n (n ≥ 1), the system has a unique solution.
The purpose of this paper is to solve (1.2) in four cases, when the sets

of initial values called [tan1], [tan2], [sec1], [sec2] are the following:

[tan1] f1(1) = 1; fn(1) = 0 and fn(2) = 2
∑
k

fn−1(k) for n ≥ 2;

[tan2] f1(1) = 1; fn(1) = fn(2n− 1) = 0 for n ≥ 2;

[sec1] f1(1) = 1; fn(1) =
∑
k

fn−1(k) and fn(2) = 3
∑
k

fn−1(k) for n ≥ 2;

[sec2] f1(1) = 1; fn(1) = fn(2n− 1) =
∑
k

fn−1(k) for n ≥ 2;

What is meant by solving is to see whether the integral values found for
the fn(k)’s have an interesting combinatorial interpretation and whether
their generating function relates to some classical special function. It will
be further proved (see Theorem 1.5) that both initial values [tan1] and
[tan2] (resp. [sec1] and [sec2]) in fact lead to the same solution of
the system. To avoid any confusion the solutions of (1.2) will be denoted
by (gn(k)) (resp. (hn(k))) when using [tan1] (resp. [sec1]). The first
numerical values of those solutions are displayed in Fig. 1.1.

g1(1)=1 T1 =1
g2(1)=0 g2(2)=2 g2(3)=0 T3 =2

g3(1)=0 g3(2)=4 g3(3)=8 g3(4)=4 g3(5)=0 T5 =16
g4(1)=0 g4(2)=32 g4(3)=64 g4(4)=80 g4(5)=64 g4(6)=32 g4(7)=0 T7 =272

h1(1)=1 E2 =1
h2(1)=1 h2(2)=3 h2(3)=1 E4 =5

h3(1)=5 h3(2)=15 h3(3)=21 h3(4)=15 h3(5)=5 E6 =61
h4(1)=61 h4(2)=183 h4(3)=285 h4(4)=327 h4(5)=285 h4(6)=183 h4(7)=61

[E8=1385

Fig. 1.1. The two triangles of the gn(k)’s and hn(k)’s

To the right of each triangle have been calculated the row sums, which
are equal, as stated in the next theorem, to the tangent numbers (resp.
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the secant numbers). Those classical numbers, denoted by T2n+1 and E2n,
appear in the Taylor expansions of tanu and secu:

tanu =
∑
n≥0

u2n+1

(2n+ 1)!
T2n+1(1.5)

=
u

1!
1 +

u3

3!
2 +

u5

5!
16 +

u7

7!
272 +

u9

9!
7936 + · · ·

secu =
1

cosu
=
∑
n≥0

u2n

(2n)!
E2n(1.6)

= 1 +
u2

2!
1 +

u4

4!
5 +

u6

6!
61 +

u8

8!
1385 +

u10

10!
50521 + · · ·

(see, e.g., [Ni23, p. 177-178], [Co74, p. 258-259]).

Theorem 1.1. Let (gn(k)) (resp. (hn(k)) be the unique solution of the
finite difference equation system (1.2) when using the initial values [tan1]
(resp. [sec1]). Then, the row sums of the solutions are equal to∑

k

gn(k) = T2n−1 (n ≥ 1);(1.7) ∑
k

hn(k) = E2n (n ≥ 1).(1.8)

It will also be shown that the generating functions for the coefficients
gn(k) and hn(k) can be evaluated in the following forms.

Theorem 1.2. Let

Z(x, y) := 1 +
∑
n≥1

∑
1≤k≤2n+1

fn+1(k)
x2n+1−k

(2n+ 1− k)!

yk−1

(k − 1)!

and Ztan(x, y) (resp. Zsec(x, y)) when fn(k) := gn(k) (resp. fn(k) :=
hn(k)). Then,

Ztan(x, y) = sec(x+ y) cos(x− y);(1.9)

Zsec(x, y) = sec2(x+ y) cos(x− y).(1.10)

As Ztan(y, x) = Ztan(x, y) and Zsec(y, x) = Zsec(x, y), this implies the
following Corollary.

Corollary 1.3. The entries gn(k) and hn(k) have the symmetry property:

(1.11) gn(k) = gn(2n− k), hn(k) = hn(2n− k) (1 ≤ k ≤ 2n− 1).

In view of (1.7) and (1.8), two finite sets A2n−1 and A2n, of cardinalities
T2n−1 and E2n, are to be found, together with a statistic, call it “grn,”
defined on those sets with the property that∑

σ∈A2n−1

xgrnσ =
∑
k

gn(k)xk;(1.11)
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∑
σ∈A2n

xgrnσ =
∑
k

hn(k)xk.(1.12)

We shall use Désiré André’s old result [An1879, An1881], who introduced
the notion of alternating permutation, as being a permutation σ =
σ(1)σ(2) · · ·σ(n) of 12 · · ·n with the property that σ(1) > σ(2), σ(2) <
σ(3), σ(3) > σ(4), etc. in an alternating way. For each n ≥ 1 let An
denote the set of all alternating permutations of 12 · · ·n. He proved that
#A2n−1 = T2n−1, #A2n = E2n. The desired statistic “grn” is then the
following.

Definition. Let σ = σ(1)σ(2) · · ·σ(n) be an alternating permutation
from An, so that σ(i) = n for a certain i (1 ≤ i ≤ n). By convention, let
σ(0) = σ(n+ 1) := 0. Define the greater neighbor of n in σ to be

grn(σ) := max{σ(i− 1), σ(i+ 1)}.(1.13)

Also, let

An,k := {σ ∈ An : grn(σ) = k} (0 ≤ k ≤ n− 1).(1.14)

Theorem 1.4. Under the same assumptions as in Theorem 1.1 we have

gn(k) = #A2n−1,k−1 (n ≥ 1, 1 ≤ k ≤ 2n− 1);(1.15)

hn(k) = #A2n,k (n ≥ 1, 1 ≤ k ≤ 2n− 1).(1.16)

Example. There are T3 = 2 alternating permutations of length 3,
namely, 213 and 312, and grn(213) = grn(312) = 1, so that g2(1) =
#A3,0 = 0, g2(2) = #A3,1 = 2, g2(3) = #A3,2 = 0; there are E4 = 5
alternating permutations of length 4, namely, 4132, 4231, 3142, 3241,
2143, and grn(4132) = 1, grn(4231) = grn(3142) = grn(3241) = 2,
grn(2143) = 3, so that h2(1) = 1, h2(2) = 3, h2(3) = 1; in accordance
with the numerical values in Fig. 1.1.

As #A2n−1 = T2n−1, #A2n = E2n, following Désiré André’s result, we
see that Theorem 1.1 is a consequence of Theorem 1.4. Thus, an analytical
result is proved by combinatorial methods.

In Proposition 2.1 it will be proved that #A1,0 = 1, #A2n−1,0 =
#A2n−1,2n−2 = 0 (n ≥ 2) and #A2n−1,1 = 2T2n−3 (n ≥ 2); also,
#A2,1 = 1, #A2n,1 = #A2n,2n−1 = E2n−2 (n ≥ 2) and #A2n,2 = 3E2n−2
(n ≥ 2). In view of Theorem 1.4 this implies that conditions [tan2] and
[sec2] are fulfilled as soon as conditions [tan1] and [sec1] hold, and
then the following theorem.

Theorem 1.5. The entries (gn(k)) and (hn(k)) given by (1.15) and (1.16)
are also solutions of the finite difference equation system (1.2) when the
initial values [tan2] and [sec2] are used, respectively.
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Theorem 1.4 will be proved in Section 3, once evaluations of some
cardinalities such as #An,k will be made, as done in Section 2. The proof
of Theorem 1.2 is given in Section 4, together with further identities on
the gn(k) and hn(k)’s.

There are other combinatorial models which are also counted by tangent
and secant numbers, or in a one-to-one correspondence with alternating
permutations, in particular, the labeled, binary, increasing, topological
trees, also called “arbres binaires croissants complets” by Viennot [Vi88,
chap. 3, p. 111]. The set of those trees having n labeled nodes is denoted
by Tn. The statistic “pom” (parent of the maximum leaf ), introduced by
Poupard [Po89] for her strictly ordered, binary trees can be extended to
all of Tn. The usual bijection (see [Vi88]) γ : Tn → An, called projection,
has the property: pom(t) = grn(γ(t)), as proved in Theorem 5.1. We then
have another combinatorial interpretation for the polynomials

∑
k gn(k)xk

and
∑
k hn(k)xk.

As such, the triangle (gn(k)) (n ≥ 1, 1 ≤ k ≤ 2n − 1) does not
appear in Sloane’s On-Line Encyclopedia of Integer Sequences [Sl06], but
the triangle (gn(k)/2n−1) does under reference A008301 and is called
Poupard’s triangle, after her pioneering work on strictly ordered binary
trees [Po89]. It is banal to verify that 2n−1 divides gn(k) when dealing
with the combinatorial model Tn for n odd.

In contrast to Christiane Poupard [Po89], who showed that the dis-
tribution of the strictly ordered binary trees satisfied the finite difference
equation system ∆2f2n+1(k)+2 f2n−1(k) = 0, we have used the multiplica-
tive factor “4” in equation (1.2) to make a unified study of the tangent and
secant cases and deal with objects in one-to-one correspondence with alter-
nating permutations. Mutatis mutandis, identities (1.15), as well as (1.11)
concerning the tangent numbers, are due to her. She obtains the generating
function for her trees in the form: sec((x+y)/

√
2) cos((x−y)/

√
2) instead

of (1.9). However, the alternating permutation development in Sections 2
and 3, identity (1.10) and the combinatorial properties of the entries hn(k)
are new.

The triangle of the hn(k)’s appears in Sloane’s [Sl06] as sequence
A125053. It was deposited there by Paul D. Hanna. The entries have been
calculated by using a procedure equivalent to (1.2) and the initial condi-
tion [tan2]. No combinatorial interpretation is given and no generating
function calculated.

2. Some special values

The evaluations of #A2n−1,k−1 and #A2n,k made in the next proposi-
tion for some values of n and k will facilitate the derivation of the proof
of Theorem 1.2. They also have their own combinatorial interests.
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Proposition 2.1. The following relations hold:

#A1,0 = 1, #A2n−1,0 = #A2n−1,2n−2 = 0 (n ≥ 2)(2.1)

#A2n−1,1 = #A2n−1,2n−3 = 2T2n−3 (n ≥ 2);(2.2)

#A2n−1,2 = #A2n−1,2n−4 = 4T2n−3 (n ≥ 3);(2.3)

#A2n−1,3 = #A2n−1,2n−5 = 6T2n−3 − 8T2n−5 (n ≥ 3);(2.4) ∑
k≥0

#A2n−1,k = T2n−1 (n ≥ 1).(2.5)

#A2,1 = 1;(2.6)

#A2n,1 = #A2n,2n−1 = E2n−2 (n ≥ 2);(2.7)

#A2n,2 = #A2n,2n−2 = 3E2n−2 (n ≥ 2);(2.8)

#A2n,3 = #A2n,2n−3 = 5E2n−2 − 4E2n−4 (n ≥ 2);(2.9) ∑
k≥1

#A2n,k = E2n (n ≥ 1).(2.10)

Proof. (2.1) The set A1 is the singleton 1 and grn(1) = 0 by
definition, so that #A1,0 = 1. For n ≥ 2 all alternating permutations from
A2n−1 have a “grn” at least equal to 1. Hence, #A2n−1,0 = 0. Finally,
each alternating permutation of length (2n − 1) (n ≥ 2) contains neither
the factor (2n−2)(2n−1), nor (2n−1)(2n−2). Hence, #A2n−1,2n−2 = 0.

(2.2) When n ≥ 2, each alternating permutation from A2n−1,1 starts
with (2n − 1) 1, or ends with 1 (2n − 1). After removal of those two
letters, there remains an alternating permutation on {2, 3, . . . , 2n − 2}.
Hence, #A2n−1,1 = 2T2n−3. Next, each permutation from A2n−1,2n−3
must contain, either the three-letter factor (2n − 1)(2n − 3)(2n − 2), or
(2n − 2)(2n − 3)(2n − 1). The removal of the factor (2n − 1)(2n − 3)
(resp. (2n − 3)(2n − 1)) yields an alternating permutation of the set
{1, 2, . . . , (2n− 4), (2n− 2)}, of cardinality (2n− 3). This proves relation
#A2n−1,2n−3 = 2T2n−3.

(2.3) Start with an alternating permutation on {1, 3, 4, . . . , 2n − 2},
then having (2n − 3) elements. There are four possibilities to generate
a permutation from A2n−1,2: (1) insert (2n − 1) 2 to the left; (2) insert
2 (2n−1) to the right; (3) insert 2(2n−1) just before 1; (4) insert (2n−1) 2
just after 1. For the second identity in (2.3) proceed in the same way:
in each alternating permutation on {1, 2, . . . , 2n − 1} \ {2n − 4, 2n − 1}
the two letters (2n − 3), (2n − 2) are necessarily local maxima. There
are four possibilities to obtain a permutation from A2n−1,2n−4: insert
(2n − 1) (2n − 4) just before, either (2n − 3), or (2n − 2); also insert
(2n− 4) (2n− 1) just after, either (2n− 3), or (2n− 2).

(2.4) Each permutation from A2n−1,3 containing the factor 2 1 (resp.
1 2) starts with 2 1 (resp. ends with 1 2). Dropping the factor 2 1 (resp.
1 2) and subtracting 2 from the remaining letters yields an alternating
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permutation from A2n−3,1. There are then 2(2T2n−5) permutations from
A2n−1,3 containing, either 2 1, or 1 2.

If a permutation from A2n−1,3 contains neither one of those two factors,
it has one of the six properties: it starts with (2n − 1) 3, or contains
one of the three-letter factor 1 (2n − 1) 3, 3 (2n − 1) 1, 2 (2n − 1) 3,
3 (2n − 1) 2, or still ends with 3 (2n − 1). After removal of the two-letter
factor (2n−1) 3 or 3 (2n−1) there remains an alternating permutation on
{1, 2, 4, . . . , (2n− 2)} not starting with 2 1 and not ending with 1 2. There
are then 6(T2n−3 − 2T2n−5) such permutations. Altogether, #A2n−1,3 =
4T2n−5 + 6(T2n−3 − 2T2n−5) = 6T2n−3 − 8T2n−5.

The proof of the second identity in (2.4) follows a different pattern.
If the letter (2n − 4) is a local minimum (i.e., less than its two adjacent
letters) in a permutation σ from A2n−1,2n−5, then σ necessarily contains
one of the four five-letter factors (2n− 1)(2n− 5)(2n− 2)(2n− 4)(2n− 3),
(2n− 1)(2n− 5)(2n− 3)(2n− 4)(2n− 2), (2n− 2)(2n− 4)(2n− 3)(2n−
5)(2n− 1), (2n− 3)(2n− 4)(2n− 2)(2n− 5)(2n− 1). Replacing this five-
letter factor by (2n − 5) yields a permutation from A2n−5. Thus, there
are 4T2n−5 permutations from A2n−1,2n−5 in which (2n − 4) is a local
minimum.

In the other permutations from A2n−1,2n−5 all the four letters (2n−4),
(2n − 3), (2n − 2), (2n − 1) are local maxima (i.e., greater than their
adjacent letters). Let A′2n−1,2n−5 be the set of those permutations. When
the two-letter factor (2n− 1)(2n− 5) or (2n− 5)(2n− 1) is deleted from
such a permutation, there remains a permutation on {1, 2, . . . , (2n− 1)} \
{(2n− 5), (2n− 1)} in which the third largest letter (2n− 4) is not a local
minimum. Let A′′2n−3 be the set of those permutations. But the alternating
permutations on the latter set in which (2n − 4) is a local minimum
necessarily contain the three-letter factor (2n − 3)(2n − 4)(2n − 2) or
(2n−2)(2n−4)(2n−3). There are then 2T2n−5 such permutations. Hence,
#A′′2n−3 = T2n−3 − 2T2n−5. To obtain a permutation from A′2n−1,2n−5 it
suffices to start from a permutation σ′′ from A′′2n−3 and insert (2n−1)(2n−
5) (resp. (2n−5)(2n−1)) just before (resp. just after) each one of the three
letters (2n− 4), (2n− 3), (2n− 2) (which are all local maxima). There are
then 6(T2n−3 − 2T2n−5) such permutations. Altogether, #A2n−1,2n−5 =
4T2n−5 + 6(T2n−3 − 2T2n−5) = 6T2n−3 − 8T2n−5. No comment for (2.5)
and (2.6).

(2.7) Simply note that the only alternating permutations from A2n,1

and A2n,2n−1 are, respectively, of the form: (2n) 1σ(3) · · ·σ(2n) and
σ(1)σ(2) · · · (2n) (2n− 1).

(2.8) Same proof as for (2.3): start with an alternating permutation
on {1, 3, 4, . . . , (2n−1)}. There are exactly three possibilities to generate a
permutation from A2n,2: insert (2n) 2 to the left, or just after the letter 1,
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or still insert 2 (2n) just before the letter 1. For the second identity start
with a permutation on {1, 2, . . . , 2n}\{2n−2, 2n} and insert (2n) (2n−2)
either to the right, or just before (2n− 1), or still insert (2n− 2) (2n) just
after (2n− 1).

(2.9) Each permutation from A2n,3 containing the factor 2 1 is nec-
essarily of the form σ = 2 1σ(3) · · ·σ(2n), so that the alternating per-
mutation σ′ := (σ(3) − 2) · · · (σ(2n − 2) belongs to A2n−2,1. There are
then E2n−4 such permutations. If a permutation from A2n,3 does not con-
tain 2 1, it has one of the five properties: it starts with (2n) 3, or con-
tains one of the three-letter factor 1 (2n) 3, 3 (2n) 1, 2 (2n) 3, 3 (2n) 2.
After removal of the two-letter factor (2n) 3 or 3 (2n) there remains
an alternating permutation on {1, 2, 4, . . . , (2n − 1)} not starting with
2 1. There are then 5(E2n−2 − E2n−4) such permutations. Altogether,
#A2n,3 = E2n−4 + 5(E2n−2 − E2n−4) = 5E2n−2 − 4E2n−4.

The proof for the second identity in (2.9) is quite similar. Each permu-
tation from A2n,2n−3 containing the factor (2n−1)(2n−2) necessarily ends
with the four-letter factor (2n)(2n − 3)(2n − 1)(2n − 2). There are then
E2n−4 such permutations. The other permutations from A2n,2n−3 contain
one of the four three-letter factors (2n)(2n−3)(2n−2), (2n−2)(2n−3)(2n),
(2n)(2n−3)(2n−1), (2n−1)(2n−3)(2n), or ends with (2n)(2n−3). After
removal of the two-letter factor (2n)(2n−3) or (2n−3)(2n) there remains
an alternating permutation on {1, 2, . . . , (2n− 4), (2n− 2), (2n− 1)}, not
ending with the two-letter factor (2n−1)(2n−2). There are E2n−2−E2n−4
such permutations. Altogether, #A2n,2n−3 = E2n−4 + 5(E2n−2 − E2n−4).

No comment for (2.10).

3. Proof of Theorem 1.4

Let an(k) := #A2n−1,k−1 and bn(k) := #A2n,k. From Proposition 2.1
and Theorem 1.5 it follows that the initial conditions [tan1] and [tan2]

hold when fn(k) = an(k), and [sec1] and also [sec2] when fn(k) =
bn(k). It remains to prove that in each case (1.2) holds.

By means of identities (2.2)–(2.4) and (2.7)–(2.9) we easily verify that
(1.2) holds for both an(k) and bn(k) when n = 2, 3 and 1 ≤ k ≤ 2n− 3. It
also holds for an(k) when n ≥ 4 and k = 1, 2, 2n− 4, 2n− 3, and for bn(k)
when n ≥ 4 and k = 1, 2n− 3.

What is left to prove is: ∆2an(k)+4an−1(k) = 0, that is, ∆2A2n−1,k−1+
4A2n−3,k−1 = 0 for n ≥ 4 and 3 ≤ k ≤ 2n − 5—by identifying each
finite set with its cardinality—and also ∆2bn(k) + 4bn−1(k) = 0, that is,
∆2A2n,k + 4A2n−2,k = 0 for n ≥ 4 and 2 ≤ k ≤ 2n− 4; altogether,

(2.11) ∆2An,k + 4An−2,k = 0 for n ≥ 7 and 2 ≤ k ≤ n− 4 (n even)
2 ≤ k ≤ n− 5 (n odd).
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Let v = y1 · · · ym be a nonempty word with distinct letters from the set
{0, 1, 2, . . . , n} and ṽ = ym · · · y1 be its mirror-image. If m = 1 and y1 = 0,
let [v] = [0] be the empty set. If m ≥ 2 and y1 = 0 (resp. ym = 0), let
[v] be the set of all alternating permutations from An, if any, whose left
factors are equal to y2 · · · ym, or whose right factors are equal to ym · · · y2.
When y1 ≥ 1, let [v] the set of all alternating permutations from An, if
any, containing, either the factor v, or the factor ṽ. Finally, let [ ṽ ] := [v].

Using those notations we get

An,k =
∑

0≤y≤k−1

[ynk]

=
∑

0≤y≤k−1

[ynk(k + 1)] +
∑

0≤y≤k−1
k+2≤z≤n−1

[ynkz] +
∑

1≤y≤k−1

[ynk0];

An,k+1 =
∑

0≤y≤k

[yn(k + 1)]

= [kn(k + 1)] +
∑

0≤y≤k−1
k+2≤z≤n−1

[yn(k + 1)z] +
∑

1≤y≤k−1

[yn(k + 1)0].

The transposition (k, k+ 1) maps the set [ynkz] onto the set [yn(k+ 1)z]
for z ∈ {k + 2, . . . , n− 1} ∪ {0}, so that we may write

∆An,k = An,k+1 − An,k = [kn(k + 1)]−
∑

0≤y≤k−1

[ynk(k + 1)]

= [kn(k + 1)]−
∑

0≤y1,y2≤k−1
y1 6=y2

[y1nk(k + 1)y2];

∆An,k+1 = An,k+2 − An,k+1

= [(k + 1)n(k + 2)]−
∑

0≤y≤k

[yn(k + 1)(k + 2)]

= [(k + 1)n(k + 2)]− [kn(k + 1)(k + 2)]

−
∑

0≤y≤k−1

[yn(k + 1)(k + 2)k]−
∑

0≤y1,y2≤k−1
y1 6=y2

[y1n(k + 1)(k + 2)y2].

For 2 ≤ k ≤ n − 4 the permutation
(
k k+1 k+2
k+1 k+2 k

)
maps [y1nk(k + 1)y2]

onto [y1n(k + 1)(k + 2)y2] in a bijective manner. Hence,

∆2An,k = ∆An,k+1 −∆An,k

= [(k + 1)n(k + 2)]− [kn(k + 1)(k + 2)]

−
∑

0≤y≤k−1

[yn(k + 1)(k + 2)k]− [kn(k + 1)].
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But

[kn(k + 1)] = [(k + 2)kn(k + 1)] + [kn(k + 1)(k + 2)]

+
∑

z1,z2∈{k+3,...,n−1}∪{0}
z1 6=z2

[z1kn(k + 1)z2].

Again, the permutation
(
k k+1 k+2
k+1 k+2 k

)
maps the last sum onto the set

[(k + 1)n(k + 2)]. Altogether, as [(k + 2)kn(k + 1)] = [kn(k + 1)(k + 2)],
we have

∆2An,k = −3 [kn(k + 1)(k + 2)]−
∑

0≤y≤k−1

[yn(k + 1)(k + 2)k].

When removing the factor (k+1)(k+2) and replacing each integer z ≥
k+2 by (z−2), in each alternating permutation, both sets [kn(k+1)(k+2)]
and

∑
0≤y≤k−1

[yn(k + 1)(k + 2)k] are transformed into An−2,k; so that

∆2An,k = −4An−2,k.

4. The bivariable generating functions

Let f = (fn(k)) (n ≥ 1, 1 ≤ k ≤ 2n − 1) be the family of rational
numbers, as displayed in (1.1), that satisfies the finite-difference equation
system (1.2) under the initial conditions [tan2] of [sec2]. We know that
the system has then a unique solution. With the triangle f associate the
infinite matrix

(4.1) Γ=(γij)(i≥0,j≥0) :=



f1(1) 0 f2(3) 0 f3(5) 0 f4(7) · · ·
0 f2(2) 0 f3(4) 0 f4(6) · · ·

f2(1) 0 f3(3) 0 f4(5) · · ·
0 f3(2) 0 f4(4) · · ·

f3(1) 0 f4(3) · · ·
0 f4(2) · · ·

f4(1) · · ·


.

In other words, define γij := 0 when i + j is odd, and γij := fn(k)
with k := j + 1, 2n = 2 + i + j when i + j is even. For i + j even
the mapping (i, j) 7→ (n, k) is one-to-one, the reverse mapping being for
n ≥ 1, 1 ≤ k ≤ 2n− 1 given by i = 2n− 1− k, j = k − 1.

In terms of the entries γij relation (1.2) may be written in the form

γi,j = 2 γi−1,j−1 +
1

2
(γi−1,j+1 + γi+1,j−1) (i ≥ 1, j ≥ 1);(4.2)

γij = 0, if i+ j odd.(4.3)

10
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Furthermore, the full matrix Γ = (γi,j) (i ≥ 0, j ≥ 0) is completely
determined as soon as its first row (γ0,j) (j ≥ 0) and first column (γi,0)
(i ≥ 0) are known. Let f 7→ Γ denote the above correspondence between
those triangles and matrices.

Let Z(x, y) :=
∑

i≥0, j≥0

γi,j
xi

i!

yj

j!
. It is easily verified that Z(x, y) satisfies

the partial differential equation

(4.4)
∂2Z(x, y)

∂x ∂y
= 2Z(x, y) +

1

2

∂2Z(x, y)

∂x2
+

1

2

∂2Z(x, y)

∂y2
,

if and only if the coefficients γi,j satisfy relation (4.2). Hence, Z(x, y)
is fully determined by (4.4) and by the generating functions Z(x, 0) =∑
i≥0

γi,0 x
i/i! and Z(0, y) =

∑
j≥0

γ0,j y
j/j! for the first column and first row

of the matrix Γ.
But for any given formal power series in one variable f(x) = 1 +∑

n≥1
f2n

x2n

(2n)!
it can be also verified that the bivariable formal power series

(4.5) Z(x, y) =
∑

i≥0, j≥0

γi,j
xi

i!

yj

j!
= f(x+ y) sec(x+ y) cos(x− y)

satisfies (4.4) and that the generating functions for its first column and
first row are given by f(x) and f(y), respectively. This proves the following
proposition.

Proposition 4.1. Let f(x) = 1+
∑
n≥1

f2n
x2n

(2n)!
be given and Γ = (γij)

(i ≥ 0, j ≥ 0) be an infinite matrix, whose entries satisfy relations (4.2)
and (4.3), on the one hand, and such that γ0,0 = 1, γ2n+1,0 = γ0,2n+1 = 0
for n ≥ 0 and γ2n,0 = γ0,2n = f2n for n ≥ 1, on the other hand. Then,
identity (4.5) holds.

Using the correspondence γij ↔ fn(k) above mentioned, the series
Z(x, y) can be rewritten

(4.6) Z(x, y) = 1 +
∑
n≥1

∑
1≤k≤2n+1

fn+1(k)
x2n+1−k

(2n+ 1− k)!

yk−1

(k − 1)!
,

which is then equal to f(x+y) sec(x+y) cos(x−y) under the assumptions
of the previous Proposition.
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Now, consider the two triangles described in Fig. 1.1 and let Γtan =
(γtanij ) and Γsec = (γsecij ) be the two Γ-matrices attached to them:

Γtan =(γtanij ) =



g1(1) 0 g2(3) 0 g3(5) 0 g4(7) · · ·
0 g2(2) 0 g3(4) 0 g4(6) · · ·

g2(1) 0 g3(3) 0 g4(5) · · ·
0 g3(2) 0 g4(4) · · ·

g3(1) 0 g4(3) · · ·
0 g4(2) · · ·

g4(1) · · ·


;

Γsec =(γsecij ) =



h1(1) 0 h2(3) 0 h3(5) 0 h4(7) · · ·
0 h2(2) 0 h3(4) 0 h4(6) · · ·

h2(1) 0 h3(3) 0 h4(5) · · ·
0 h3(2) 0 h4(4) · · ·

h3(1) 0 h4(3) · · ·
0 h4(2) · · ·

h4(1) · · ·


.

The exponential generating function for the first row and first column
of Γtan is equal to f(x) = 1. On the other hand, as hn(1) = hn(2n +
1) = #A2n,1 = E2n−2 by [sec2], (1.8) and (1.16), the exponential
generating function for the first row and first column of Γsec is equal to
h1(1)+h2(1)x2/2!+h3(1)x4/4!+· · · = E0+E2x/2!+E4x

4/4+· · · = sec(x).
Theorem 1.2 is then a consequence of the previous Proposition.

When (x, y) is equal to (x, x), then to (x,−x) in (1.9) and (1.10),
we obtain: Ztan(x, x) = sec(2x); Ztan(x,−x) = cos(2x); Zsec(x, x) =
sec2(2x) = 1 +

∑
n≥1 4nT2n+1x

2n/(2n)! and Zsec(x,−x) = cos(2x).

Looking for the coefficients of x2n/(2n)! on both sides in the first (resp.
last) two formulas yields four further identities∑

1≤k≤2n+1

(
2n

k − 1

)
gn+1(k) = 4nE2n (n ≥ 1);(4.7)

∑
1≤k≤2n+1

(−1)k
(

2n

k − 1

)
gn+1(k) = (−1)n4n (n ≥ 1);(4.8)

∑
1≤k≤2n+1

(
2n

k − 1

)
hn+1(k) = 4nT2n+1 (n ≥ 1)(4.9)

∑
1≤k≤2n+1

(−1)k
(

2n

k − 1

)
hn+1(k) = (−1)n4n (n ≥ 1).(4.10)

The last two ones are mentioned in Sloane’s Encyclopedia [Sl07] (sequence
A125053) without proofs.
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5. Alternating permutations and binary trees

In this Section the traditional vocabulary on trees, such as node, leaf,
child, root, . . . is used. In particular, when a node is not a leaf, it is said
to be an interior node.

Definition. An n-labeled, binary, increasing, topological tree is defined
by the following axioms:

(1) it is a labeled tree with n nodes, labeled 1, 2, . . . , n; the node labeled 1
is called the root;

(2) each node has no child (then called a leaf ), or one child, or two
children;

(3) the label of each node is smaller than the label of its children, if
any;

(4) the tree is planar and each child of a node is, either on the left (it
is then called the left child), or on the right (the right child);

(5) when n is odd, each node is, either a leaf, or a node with two
children; when n is even, each node is, either a leaf, or a node with two
children, except the rightmost node (uniquely defined) which has one left
child, but no right child. It will be referred to as being the one-son child.

Each such binary tree t may be drawn on a Euclidean plane: the root
has coordinates (0, 0), the left son of the root (−1, 1) and the right son
(1, 1), the grandsons (−3/2, 2), (−1/2, 2), (1/2, 2), (3/2, 2), respectively,
the great-grandsons (−7/4, 3), (−5/4, 3), . . . , (7/4, 3), etc. With this
convention all the nodes have different abscissas. Let t have n nodes
and make the orthogonal projections of those nodes on a horizontal axis.
Writing the labels of the projected n nodes yields a permutation σ =
σ(1)σ(2) · · ·σ(n) of 1 2 · · · n. We say that σ is the projection of t and t
the spreading out of σ. Moreover, σ is alternating. For instance, the two
trees t1 and t2 in Fig 1.2 are labeled, binary, increasing, topological
trees, with 7 and 8 nodes, respectively. Their projections σ1 = 6 1 5 4 7 2 3
and σ2 = 6 1 5 4 8 2 7 3 are alternating.

For each n ≥ 1 let Tn be the set of all n-labeled, binary, increasing,
topological trees. Then, t 7→ σ is a bijection of Tn onto An, so that we
also have: #A2n+1 = T2n+1, #A2n = E2n. Each tree t from Tn is said to
be tangent (resp. secant), if n is odd (resp. even).

5 7

4
3

6
2

1

@@���
���

��HH
H
��@@

6 1 5 4 7 2 3σ1 =

t1 =

5 8

4

7

6
2

1

3

@@���
���

��
�

HH
H
��@@ @@

6 1 5 4 8 2 7 3σ2 =

t2 =

Fig. 1.2. Tangent, secant trees and alternating permutations.
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The two statistics “emc” (“end of minimal chain”) and “pom” (“parent
of maximum leaf”) we now define on each set Tn have been introduced
by Christiane Poupard [Po89] in her study of the strictly ordered binary
trees and provide two other combinatorial interpretations for the entries
gn(k) and hn(k). Their definitions are also valid for all binary increasing
trees, in particular, for secant and tangent trees. Let n ≥ 2 and t be a
binary increasing tree, with n nodes labeled 1, 2, . . . , n. Let a be the label
of an interior node. If the node has two children labeled b and c, define
min a := min{b, c}; if it has one child b, let min a := b. The minimal chain
of t is defined to be the sequence a1 → a2 → a3 → · · · → aj−1 → aj , with
the following properties:

(i) a1 = 1 is the label of the root;
(ii) for i = 1, 2, . . . , j−1 the i-th term ai is the label of an interior node

and ai+1 = min ai;
(iii) aj is the label of a leaf.

Define the end of the minimal chain in t to be: eoc(t) := aj . As t is
increasing, there is a unique leaf with label n. If that leaf is incident
to a node labeled k, define the (parent of the maximum leaf ) in t to
be: pom(t) := k. By convention, eoc(t) = 1 and pom(t) = 0 for the
unique t ∈ T1.

The minimal chain of the tree t1 (resp. t2) displayed in Fig. 1.2 is
1 → 2 → 3 (resp. 1 → 2 → 3 → 7). Then eoc(t1) = 3, eoc(t2) = 7. Also,
pom(t1) = 4 and pom(t2) = 4.

Theorem 5.1. Let σ = σ(1)σ(2) · · ·σ(n) be the projection of the n-
labeled, binary, increasing, topological tree t. Then pom(t) = grn(σ). In
other words, the parent of the maxium leaf in t is the greater neighbor
of n in σ.

Proof. Let σ(i) = n with 2 ≤ i ≤ n − 1. The parent of the node
labeled n in t is, either the node labeled σ(i − 1), or the node labeled
σ(i + 1). Let σ(j) be the label of the node of the common ancester of
the previous two nodes in t. Then, σ(j) ≤ min{σ(i − 1), σ(i + 1)}, j 6= i
and i − 1 ≤ j ≤ i + 1. Hence, either σ(j) = σ(i − 1) < σ(i + 1), or
σ(j) = σ(i+ 1) < σ(i− 1). In the first (resp. the second) case the parent
of n is σ(i+ 1) (resp. σ(i− 1)) and grn(σ) = max{σ(i− 1), σ(i+ 1)}.

In [Ha12] an explicit bijection of Tn onto itself is constructed that maps
the statistic “eoc−1” onto the statistic “pom.” For each of the polynomials∑
k gn(k)xk,

∑
k hn(k)xk, we then have three combinatorial interpretations

one on alternating permutations by the statistic “grn,” and two on labeled,
binary, increasing, topological trees by “pom” and “eoc.”

Recently, there has been a revival of studies on arithmetical and
combinatorial properties of both tangent and secant numbers. Ordering
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the alternating permuations according to their leftmost elements has led
to the Entringer recurrence, having interesting properties ([En66, FZ71,
FZ71a, Po97, GHZ10]). The geometry of those permutations has been
fully exploited ([KPP94, St10]), in particular by looking at their quadrant
marked mesh patterns in [KR12], or for defining and studying natural q-
analogs of the tangent and secant numbers ([AG78, AF80, Fo81], [St99,
p. 148-149]). Further q-analogs were also introduced, based no longer on
alternating permutations, but on the so-called doubloon model (see [FH10,
FH10a, FH11]). The classical continued fraction expansions of secant and
tangent have made possible the discovery of other q-analogs (see [Pr08,
Pr00, Fu00, HRZ01, Jos10, SZ10]).
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