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ABSTRACT. Generalizations of the classical statistics “maj” and “inv” (the
major index and the number of inversions) on words are introduced that
depend on a graph on the underlying alphabet and the behaviour of each
letter at the end of a word. The question of characterizing those graphs
that lead to equidistributed “maj” and “inv” is posed and answered. This
work extends a previous result of Foata and Zeilberger who considered
the same problem under the assumption that all letters have the same
behaviour at the end of a word.

0. Introduction

Let X be a finite alphabet and U be a relation on X. Without loss
of generality we may assume X = {1, 2, . . . , r}. As U is a subset of X ×
X, the relation U can also be considered as a directed graph without
multiple edges on X. This explains the ‘graphical’ in our title. Given such
a relation U , in [5] extensions maj′U and inv′U of the classical major index
and the number of inversions, respectively, were introduced for words w =
x1x2 . . . xm with letters from X by

maj′U w =
m−1∑
i=1

i · χ(xi+1Uxi) (0.1a)

inv′U w =
∑

1≤i<j≤m

χ(xjUxi). (0.1b)
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(Here, as usual, χ(A) = 1 if A is true, and χ(A) = 0 otherwise.) Note that
maj′< is the classical major index maj (introduced by MacMahon [9, 12]
as “greater index”, see also [1, Def. 3.5]),

majw =
m−1∑
i=1

i · χ(xi+1 < xi),

and inv′< is the usual number of inversions (often attributed to Netto [13,
pp. 92f], though he cites earlier occurences; maybe the first occurence
under this name is [18]; but probably MacMahon [11, 12] was the first
to consider inversions of words instead of just permutations; see also [1,
Def. 3.4]),

inv w =
∑

1≤i<j≤m

χ(xj < xi).

Let c = (c(1), c(2), . . . , c(r)) be a sequence of r nonnegative integers,
and let v be the (non-decreasing) word v = 1c(1)2c(2) . . . rc(r). We will
denote by R(v) (or by R(c) if there is no ambiguity) the class of all rear-
rangements of the word v, i.e., the class of all words containing exactly c(i)
occurences of the letter i for all i = 1, 2, . . . , r. Then MacMahon [11, 12]
showed that maj and inv are equidistributed on each rearrangement class
R(c) (see also [1, Cor. 3.8]). This motivates to pose the same question for
the generalized major index and generalized number of inversions:

For which relations U on X are maj′U and inv′U equidistributed on each
rearrangement class R(c)?

This question was answered in [5, Theorem 1] by giving a full charac-
terization of all such relations U . More precisely, there it is shown that

Theorem A. The statistics maj′U and inv′U are equidistributed on each
rearrangement class R(c) if and only if U is a “bipartitional” relation.

To make this understandable, we have to explain what a bipartitional
relation is.

DEFINITION. A relation U on X is said to be bipartitional if there exists
a partition (B1, B2, . . . , Bk) of the set X into blocks Bl together with a
vector (β1, β2, . . . , βk) of 0’s and 1’s such that xUy if and only if either
(1) x ∈ Bl, y ∈ Bl′ , and l < l′, or (2) x, y ∈ Bl, and βl = 1.

In words, there are two different types of blocks Bl, those with associ-
ated βl = 0, let us call them 6U -blocks, and those with associated βl = 1,
let us call them U -blocks. Then xUy if and only if x is in an “earlier”
block than y, or if both x and y are in the same U -block. In particular, if
x, y are elements of the same 6U -block then we have x 6Uy and y 6Ux.

For later use we record that Han [8] has given the following axiomatic
characterization of bipartitional relations.
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Proposition. A relation U on X is bipartitional if and only if (1) xUy
and y Uz imply xUz, and (2) xUy and z 6Uy imply xUz.

More general major indices and inversion numbers have been intro-
duced when the underlying alphabet X is partitioned into two subsets.
For signed permutations, for example, Reiner [14], [15], [16], while devel-
oping his theory of Bn P -partitions, was lead to define a major index by
making a distinction between positive and negative integers. This idea was
extended to words by Clarke and Foata [2], [3], [4] who considered small
letters and large letters and could calculate the corresponding generating
functions. Finally, Theorem 2 proved in [5] that involved another definition
of the major index closely related to the definitions used by the previous
three authors, suggested that a more general equidistribution result was
to be discovered, if major index and inversion number for words with two
kinds of letters could be adequately defined.

The purpose of this paper is to state and prove such a result. It is the
content of Theorem B below. This theorem contains both Theorem A and
Theorem 2 of [5] as special cases (see the Remark after Theorem B). It
can even be considered as a merge of Theorem A and Theorem 2 of [5]
into a single theorem.

Of course, the new major index majU and inversion number invU intro-
duced in this paper will have to generalize the major index and inversion
number of [5]. For their definitions we need to partition the underlying
alphabet X into two disjoint subsets X = Xn∪̇Xd. (The subscripts “n”
and “d” stand for no descent and descent at the end of the word, as will
be explained in section 1.) Now let U be a relation on X and given a word
w = x1x2 . . . xm with letters from X define

majU w =
m−1∑
i=1

i · χ(xi+1Uxi) + m · χ(xm ∈ Xd); (0.3a)

invU w =
∑

1≤i<j≤m

χ(xjUxi) + |{i : xi ∈ Xd}|. (0.3b)

Note that the difference between majU w and maj′U w equals 0 if the last
letter belongs to Xn and equals the length of the word w if the last letter
of w belongs to Xd. The difference between invU w and inv′U w is simply
the number of letters of the word w that belong to Xd.

As done for the previous pairs of statistics we can ask the following
question :

For which relations U on X are majU and invU equidistributed on each
rearrangement class R(c)?

The main purpose of this paper is to answer this question by fully
characterizing all such relations U .
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Theorem B. Let X = Xn∪̇Xd be a given partition. Then the statistics
invU and majU are equidistributed on each rearrangement class R(c), if
and only if U is bipartitional and “compatible with the partition X =
Xn∪̇Xd.”

To make this statement understandable, we have to explain what “com-
patible” means.

DEFINITION. A relation U is said to be compatible with the partition
X = Xn∪̇Xd, if for all x ∈ Xn and y ∈ Xd the relations xUy and y 6Ux
hold.

Thus, a bipartitional relation U is compatible with the partition X =
Xn∪̇Xd if and only if U is bipartitional on each of the subalphabets Xn,
Xd, and is such that for all x ∈ Xn and y ∈ Xd the relations xUy and
y 6Ux hold. This can be made even more explicit. Let (B1, B2, . . . , Bk) be
the partition of X and (β1, β2, . . . , βk) the 0-1 vector associated with the
bipartitional relation U . Then there is an integer h, 1 ≤ h ≤ k, such that
Xn = B1∪̇B2∪̇ · · · ∪̇Bh and Xd = Bh+1∪̇Bh+2∪̇ · · · ∪̇Bk.

Recall [5] that a bipartitional relation U can also be visualized as fol-
lows: Again let U = (B1, B2, . . . , Bk), be the partition associated with U
and let (β1, β2, . . . , βk) be the associated 0-1 vector. Rearrange the ele-
ments of X in a row in such a way that the elements of B1 come first,
in any order, then the elements of B2, etc. Then U will consist of all the
block products Bl × Bl′ with l < l′, as well as the block product Bl × Bl

whenever βl = 1.
In Figure 1, for instance, the underlying relation consists of four blocks

(B1, B2, B3, B4); the 0-1 vector is (1, 0, 0, 1).

U

U

U

U U U U

U

B4

B3

B2

B1

B1 B2 B3 B4

Fig. 1

By the above considerations, this relation is compatible with each par-
tition X = Xn∪̇Xd provided Xn = B1 ∪ · · · ∪Bh with 0 ≤ h ≤ 4.
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REMARK. Notice that Theorem A is the particular case of Theorem B
when Xd = ∅. Theorem 2 of [5] refers to bipartitional relations (B1, . . . , Bk),
(β1, . . . , βk) such that Xn =

⋃
l with βl=0

Bl and Xd =
⋃

l with βl=1

Bl.

We shall give two different proofs of the ‘if’ part of Theorem B. The
first proof is by means of generating function techniques and the so-called
“MacMahon Verfahren” that essentially gives a general tool for building
bijections between words and sets of non-increasing sequences that record
the horizontal word statistics such as majU (see sections 2, 3). In an ear-
lier version of the paper we have also described two P -partition proofs
(not reproduced in the final version) inspired by Stanley’s work [19] and
Reiner’s [14], [15], [16], [17]. However, we decided to give a direct proof
instead, avoiding all the definitions that would be necessary to explain the
P -partition proofs. The second proof is by means of an explicit bijection
(section 4).

In section 5 we prove the ‘only if’ part of Theorem B. The proof relies
on the ‘only if’ part of Theorem A. In addition, we start section 5 with a
new proof for the ‘only if’ part of Theorem B that is much shorter than
the original proof, thus also providing a new proof of the full Theorem A.
(We remark that another proof of the ‘only if’ part of Theorem A, which
is computer-assisted, was found by Han [7].) Our proof takes advantage
of Han’s axiomatic characterization of bipartitional relations given in the
Proposition above. All the notation that we are going to use throughout
the paper is introduced in section 1.

Finally, in passing, we note that the exponential generating function
for the number fr of all bipartitional relations on X = {1, 2, . . . , r} that
are compatible with some partition of X into two disjoint subsets equals

∞∑
r=0

fr
ur

r!
=

1
(3− 2eu)2

= 1 + 4u + 28
u2

2!
+ 268

u3

3!

+ 3244
u4

4!
+ 47404

u5

5!
+ 810988

u6

6!
+ · · · .

1. Notation and preliminaries

The q-notations that we use are

(a; q)k =
k−1∏
j=0

(1− aqj), with (a; q)0 = 1,

(a; q)∞ =
∞∏

j=0

(1− aqj)

for the finite and infinite q-factorials;
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[
n

k

]
=

(q; q)n

(q; q)k (q; q)n−k

for the q-binomial coefficient, and[
n1 + n2 + · · ·+ nk

n1, n2, . . . , nk

]
=

(q; q)n1+n2+···+nk

(q; q)n1 (q; q)n2 · · · (q; q)nk

,

for the q-multinomial coefficient.
We shall use a number of special cases of the q-binomial theorem (cf.

[1], Theorem 2.1 or [6], § 1.3),

∞∑
n=0

(a; q)n

(q; q)n
un =

(au; q)∞
(u; q)∞

. (1.1)

First, for a = 0,
∞∑

n=0

un

(q; q)n
=

1
(u; q)∞

, (1.2)

and for u → −u/a, a →∞,
∞∑

n=0

q(
n
2)un

(q; q)n
= (−u; q)∞. (1.3)

Furthermore, with a = qs+1,
∞∑

n=0

[
s + n

n

]
un =

1
(u; q)s+1

, (1.4)

and with a = q−s, u → −uqs,
∞∑

n=0

q(
n
2)

[
s

n

]
un = (−u; q)s. (1.5)

Finally, extraction of coefficients of un in (1.4) gives[
s + n

n

]
=

∑
s≥a1≥···≥an≥0

qa1+···+an , (1.6)

and in (1.5) gives

q(
n
2)

[
s

n

]
=

∑
s−1≥a1>···>an≥0

qa1+···+an . (1.7)

Next we review our “U -notations” from the Introduction and add some
new ones. Let w = x1x2 . . . xm be a word with letters from X. Classically
we say that i, 1 ≤ i ≤ m− 1, is a descent of the word w, if xi+1 < xi. The
number of descents of w is usually denoted by des w. Furthermore, maj w
is simply the sum of all descents of w.
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Now let X be partitioned into two disjoint subsets, X = Xn∪̇Xd, and
let U be a relation on X. In analogy with the above terminology, we call i,
1 ≤ i ≤ m, a U -descent of w, if either xi+1Uxi, or if i = m and xi ∈ Xd.
(By the way, this makes the explanation for our notation Xn and Xd that
was promised in the Introduction. Xn is the set of all letters that create
“n”o descent at the end, Xd is the set of all letters that create a “d”escent
at the end of a word.) Also, denote by desU w the number of all U -descents
of w (including a possible “descent at the end of w” when the last letter
belongs to Xd). Then majU w is the sum of all U -descents of w.

Finally, we adopt the “bipartitional” notations from [5], section 2.
Namely, given a partition (B1, B2, . . . , Bk) of X together with a 0-1 vec-
tor (β1, β2, . . . , βk) we make the following conventions. Let c be the se-
quence c = (c(1), c(2), . . . , c(r)) of nonnegative integers. As before, let v =
1c(1)2c(2) . . . rc(r) and denote by R(v) (or by R(c)) the class of rearrange-
ments of the word v. If the block Bl consists of the integers i1, i2, . . . , i`
and if u1, u2, . . . , ur are r commuting variables, then we write

c ≥ 0 for c(1) ≥ 0, c(2) ≥ 0, . . . , c(r) ≥ 0;
|c| for the sum c(1) + c(2) + · · ·+ c(r);

uc for the monomial u
c(1)
1 u

c(2)
2 · · ·uc(r)

r ;
c(Bl) for the sequence c(i1), c(i2), . . . , c(i`);

c(Bl) ≥ 0 for c(i1) ≥ 0, c(i2) ≥ 0, . . . , c(i`) ≥ 0;
|c(Bl)| for the sum c(i1) + c(i2) + · · ·+ c(i`);

u(Bl)c(Bl) for the monomial u
c(i1)
i1

u
c(i2)
i2

· · ·uc(i`)
i`

;∑
u(Bl) for the sum ui1 + ui2 + · · ·+ ui`

.

(1.8)

In particular,
( |c(Bl)|

c(Bl)

)
will denote the multinomial coefficient(
c(i1) + c(i2) + · · ·+ c(i`)

c(i1), c(i2), . . . , c(i`)

)
.

2. The generating function by invU

Let U be a bipartitional relation on X supposed to be compatible
with the partition X = Xn∪̇Xd. Denote by (B1, B2, . . . , Bk) the par-
tition of X and (β1, β2, . . . , βk) the 0-1 vector associated with U . Fur-
thermore, let h be the integer such that Xn = B1∪̇B2∪̇ · · · ∪̇Bh and
Xd = Bh+1∪̇Bh+2∪̇ · · · ∪̇Bk. Finally, denote by

AinvU (q; c) :=
∑

w∈R(c)

qinvU w
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the generating function for the class R(c) by invU . Under those assump-
tions we have the two identities:

AinvU (q; c) =
[

|c|
|c(B1)|, |c(B2)|, . . . , |c(Bk)|

]
×

k∏
l=1

(
|c(Bl)|
c(Bl)

)
×

∏
1≤l≤h
βl=1

q(
|c(Bl)|

2 ) ×
∏

h+1≤l≤k
βl=0

q|c(Bl)| ×
∏

h+1≤l≤k
βl=1

q|c(Bl)|+(|c(Bl)|
2 ), (2.1)

∑
c≥0

AinvU (q; c)
(q; q)c

uc

=

∏
1≤l≤h
βl=1

(−
∑

u(Bl); q)∞
∏

h+1≤l≤k
βl=1

(−q
∑

u(Bl); q)∞

∏
1≤l≤h
βl=0

(
∑

u(Bl); q)∞
∏

h+1≤l≤k
βl=0

(q
∑

u(Bl); q)∞
. (2.2)

Call a pair (i, j) a U -inversion in the word w = x1x2 . . . xm if i < j and
xjUxi. Formula (2.1) follows from the well-known generating function in
the ordinary “inv” case. The q-multinomial coefficient is the generating
function for the class of words having exactly |c(B1)| letters equal to 1,
. . . , |c(Bk)| letters equal to k by “inv.” Such a word gives rise to exactly∏
l

(|c(Bl)|
c(Bl)

)
words in R(c). Now the letters belonging to each block Bl

such that 1 ≤ l ≤ h and βl = 0 provide no further U -inversions and
those belonging to each block Bl such that βl = 1 bring

(|c(Bl)|
2

)
extra U -

inversions when they are compared between themselves. Finally, the term
|{i : xi ∈ Xd}| that is to be added to the number of U -inversions can also
be written as

∑
h+1≤l≤k

|c(Bl)|. This proves (2.1).

Finally, we go from (2.1) to (2.2) by a routine q-calculation, using the
multinomial theorem.

3. The generating function by majU

We keep the same assumptions on U and the same notations as in the
beginning of section 2. Let

AmajU (q; c) :=
∑

w∈R(c)

qmajU w

denote the generating function for the class R(c) by the statistics majU .
Our purpose is to show that AmajU (q; c) is equal to the right-hand side of
(2.1), so that invU and majU are equidistributed on each rearrangement
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class R(c). We first prove a stronger result, namely, we calculate the gen-
erating function for each class R(c) by the pair (desU ,majU ) (remember
the definition of the statistic desU in section 1) and show by specialization
that the generating polynomial by majU is equal to that right-hand side.

Proposition 3.1. Let

AdesU ,majU (t, q; c) :=
∑

w∈R(c)

tdesU wqmajU w

be the generating polynomial for R(c) by the pair (desU ,majU ). Keeping
the assumptions of the beginning of section 2 and the notations (1.8) we
have the identities :

AdesU ,majU (t, q; c)
(t; q)|c|+1

=
k∏

l=1

(
|c(Bl)|
c(Bl)

)( ∑
s≥0

ts
∏

1≤l≤h
βl=0

[
|c(Bl)|+ s

|c(Bl)|

] ∏
1≤l≤h
βl=1

q(
|c(Bl)|

2 )
[

s + 1
|c(Bl)|

]

×
∏

h+1≤l≤k
βl=0

q|c(Bl)|
[
|c(Bl)|+ s− 1

|c(Bl)|

] ∏
h+1≤l≤k

βl=1

q(
|c(Bl)|+1

2 )
[

s

|c(Bl)|

])
(3.2)

and∑
c≥0

AdesU ,majU (t, q; c)
(t; q)|c|+1

uc

=
∑
s≥0

ts

∏
1≤l≤h
βl=1

(
−

∑
u(Bl); q

)
s+1

∏
h+1≤l≤k

βl=1

(
−q

∑
u(Bl); q

)
s∏

1≤l≤h
βl=0

(∑
u(Bl); q

)
s+1

∏
h+1≤l≤k

βl=0

(
q
∑

u(Bl); q
)
s

. (3.3)

Suppose that (3.2) has been proved. Multiply both sides of that identity
by (t; q)c+1 and let t tend to 1. It is straightforward to see that the right-
hand side tends to the right-hand side of (2.1), so that AmajU (q; c) =
AinvU (q; c), i.e., majU and invU are equidistributed. Furthermore, it is
again a routine q-calculation to derive (3.3) from (3.2). It then suffices to
prove (3.2).

PROOF OF PROPOSITION 3.1. We could accomplish this by appealing
to the P -partition theory developed by Stanley [19]; another possibility
would be to make use of the Bn P -partition theory developed by Reiner
[14]. Both theories can be considered as generalizations of the “MacMahon
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Verfahren” (see [9] or [1], chap. 3). Instead of going through the definitions
of (Bn) P -partitions, we prefer to give a direct approach, modelled after
the MacMahon Verfahren. As in [5] § 4, we proceed as follows:

Let w = x1x2 . . . xm be a word of the class R(c), so that m = |c|. Denote
by w(Bl) the subword of w consisting of all the letters belonging to Bl

(l = 1, . . . , k). Then replace each letter belonging to Bl by bl = minBl

(with respect to the usual order). Call w = x1x2 . . . xm the resulting word.
Clearly the mapping

w 7→
(
w,w(B1), . . . , w(Bl)

)
(3.4)

is bijective. Moreover, desU w = desU w and majU w = majU w. Accord-
ingly, the polynomial AdesU ,majU (t, q; c) is divisible by

∏
l

(|c(Bl)|
c(Bl)

)
.

In the sequel, for each l = 1, . . . , k let ml = |c(Bl)|. For each i =
1, 2, . . . ,m let zi denote the number of U -descents in the right factor
xixi+1 . . . xm of w (including one descent in m if xm ∈ Xd). Clearly,
z1 = desU w and z1 + · · ·+ zm = majU w.

Now let p = (p1, . . . , pm) be a sequence of m integers satisfying s′ ≥
p1 ≥ p2 ≥ · · · ≥ pm ≥ 0, where s′ is a given integer. Form the non-
increasing word v = y1y2 . . . ym defined by yi = pi + zi (1 ≤ i ≤ m) and
consider the biword (

v
w

)
=

(
y1y2 . . . ym

x1x2 . . . xm

)
.

Next rearrange the columns of the previous matrix in such a way that the
mutual orders of the columns with the same bottom entries are preserved
and the entire bottom row is of the form bm1

1 bm2
2 . . . bmk

k . We obtain the
matrix (

a1,1 . . . a1,m1

b1 . . . b1

. . .

. . .
ak,1 . . . ak,mk

bk . . . bk

)
.

By construction each of the k words a1,1 . . . a1,m1 , . . . , ak,1 . . . ak,mk
is

non-increasing .
Next, if i < i′, xi = xi′ ∈ Bl and βl = 1, there is necessarily a U -descent

within xixi+1 . . . xi′ . Hence zi > zi′ and so yi > yi′ . The word al,1 . . . al,ml

corresponding to the block Bl will then be strictly decreasing .
On the other hand, zm = 1 iff xm ∈ Xd. Let Bl be a block of Xd, so

that h + 1 ≤ l and denote by xi the rightmost letter of w that belongs
to Bl. If i = m, then al,ml

= pm + zm ≥ 1; if i < m, then, either there
is one letter of Xn in the factor xi+1 . . . xm and necessarily one U -descent
because U is supposed to be compatible with Xn∪̇Xd, or all the letters in
that factor are in Xd and in particular zm = 1. In both cases, al,ml

≥ 1.
Also note that

al,i ≤ y1 = p1 + z1 ≤ s′ + desU w
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for all l, i. Let then s = s′ + desU w. It follows that each of the words
al,1 . . . al,ml

satisfies

s ≥ al,1 ≥ · · · ≥ al,ml
≥ 0, if 1 ≤ l ≤ h and βl = 0;

s ≥ al,1 > · · · > al,ml
≥ 0, if 1 ≤ l ≤ h and βl = 1;

s ≥ al,1 ≥ · · · ≥ al,ml
≥ 1, if h + 1 ≤ l ≤ k and βl = 0;

s ≥ al,1 > · · · > al,ml
≥ 1, if h + 1 ≤ l ≤ k and βl = 1.

(3.5)

The mapping (s′,p, w) 7→ (s, (al,i)) is a bijection satisfying

s = s′ + desU w ;∑
l,i

al,i = p1 + · · ·+ pm + z1 + · · ·+ zm =
∑

i

pi + majU w. (3.6)

Now it follows from (1.4) and (1.6) that

1
(t; q)m+1

=
∑
s′≥0

ts
′ ∑

s′≥p1≥···≥pm≥0

qp1+···+pm ,

so that by (3.4)

1∏
l

(
ml

c(Bl)

) AdesU ,majU (t, q; c)
(t; q)m+1

=
∑
s′≥0

ts
′ ∑

s′≥p1≥···≥pm≥0

qΣ pi

∑
w

tdesU wqmajU w

=
∑

(s′,p,w)

ts
′+desU wqΣ pi+majU w =

∑
(s,(al,i))

tsqΣal,i [by (3.6)]

=
∑
s≥0

ts
∏

1≤l≤h
βl=0

∑
s≥al,1≥···≥al,ml

≥0

qal,1+···+al,ml

∏
1≤l≤h
βl=1

∑
s≥al,1>···>al,ml

≥0

qal,1+···+al,ml

×
∏

h+1≤l≤k
βl=0

∑
s≥al,1≥···≥al,ml

≥1

qal,1+···+al,ml

∏
h+1≤l≤k

βl=1

∑
s≥al,1>···>al,ml

≥1

qal,1+···+al,ml

=
∑
s≥0

ts
∏

1≤l≤h
βl=0

[
ml + s

ml

] ∏
1≤l≤h
βl=1

q(
ml
2 )

[
s + 1
ml

]

×
∏

h+1≤l≤k
βl=0

qml

[
ml + s− 1

ml

] ∏
h+1≤l≤k

βl=1

q(
ml+1

2 )
[

s

ml

]
,

by (1.6) and (1.7). Hence (3.2) is established.
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4. The bijective proof of the ‘if ’ part of Theorem B

Again keep for the relation U on X the same assumptions as in the
beginning of section 2. In this section we construct a bijection ΨU from
each class R(c) onto itself, satisfying

majU w = invU ΨU (w) (4.1)

for all words w ∈ R(c). The construction of the bijection ΨU parallels the
bijective construction in [5], § 8.

As done in previous papers [20], [2], [3], [4], [5] we add a new letter
∗ to X. Then we extend U to the relation U∗ on X ∪ {∗} by adding
the relations ∗Uj, j ∈ Xd, to U . In other words, U∗ is the bipartitional
relation on X∪{∗} with blocks (B1, . . . , Bh, {∗}, Bh+1, . . . , Bk) and vector
(β1, . . . , βh, 0, βh+1, . . . , βk). Note that for any word w with letters from
X we have

majU w = majU∗ w∗, (4.2)
invU w = invU∗ w∗. (4.3)

Now we make use of a map that was constructed in [5], § 5. There, given
a bipartitional relation, B say, a bijection ΦB from each rearrangement
class R(c) onto itself was constructed that satisfies

maj′B w = inv′B ΦB(w) (4.4)

for any word w ∈ R(c). This map ΦB had the additional property that it
fixes the last letter. To be precise, we use the above construction with X
replaced by X ∪ {∗} and with the bipartitional relation B = U∗.

Let w be a word with letters from X. Form the concatenation w∗. Then
we apply ΦU∗ to w∗. Since ΦU∗ fixes the last letter, we have ΦU∗(w∗) =
w′∗ for some word w′ with letters from X. This given, we define ΨU by
ΨU (w) := w′.

That ΨU is a bijection is immediate from the construction. Of course,
we also have to check (4.1). Now, we have

majU w = maj′U∗ w∗ [by (4.2)]
= inv′U∗ ΦU∗(w∗) [by (4.4)]
= inv′U∗ w′∗ [by definition]
= invU w′ [by (4.3)]
= invU ΨU (w), [by definition]

which is exactly (4.1).
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5. The proof of the ‘only if ’ part of Theorem B

We start this section by giving a new proof of the ‘only if’ part of
Theorem A. This new proof is much shorter than the original one. We
remark that this gives also a proof of the complete Theorem A, because
the ‘if’ part of Theorem A is contained in the ‘if’ part of Theorem B. (To
obtain the ‘if’ part of Theorem A, choose the trivial partition X = Xn∪{}
in the ‘if’ part of Theorem B.) In our new proof we take advantage of
Han’s axiomatic characterization of bipartitional relations given in the
Proposition in the Introduction.

PROOF OF THE ‘ONLY IF’ PART OF THEOREM A. Let U be a relation
on X such that maj′U and inv′U are equidistributed on each rearrange-
ment class R(c). We want to show that U is bipartitional. In view of the
Proposition in the Introduction, it suffices to show

(U1) xUy and y Uz imply xUz for all x, y, z ∈ X,
(U2) xUy and z 6Uy imply xUz for all x, y, z ∈ X.
Proof of (U1). Let x, y, z be elements in X such that xUy and y Uz. By

way of contradiction, let us assume that x 6Uz. We consider the rearrange-
ment class R(xyz). By our assumptions, we have maj′U zyx = 3. Since,
also by assumption, maj′U and inv′U are equidistributed on R(xyz), there
must be a word v ∈ R(xyz) with inv′U v = 3. We observe that 3 is the
maximum value that can be attained. So, since x and z occur in v, and
since x 6Uz, we must necessarily have z Ux, and x must occur before z in
v. Thus there are the following possibilities for v:

v = xzy, and in addition y Ux,

v = xyz, and in addition y Ux and z Uy,

v = yxz, and in addition z Uy.

There remain the following three cases for the relation U on {x, y, z},

Case I. xUy Ux Case II. xUy Ux Case III. xUy 6Ux
x 6Uz Ux x 6Uz Ux x 6Uz Ux
y Uz 6Uy y Uz Uy y Uz Uy

ad Case I. There holds maj′U yzx = 0, but also inv′U w ≥ 1 for any
word w ∈ R(xyz), because of xUy Ux. Thus maj′U and inv′U are not
equidistributed on R(xyz), which is absurd.

ad Case II. There holds maj′U yzx = 1, but also inv′U w ≥ 2 for any
word w ∈ R(xyz), because of xUy Ux and y Uz Uy. Thus maj′U and inv′U
are not equidistributed on R(xyz), which is absurd.

ad Case III. There holds maj′U zxy = 0, but also inv′U w ≥ 1 for any
word w ∈ R(xyz), because of y Uz Uy. Thus maj′U and inv′U are not
equidistributed on R(xyz), which is absurd.
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Altogether this shows that we obtain a contradiction in any case. Hence
we must have xUz.

Proof of (U2). Let x, y, z be elements in X such that xUy and z 6Uy.
By way of contradiction, let us assume that x 6Uz. Now observe that (U1),
which was already established, implies y 6Uz. This is because in case y Uz
we would have xUy and y Uz, and thus xUz, in contradiction with our
assumption.

Now we consider again the rearrangement class R(xyz). By our assump-
tions, we have maj′U yzx = 0. Since, also by assumption, maj′U and inv′U
are equidistributed on R(xyz), there must be a word v ∈ R(xyz) with
inv′U v = 0. Since x and y occur in v, and since xUy, we must necessarily
have y 6Ux (and x must occur before y in v).

There remain the following two cases for the relation U on {x, y, z},

Case I. xUy 6Ux Case II. xUy 6Ux
x 6Uz Ux x 6Uz 6Ux
y 6Uz 6Uy y 6Uz 6Uy

ad Case I. There holds maj′U yxz = 3, but also inv′U w ≤ 2 for any word
w ∈ R(xyz), because of y 6Uz 6Uy. Thus maj′U and inv′U are not equidis-
tributed on R(xyz), which is absurd.

ad Case II. There holds maj′U zyx = 2, but also inv′U w ≤ 1 for any
word w ∈ R(xyz), because of x 6Uz 6Ux and y 6Uz 6Uy. Thus maj′U and inv′U
are not equidistributed on R(xyz), which is absurd.

Altogether this shows that we obtain a contradiction in any case. Hence
we must have xUz.

REMARK. The argument above shows that it is even sufficient to re-
quire equidistribution of maj′U and inv′U only on rearrangement classes
containing only three letters. Han [7] has given another proof of the ‘only
if’ part of Theorem A based on his axiomatic characterization of biparti-
tional relations (the Proposition in the Introduction). In fact, our proof is
directly inspired by his. Instead of letting the computer verify all possible
relations U on the letters {x, y, z} (there are 29 = 512 such relations!) and
sorting out the “right” ones, as he did, we have just provided an argument
to reduce the number of cases to consider.

PROOF OF THE ‘ONLY IF’ PART OF THEOREM B. Let U be a relation
on X = Xn∪̇Xd such that majU and invU are equidistributed on each
rearrangement class R(c). First choose c such that only letters from Xn

are chosen. For these rearrangement classes, majU and invU reduce to
maj′U and inv′U , respectively. Hence, by the ‘only if’ part of Theorem A,
we infer that U is bipartitional on Xn. Secondly, choose c such that only
letters from Xd are chosen. For these rearrangement classes, majU and
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invU reduce to maj′U +|c| and inv′U +|c|, respectively. Again, by the ‘only
if’ part of Theorem A, we infer that U is bipartitional on Xd.

Thus it remains to see how letters from Xn are related to letters from
Xd. Take a letter x ∈ Xn and a letter y ∈ Xd. We want to show that we
must have xUy and y 6Ux. We establish this by excluding the other three
cases.

Case I: x 6Uy 6Ux. Then majU xy = 2, majU yx = 0, but invU xy =
invU yx = 1. Thus majU and invU are not equidistributed on R(xy), which
is absurd.

Case II: x 6Uy Ux. Then majU xy = 3, majU yx = 0, but invU xy = 2,
invU yx = 1. Thus majU and invU are not equidistributed on R(xy), which
is absurd.

Case III: xUy Ux. Then majU xy = 3, majU yx = 1, but invU xy =
invU yx = 2. Thus majU and invU are not equidistributed on R(xy), which
is absurd.

This shows that the only legal possibility is xUy 6Ux. Hence, U is a
bipartitional relation on X that is compatible with the partition X =
Xn∪̇Xd.
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