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Abstract: Babson and Steingŕımsson have recently introduced
seven new permutation statistics, that they conjectured were all
Mahonian (i.e. equi-distributed with the number of inversions).
We prove their conjecture for the first four, and also prove
that the first and the fourth are even Euler-Mahonian. We use
two different, in fact, opposite, techniques. For three of them
we give a computer-generated proof, using the Maple package
ROTA, that implements the second author’s “Umbral Transfer
Matrix Method.” For the fourth one a geometric permutation
transformation is used that leads to a further refinement of this
Euler-Mahonian distribution study.

1. Babson and Steingŕımsson’s Notation

In [BaSt00] Babson and Steingŕımsson introduced a convenient no-
tation for “atomic” permutation statistics. Given a permutation w =
x1x2 . . . xn of 1, 2, . . . , n they define, for example, (a bc)(w) to be the
number of occurrences of the “pattern” a bc, i.e. the number of pairs of
places 1 ≤ i < j < n such that xi < xj < xj+1. Similarly, the pattern
(b ca)(w) is that number of occurrences of xj+1 < xi < xj , and in gen-
eral, for any permutation α, β, γ of a, b, c, the expression (α βγ)(w) is the
number of pairs (i, j), 1 ≤ i < j < n, such that the orderings of the two
triples (xi, xj , xj+1) and (α, β, γ) are identical. The statistic (ab c)(w) is
defined in the same way by looking at the occurrences (xi, xi+1, xj) such
that i+1 < j and xi < xi+1 < xj . Of course, (ba)(w) denotes the number
of descents, des w (i.e. the number of places 1 ≤ i < n such that xi > xi+1),
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and (ab)(w) denotes the number of rises, rise w (i.e. the number of places
1 ≤ i < n such that xi < xi+1).

Using these atomic objects, Babson and Steingŕımsson noticed that
the classical permutation statistics “inv” and “maj” may be written as
(bc a) + (ca b) + (cb a) + (ba) and (a cb) + (b ca) + (c ba) + (ba),
respectively. This inspired them to perform a computer search for all
statistics that could be thus written, and look for those that appear to
be Mahonian. They came up with a list of 18. Some of them turned out to
be well-known (e.g. “inv” and “maj”), and some were new, but they could
do themselves. Yet eight new “conjecturally Mahonian” statistics were left
open. Here we do four of them. The other four should also be amenable
to our methods.

2. Notations and Results

Recall the usual notations

(a; q)n :=
{

1, if n = 0;
(1− a)(1− aq) . . . (1− aqn−1), if n ≥ 1;(2.1)

(a; q)∞ := limn(a; q)n =
∏

n≥0

(1− aqn).(2.2)

Also, let

[n]q :=
1− qn

1− q
= (1 + q + · · ·+ qn−1);(2.3)

[n]q! :=
(q; q)n

(1− q)n
= [n]q [n− 1]q · · · [1]q(2.4)

= (1 + q + · · ·+ qn−1)(1 + q + · · ·+ qn−2) · · · (1).

The sequence of polynomials ([n]q!) (n ≥ 0) is said to be Mahonian.
On the other hand, a statistic “stat” (actually, we should say a sequence
(statn) (n ≥ 0) of statistics, where statn is defined on the symmetric
group Sn) is said to be Mahonian, if for every n ≥ 0 we have∑

w∈Sn

qstat w = [n]q!

A sequence (An(t, q)) (n ≥ 0) of polynomials in two variables t and q,
is said to be Euler-Mahonian, if one of the following equivalent conditions
holds:

(1) For every n ≥ 0,

(2.5)
1

(t; q)n+1
An(t, q) =

∑
s≥0

ts
(
[s + 1]q

)n
.
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(2) The exponential generating function for the fractions
An(t, q)
(t; q)n+1

is
given by:

(2.6)
∑
n≥0

un

n!
An(t, q)
(t; q)n+1

=
∑
s≥0

ts exp(u [s + 1]q).

(3) The sequence (An(t, q)) satisfies the recurrence relation:

(2.7) (1− q) An(t, q) = (1− tqn) An−1(t, q)− q(1− t) An−1(tq, q).

(4) Let An(t, q) =
∑
s≥0

ts An,s(q). Then the coefficients An,s(q) satisfy
the recurrence:

(2.8) An,s(q) = [s + 1]q An−1,s(q) + qs[n− s]q An−1,s−1(q).

It is routine to prove that those four conditions are equivalent (see,
e.g. [ClFo95, §§ 6,7] for a proof in a more general setting). Now a pair of
statistics (stat1, stat2) defined on each symmetric group Sn (n ≥ 0) is said
to be Euler-Mahonian, if for every n ≥ 0 we have∑

w∈Sn

tstat1 wqstat2 w = An(t, q).

The first values of the Euler-Mahonian polynomials are the following:
A0(t, q) = A1(t, q) = 1; A2(t, q) = 1 + tq; A3(t, q) = 1 + t(2q + 2q2) + t2q3;
A4(t, q) = 1 + t(3q + 5q2 + 3q3) + t2(3q3 + 5q4 + 3q5) + t3q6;
A5(t, q) = 1 + t(4q + 9q2 + 9q3 + 4q4) + t2(6q3 + 16q4 + 22q5 + 16q6 + 6q7)

+ t3(4q6 + 9q7 + 9q8 + 4q9) + t4q10.

Our results are the following.

Theorem 1. The permutation statistic
S11 := (a cb) + 2(b ca) + (ba)

is Mahonian.

Theorem 2. The permutation statistic
S13 := (a cb) + 2(b ac) + (ab)

is Mahonian .

Theorem 3. Let S5 := (b ca) + (c ab) + (a bc) + (ab).
Then, the pair (rise,S5) is Euler-Mahonian.

Theorem 4. Let S6 := (ba c) + (c ba) + (ba) + (ac b).
Then, the pair (des,S6) is Euler-Mahonian.

Our Theorems 1, 2, and 4 are the three parts of Conjecture 8 of
[BaSt00], while Theorem 3 is Conjecture 10 of [BaSt00]. In fact, our
Theorem 4 is stronger, since in [BaSt00] S6 is only conjectured to be
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Mahonian, but we will prove that it is in fact Euler-Mahonian when
associated with “des”. Einar Steingŕımsson [St00] has informed us that
Dennis White (Minnesota) had emailed him a proof for both Theorem 1
and Theorem 2.

Several pairs of statistics are known to be Euler-Mahonian, the pair
(des,maj) being the Euler-Mahonian pair, par excellence, a result that goes
back to Carlitz [Ca54], [Ca59], or even in an implicit form to MacMahon
[Ma15, vol. 2, p. 211]. For proving that a given pair (stat1, stat2) is Euler-
Mahonian, we can form the generating polynomial for Sn by the pair
(stat1, stat2), say, Bn(t, q) and show that one of the conditions (1), (2),
(3) or (4) holds when An(t, q) is replaced by Bn(t, q). This is the approach
we have adopted for proving the first three results, but we have done it in
such a way that the calculation can be computer-implemented, as we now
explain.

It turns out that, thanks to the second author’s recent theory of
the “Umbral Transfer Matrix Method” [Ze00], the proofs of the first
three theorems are completely automatic, using the general Maple package
ROTA, together with a new interfacing package PERCY that computes the
appropriate Rota operators for what we will call Markovian Permutation
Statistics.

Since Markovian Permutation Statistics are easily amenable to au-
tomatic treatment by ROTA, and S5, S11, and S13 happen to belong to
that class (thanks to the consistent location of the ‘dash’), all we did,
after writing PERCY, was to ‘plug them in’. PERCY can, actually, handle
arbitrary Markovian Permutation Statistics. In particular, it can be used
to prove, in a few nano-seconds, MacMahon’s classical result that “maj”
is Mahonian. We believe that it can also discover and prove many new
results in addition to those proved here.

However, ROTA is useless in the case of S6, since the location of the
dash in S6 := (ac b)+ (ba c)+ (c ba)+ (ba) is not consistent. So proving
Theorem 4 still requires the traditional combinatorial method: construct
a bijection w 7→ w′ of Sn onto itself which has the property that

(des,S6) w′ = (des,maj) w

holds for every w ∈ Sn. Instead of the pair (des,maj) we will take another
Euler-Mahonian pair (des,mak), where “mak” is a Mahonian statistic
that was introduced in our previous paper [FoZe90]. In the Babson-
Steingŕımsson notation “mak” reads

(2.9) mak := (a cb) + (cb a) + (ba) + (ca b),

wrongly designated by “makl” in [BaSt00]. We will make use of the Euler-
Mahonian pair (des,mak), but prove the stronger Theorem 4′, where an
involution of Sn is constructed that preverses the descent set and permutes
two word statistics U and V we now define.
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First, the descent bottom set of a permutation w = x1x2 . . . xn is
defined to be the set DESBOT w of all the xi’s such that 2 ≤ i ≤ n and
xi−1 > xi. Its cardinality is the number of descents of w, des w, so that

(2.11) des w = # DESBOT w.

Next, the word statistics U and V are introduced as follows. Let
y = xi be a letter of the permutation w = x1x2 . . . xn. Define

Uy(w) := (ca− b) |b = y w;(2.12)

Vy(w) := (b− ac) |b = y w.(2.13)

Thus, Uy(w) is the number of pairs of adjacent letters xjxj+1 to the left
of y = xi such that xj > xi > xj+1. The word statistics U and V are then:

U(w) := U1(w)U2(w) . . . Un(w);(2.14)
V (w) := V1(w) V2(w) . . . Vn(w).(2.15)

Now, recall the traditional reverse image r, which is an involution that
maps each permutation w = x1x2 · · ·xn onto rw := xn · · ·x2x1. We shall
introduce another involution s of Sn, called the rise-des-exchange, which
exchanges the rises and the descents of a permutation (in a sense that will
be explained in Section 6, but can be immediately visualized in Fig. 1) and
keeps peaks and troughs in their original ordering. We can then consider
the involution r s.

Theorem 4′. The involution r s of Sn has the following properties:

(a) DESBOT r sw = DESBOT w;
(b) (U, V ) r sw = (V,U) w.

In Section 6 we will show how Theorem 4′ implies Theorem 4.

3. Markovian Permutation Statistics

The reduction of a sequence of n distinct integers w, denoted by
red(w), is the permutation obtained by replacing the smallest member
by 1, the second-smallest by 2, . . . , and the largest by n. For example,
red(8 3 5 9 2) = 4 2 3 5 1.

Definition. A permutation statistic F : Sn → Z is said to be
Markovian, if there exists a function h(j, i, n) such that

F (x1 · · ·xn) = F (red(x1 · · ·xn−1)) + h(xn−1, xn, n).

Definition: A Markovian permutation statistic F : Sn → Z is said to
be Nice Markovian if the above h(j, i, n) can be written as

h(j, i, n) =
{

f(j, i, n), if j < i;
g(j, i, n), if j > i;
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where f and g are affine linear functions of their arguments, i.e. can be
written as ai + bj + cn + d, for some integers a, b, c, d.

From now on we, and the Maple package PERCY, will only con-
sider Nice Markovian Permutation Statistics. We will denote them by
[f, g, j, i, n]. For example, inv = [n− i, n− i, j, i, n], maj = [0, n− 1, j, i, n],
des = [0, 1, j, i, n], rise = [1, 0, j, i, n], etc.

Given a permutation statistic F we are interested in the sequence of
polynomials

gf(F )n(q) :=
∑

w∈Sn

qF (w) (n ≥ 0).

However, in order to take advantage of Markovity, we need to consider the
more refined

GF(F )n(q, z) :=
∑

w=x1...xn∈Sn

qF (w)zxn (n ≥ 0)

that also keeps track of the last letter xn. Now, using Rota operators
(see [Ze00]), it is easy to express GF(F )n in terms of GF(F )n−1. Let
w′ := x′1 · · ·x′n−1 = red(x1 · · ·xn−1); then

GF(F )n(q, z) :=
n∑

i=1

zi
∑

w∈Sn
xn=i

qF (w)

=
n∑

i=1

zi
(i−1∑

j=1

∑
w∈Sn

xn−1=j, xn=i

qF (w) +
n∑

j=i+1

∑
w∈Sn

xn−1=j, xn=i

qF (w)
)

=
n∑

i=1

zi
(i−1∑

j=1

∑
w∈Sn

xn−1=j

qF (w′)+f(j,i,n) +
n∑

j=i+1

∑
w∈Sn

xn−1=j

qF (w′)+g(j,i,n)
)

=
∑

j<i≤n

zi
∑

w′∈Sn−1

x′n−1=j

qF (w′)+f(j,i,n) +
∑

i≤j≤n−1

zi
∑

w′∈Sn−1

x′n−1=j

qF (w′)+g(j+1,i,n)

=
n−1∑
j=1

∑
w′∈Sn−1

x′n−1=j

( j∑
i=1

qg(j+1,i,n)zi +
n∑

i=j+1

qf(j,i,n)zi
)
qF (w′).

Now for 1 ≤ j ≤ n− 1 introduce the umbra P,

(3.1) P(zj) :=
( j∑

i=1

qg(j+1,i,n)zi +
n∑

i=j+1

qf(j,i,n)zi
)
,
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and extend by linearity, so that P is defined on all polynomials of degree
≤ n− 1. In terms of P, we have the very simple recurrence:

GF(F )n(q, z) = P(GF(F )n−1(q, z)).

Of course, P itself may be (and usually is) complicated, but we don’t
care, we don’t even have to see it, since Maple can compute the umbra
automatically, (all it has to do is to be able to sum geometric series
symbolically, that it does very well), and store it for later. All the users
have to enter is f and g, or if they prefer, they may use the notation of
[BaSt00], and PERCY would convert it to the Markovian notation, and take
it from there.

4. Proofs of Theorems 1, 2, 3

Proof of Theorem 1. Using PERCY (and ROTA) (or even by hand!)
we get that the umbra P linking GF(S11)n−1(q, z) to GF(S11)n(q, z), as
defined in (3.1), maps the polynomial a(z) onto

zn+1a(1)− za(z)
z − 1

+
z(a(qz)− a(q2))

z − q
.

Hence bn(z) := GF(S11)n(q, z) satisfies the functional recurrence

bn(z) =
zn+1bn−1(1)− zbn−1(z)

z − 1
+

z(bn−1(qz)− bn−1(q2))
z − q

,

with the initial condition b1(z) = z. But, the same is true of

cn(z) := z
(zn − qn)
(z − q)

[n− 1]q! (check!).

Hence bn(z) = cn(z), and finally bn(1) = cn(1) = [n]q!

Proof of Theorem 2. Using PERCY (and ROTA) (or even by hand!) we
get that the umbra linking GF(S13)n−1(q, z) to GF(S13)n(q, z) is

a(z) 7→ z(a(zq)− a(1))
qz − 1

+
zqa(z)− q2n+1zn+1a(q−2)

1− zq2
.

Hence dn(z) := GF(S13)n(q, z) satisfies the functional recurrence

dn(z) =
z(dn−1(zq)− dn−1(1))

qz − 1
+

zqdn−1(z)− q2n+1zn+1dn−1(q−2)
1− zq2

.

with the initial condition d1(z) = z. But, the same is true of

en(z) := z
(1− qnzn)
(1− qz)

[n− 1]q! (check!).

Hence dn(z) = en(z), and finally dn(1) = en(1) = [n]q!
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Proof of Theorem 3. PERCY can just as easily compute the Umbra
for multi-statistics, when the generating function is the weight-enumerator
of Sn according to the weight

weight(w) := zxn

r∏
j=1

q
Fj(w)
j ,

where w = x1 . . . xn and F1(w), . . . , Fr(w) are several Nice Markovian
permutation statistics. Define

An(t, q; z) :=
∑

w∈Sn

tdes wqmaj wzxn , Bn(t, q; z) :=
∑

w∈Sn

trise wqS5 wzxn .

PERCY, using ROTA, computes the following functional equations (that in
fact, are simple enough to be derivable by humans):

(4.1) An(t, q; z) =
z(1− tqn−1)An−1(t, q; z)− z(zn − tqn−1)An−1(t, q; 1)

1− z
;

(4.2) Bn(t, q; z) =
z(1− tqn)Bn−1(t, q; z)− z(1− tzn)Bn−1(t, q; q)

z − q
.

We have to prove that Bn(t, q; 1) = An(t, q; 1) = An(t, q), the Euler-
Mahonian polynomial, as defined in (2.5)-(2.8), as we already know
that (des,maj) is Euler-Mahonian. By comparing the two functional
recurrences, we get that Bn(t, q; z) = q−nzn+1An(tq, q; q/z), hence we
have to prove that An(tq, q; q) = qnAn(t, q; 1) = An(t, q). By plugging
t = tq, z = q into (4.1), and using the induction hypothesis, we get that

An(tq, q; q)

=
q(1− (tq)qn−1)An−1(tq, q; q)− q(qn − (tq)qn−1)An−1(tq, q; 1)

1− q

=
q(1− tqn)qn−1An−1(t, q; 1)− qn+1(1− t)An−1(tq, q; 1)

1− q

= qn (1− tqn)An−1(t, q)− q(1− t)An−1(tq, q)
1− q

.

But, this equals qnAn(t, q) by (2.7).

The input and output files of PERCY, for all the above claimed
statements, can be downloaded from

http://www.math.temple.edu/~zeilberg/programs.html.
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5. A Brief Description of PERCY

You must have MAPLETM . First go to Zeilberger’s homepage

http://www.math.temple.edu/~zeilberg/,

click on programs, and download PERCY and ROTA. Make sure that they
reside in the same directory in your computer. Then go into Maple (by
typing: maple , followed by ENTER ), and type read PERCY; . Then follow
the on-line instructions. In particular, to get a list of all procedures, type:
Ezra(); (not to be confused with ezra(); and ezra1();, that refer to
ROTA; for information about ROTA, see [Ze00]).

BSE(bitui,j,i,n) inputs an expression, bitui in the notation
of [BaSt00], and three variables j,i,n and returns the Nice Marko-
vian Statistic in the [f, g, j, i, n] notation. Given a Markovian permuta-
tion statistic MPS=[f,g,j,i,n], PermPreUmbra(MPS,q,z); and PermUm-
bra(MPS,q,z); find the pre-umbra and umbra respectively connecting the
weight-enumerator of Sn−1 to that of Sn. For example PermUmbra([0,n-
1,j,i,n],q,z) does it for maj.

Given a Markovian permutation statistic, MPS, a variable q, and a
positive integer L, GF(MPS,q,L); finds the first L terms in the weight-
enumeration sequence, fast, using the umbra (by calling ROTA). The skeptic
can check the answer (for small L!), by also doing GFdirect(MPS,q,L);,
which computes by direct (super-exponentially slow) enumeration. Per-
mUmbraMS(MPSs,qs,z) and GFMS(MPSs,qs,L) are the analogous functions
for multi-statistics, where MPSs is a list of Markovian permutation statis-
tics and qs is a list of corresponding variables. For example, to get
the first 10 terms in the sequence of the Euler-Mahonian polynomials,
type GFMS([[0,n-1,j,i,n],[0,1,j,i,n]],[q,t],10); . For more de-
tails, download PERCY and use the on-line help.

6. Proof of Theorem 4′

The reverse image r was redefined at the end of Section 2. The
definition of the involution s, which is now given, is based on the peak-
trough factorization of a permutation. By peak of the permutation w =
x1x2 · · ·xn we mean a letter xj such that 1 ≤ j ≤ n and xj−1 < xj ,
xj > xj+1. [By convention, x0 = xn+1 := 0.] By trough we mean a letter
xj such that 2 ≤ j ≤ n − 1 and xj−1 > xj , xj < xj+1. Accordingly, each
permutation has k troughs and (k + 1) peaks for some k ≥ 0. By double
descent we mean a letter xj such that 2 ≤ j ≤ n and xj−1 > xj > xj+1.
By double rise we mean a letter xj such that 1 ≤ j ≤ n − 1 and
xj−1 < xj < xj+1.

In the following p and t will designate letters which are peaks and
troughs, respectively, while d, h, will designate words all letters of which
are double descents, double rises, respectively.
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Each permutation w has a unique factorization, called its peak-trough
factorization w = h1p1d1t1 . . . hk−1pk−1dk−1tk−1 hkpkdk, having the
following properties:

(1) k ≥ 1;
(2) the pi’s are the peaks and the ti’s the troughs of the permutation;
(3) for each i the symbols hi, di are words, possibly empty, all letters

of which are double rises, double descents, respectively.

It will be convenient to put t0 = tk := 0. The set of all the letters in
the juxtaposition product d1t1 . . . dk−1tk−1dk, i.e. the set of all the double
descents and troughs of the permutation w, is the descent bottom set,
DESBOT w, of w introduced in Section 2 (see (2.11)).

Definition of the involution s. Let y be a double rise of w, so that y
is a letter of a factor hj for some j (1 ≤ j ≤ k). Define ϕw(y) to be the
least integer i such that j ≤ i ≤ k and pi > y > ti.

Define d′i to be the decreasing word of all double rises y in w such that
ϕw(y) = i. If ϕw(y) 6= i for every double rise y of w, let d′i be the empty
word.

Let y be a double descent of w, so that y is a letter of a factor dj

for some j (1 ≤ j ≤ k) and pj > y > tj . Define ϕw(y) to be the greatest
integer i such that 1 ≤ i ≤ j and ti−1 < y < pi.

Define h′i to be the increasing word of all double descents y in w such
that ϕw(y) = i. If ϕw(y) 6= i for every double descent y of w, let h′i be the
empty word.

Then, let

(6.1) sw := h′1p1d
′
1t1 . . . h′k−1pk−1d

′
k−1tk−1 h′kpkd′k.

The construction is illustrated in Fig. 1. To obtain the graph of sw we
have to move the double rises to the right until they hit the first decreasing
segment pi > ti. There is necessarily one since, by assumption, tk = 0.
Likewise, we move the double descents to the left until they reach the first
increasing segment ti−1 < pi, which exists since t0 = 0 by convention.

In the example we start with the permutation

w = 10, 11
∧

, 2
∨
, 4, 5, 9

∧
, 6
∨
, 12, 14, 15

∧
, 7, 3, 1

∨
, 8, 13

∧

and we obtain the permutation

sw = 11
∧

, 10, 2
∨
, 3, 9

∧
, 6
∨
, 7, 15

∧
, 14, 12, 5, 4, 1

∨
, 13
∧

, 8,

where the peaks (resp. the troughs) are materialized by “∧” (resp. “∨”)

Let RISE w (resp. DES w, resp. TROUGH w) be the set of of all the
double rises (resp. the double descents, resp. the troughs) of w, so that
DESBOT w = DES w ∪ TROUGH w.
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Lemma 6.1. The operation s is an involution. Moreover,
(a) DES sw = RISE w, RISE sw = DES w and TROUGH sw = TROUGH w;
(b) (U, V ) sw = (U, V ) w.

Proof. When passing from w to sw the subword p1t1 . . . pk−1tk−1 pk

made of the successive peaks and troughs remains alike. The double rises
(resp. double descents) of w are transformed into double descents (resp.
double rises) of sw.

By considering the graphs of the permutations w and sw it is clear
that we recover w by applying s to sw itself.

Finally, if y is a double rise of w between tj−1 and pj , we have defined
ϕw(y) as the least integer i such that j ≤ i ≤ k and pi > y > ti.
Accordingly, the number of pairs pl > tl to the left of y in both w and
sw is the same and the number of pairs tl−1 < pl to the right of y is also
the same in both w and sw. Accordingly, using the χ-notation (for each
statement A let χ(A) = 1 if A is true and 0 otherwise)

Uy(w) := (ca b) |b = y w

=
∑

1≤l≤j−1

χ(pl > y > tl)

=
∑

1≤l≤i−1

χ(pl > y > tl)

= (ca b) |b = y sw = Uy(sw).

In the same manner,

Vy(w) := (b ac) |b = y w

=
∑

j+1≤l≤k−1

χ(tl < y < pl+1)

=
∑

i≤l≤k−1

χ(tl < y < pl+1)

= (b ac) |b = y sw = Vy(sw).

There is an analogous proof when y is a double descent of w.

Lemma 6.2. The reverse image r has the following properties:
(a) DES rw = RISE w, RISE rw = DES w and TROUGH rw = TROUGH w;
(b) (U, V ) rw = (V,U)w.

Proof. Property (a) is obvious. On the other hand, when going
from w to rw each decrease ca to the left of y in w will become an increase
ac to the right of y in rw, so that (b) holds.

It follows from Lemmas 6.1 and 6.2 that DES r sw = RISE sw = DES w
and TROUGH r sw = TROUGH sw = TROUGH w, so that DESBOT r sw =
DESBOT w. Finally, (U, V ) s rw = (U, V ) rw = (V,U) w. This completes
the proof of Theorem 4′.

12
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In the example of Fig. 1 we have

w = 10, 11
∧

, 2
∨
, 4, 5, 9

∧
, 6
∨
, 12, 14, 15

∧
, 7, 3, 1

∨
, 8, 13

∧
,

sw = 11
∧

, 10, 2
∨
, 3, 9

∧
, 6
∨
, 7, 15

∧
, 14, 12, 5, 4, 1

∨
, 13
∧

, 8,

r sw = 8, 13
∧

, 1
∨
, 4, 5, 12, 14, 15

∧
, 7, 6
∨
, 9
∧
, 3, 2
∨
, 10, 11

∧
,

and we can verify that: y
Uy(r sw)
Vy(r sw)

=

( 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 1 1 1 1 1 1 0 2 2 2 1 0 0 0
0 0 1 1 1 1 2 3 1 0 0 0 1 0 0

)
=

 y
Vy(w)
Uy(w)

.

7. Proof of Theorem 4 and Consequences

Let Σ DESBOT w be the sum of all the letters xi of the permutation
w = x1x2 · · ·xn which belong to the descent bottom set DESBOT w.

Lemma 7.1. For each permutation w we have:

(7.1) Σ DESBOT w =
(
(a cb) + (cb a) + (ba)

)
w.

Proof. Let xi ∈ DESBOT w, so that xi−1 > xi and (ba) |b = xi
w = 1.

Then (a cb) |b = xi
w counts the letters xj , less than xi, which are to the

left of xi, while (cb a) |b = xi
w counts the letters xj , less than xi, to the

right of xi. Hence,
(
(a cb) + (cb a) + (ba)

)
|b = xi

w is equal to xi.

Next, introduce the other classical operation of the dihedral group,
the complement to (n + 1), denoted by c, that maps each permutation
w = x1x2 . . . xn onto cw := (n + 1 − x1)(n + 1 − x2) · · · (n + 1 − xn). It
is straightforward to verify the relations: (ba c) r c = (a cb), (c ba) r c =
(cb a), (ac b) r c = (b ac), (ba) r c = (ba).

As stated in Theorem 4, the statistic S6 is defined by

S6 := (ba c) + (c ba) + (ba) + (ac b),
so that the statistic S6 r c reads

S6 r c := (a cb) + (cb a) + (ba) + (b ac),
while the “mak” statistic defined in (2.9) is

mak = (a cb) + (cb a) + (ba) + (ca b).

Taking Lemma 7.1 into account, as well as the definitions of the word
statistics U , V given in (2.12)–(2.15), we get the expressions:

mak w = Σ DESBOT w + U1(w) + · · ·+ Un(w);
S6 r cw = Σ DESBOT w + V1(w) + · · ·+ Vn(w).

Now, remember that des w is the number of elements in DESBOT w.
Therefore, Theorem 4′ implies the following corollary.
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Corollary 7.2. The involution r s is an involution of Sn having the
property:

(des,mak) w = (des,S6 r c)r sw.

But (des,mak) is Euler-Mahonian, as proved in [FoZe90]. Therefore,
the pair (des,S6 r c) is Euler-Mahonian, as well as (des,S6), since we
always have des r cw = des w. Hence Theorem 4 is proved.
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