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To Gian-Carlo Rota, in memoriam

Abstract. Further computations are made on the traditional coupon
collector’s problem when the collector shares his harvest with his younger
brothers. When the book of the p-th brother of the collector is completed,
the books of the younger brothers have certain numbers of empty spots. On
the average, how many? Several answers can be brought to that question.

1. Introduction. This paper on the traditional and recurrent Collec-
tor’s Problem, that uses the Newman-Shepp method, one of those symbolic
approaches dear to Gian-Carlo Rota, is dedicated to his memory.

Suppose that m different coupons are needed for a collector, to complete
his picture-book. Each time, that is, at each purchase, he can get a given
coupon with probability 1/m. If he does not have it yet, he sticks it on
his book. Otherwise, he gives it to his younger brother. In his turn, the
younger brother sticks it on his own book, if the coupon is new for him.
Otherwise, the next younger brother will receive it and try to complete
his own picture-book, using the same policy. The collector is labelled 0,
the younger brother 1, the next younger brother 2, etc.

For p ≥ 0 let Tp be the time at which the person labelled p completes
his book. Also for each k ≥ 1, n ≥ 1 and 1 ≤ i ≤ m let

X
(k)
n,i =

{ 1, if coupon i has occurred k times
up to and including time n;

0, otherwise.

Thus, X
(k)
n =

∑
1≤i≤m

X
(k)
n,i is the number of coupons that have occurred k

times (exactly) up to and including time n. For each n ≥ 1 let X
(0)
n be the

number of empty spots in the collector’s book at time n; by convention
X

(0)
0 = m.
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For each p ≥ 0 we have X
(p)
Tp

= 0 and for each k ≥ p + 1 the number
of coupons that have occurred k times up to and including time Tp is
X

(k)
Tp

. Consequently, the number of empty spots in the book of the brother

labelled k ≥ p + 1 at time Tp is X
(p+1)
Tp

+ X
(p+2)
Tp

+ · · ·+ X
(k)
Tp

.
Several methods have been used to derive the probability distribution

of T0 and its expected value E[T0]. The evaluation E[T0] = m Hm, where
Hm is the harmonic number Hm = 1 + 1

2 + · · · + 1
m , is a classic (see

Feller (1968)). The evaluation E[X(1)
T0

] = Hm is due to Pintacuda (1980)
using a method based on the martingale stopping time theorem. Recently,
Foata, Han and Lass (2001) have derived the generating function for the
vector (T0, X

(1)
T0

, X
(2)
T0

, . . . , X
(k)
T0

) (k ≥ 1) and, when k ≥ 2, obtained the

evaluations E[X(k)
T0

] = K
(k)
m , where K

(k)
m is the hyperharmonic number that

can be defined by the generating function:

(1.1)
∑
k≥0

K(k)
m tk =

1
(1− t/2)(1− t/3) · · · (1− t/m)

.

Now the natural question to ask is the following: what can be said when
the stopping time T0 is replaced by Tp for an arbitrary p ≥ 0? Back to the
early sixties Newman and Shepp (1960) obtained the integral expression

(1.2) E[Tp] = m

∫ +∞

0

(
1− (1− Sp+1(x)e−x)m

)
dx,

where

(1.3) Sp+1(x) := 1 +
x

1!
+ · · ·+ xp

p!
(p ≥ 0).

The purpose of this paper is to make use of the symbolic method developed
by Newman and Shepp (op. cit.) to obtain the following formulas, all of
them expressed in terms of integrals. For each 0 ≤ p < r consider the
generating functions:

HTp
(t) :=

∑
i≥0

P{Tp > i} ti;(1.4)

GTp
(t) :=

∑
i≥0

P{Tp = i} ti;(1.5)

GTp,X(t, s) :=
∑

n,n1,...,nr

P{Tp = n, X
(p+1)
Tp

= np+1, . . . , X
(r)
Tp

= nr}(1.6)

× tns
np+1
p+1 · · · snr

r ;

G
(p)
X (t) :=

∑
k≥p+1

E[X(k)
Tp

] tk.(1.7)
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We then establish the formulas:

(1.8) HTp
(t) = m

∫ +∞

0

(
e−mx(1−t) − (e−x(1−t) − Sp+1(tx)e−x)m

)
dx;

(1.9) GTp(t) = m(1− t)
∫ +∞

0

(
e−x(1−t) − e−xSp+1(tx)

)m
dx;

(1.10) GTp,X(t, s) =
msp+1t

p+1

p!

∫ +∞

0

xpe−mx

×
(
ext − Sr+1(xt) +

(xt)p+1

(p + 1)!
sp+1 + · · ·+ (xt)r

r!
sr

)m−1

dx;

(1.11) G
(p)
X (t) = tp+1

+ m(m− 1)
∫ +∞

0

e−mx xp

p!
(
ext − Sp+1(xt)

)(
ex − Sp+1(x)

)m−2
dx.

By expanding the different integrands using the multinomial theorem
we can express those integrals as finite sums over Nr+2 for some r. For
instance, (1.10) may be rewritten as

(1.12) GTp,X(t, s) =
sp+1t

p!

∑(
m− 1

a, b0, . . . , br

)
(−1)b0+···+br

(
p∏

i=0

( 1
i!

)bi

)

×

 r∏
i=p+1

(si − 1
i!

)bi

 (t/m)p+1·b1+···+r·br

(1− at/m)1+p+1·b1+···+r·br
(p +

r∑
i=1

ibi)!,

that specializes to the formula derived by Foata et al. (2001) for the case
p = 0. However the main difference between the latter case and the general
case p ≥ 1 is the fact that when p = 0 identity (1.12) can directly lead to
the explicit evaluations E[X(1)

T0
] = Hm and E[X(k)

T0
] = K

(k)
m (k ≥ 2) (the

hyperharmonic number), while for p ≥ 1 the integral form that can be
obtained from (1.10) has no further simplification.

In section 2 we discuss certain salient features of Surjection Calculus. In
section 3 we recall the symbolic method developed by Newman and Shepp
(op. cit.) and use it to prove identities (1.8) and (1.9). Identities (1.10)
and (1.11) are proved in sections 4 and 5, respectively. We conclude the
paper by some remarks on the holonomic aspects of the above integral
identities.

Notice that the asymptotics of E[Tp] for an arbitraary p ≥ 0 have been
derived by Newman and Shepp (op. cit.) and the asymptotic probability
distribution of Tp has been calculated by Erdős and Rényi (1961). More
recent work along those lines is due to Wilf (2001).
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2. Surjection calculus. Let (t, s1, s2, . . . ) be a sequence of commut-
ing variables. If f maps a finite set A of integers into a (finite) set B
of integers, let νi(f) denote the number of elements j ∈ B such that the
preimage f−1(j) is of cardinality i. Then, the weight π(f) of f is defined by:
π(f) :=

∏
i≥1

s
νi(f)
i ; so that the relations

∑
i

νi(f) = #B et
∑
i

i νi(f) = #A.
hold.

For each integer n let [n] := {1, 2, . . . , n} and for each pair of finite sets
(A,B) let Surj≥p+1(A,B) denote the set of all surjections f : A → B such
that for all j ∈ B the inequality #f−1(j) ≥ p + 1 holds. The following
identity is the basic identity in Surjection Calculus (see, e.g., Foata (1974),
p. 60):

(2.1)
( ∑

i≥p+1

si
ti

i!

)m

=
∑

n≥(p+1)m

tn

n!

∑
f∈Surj≥p+1([n],[m])

π(f).

This implies, when all the si’s are equal to 1,

(2.2) (et − Sp+1(t))m =
∑

n≥(p+1)m

tn

n!
# Surj≥p+1([n], [m]).

Next consider the subset A(n, m) of all surjections f in Surj≥p+1([n], [m])
such that if f(n) = j then #f−1(j) = p + 1. In other words, all values are
taken at least p+1 times, but the value taken at n occurs exactly p times
in (f(1), f(2), . . . , f(n− 1)). Then, identity (2.1) implies

(2.3)
∑

n≥m(p+1)

tn−1

(n− 1)!

∑
f∈A(n,m)

π(f) = msp+1
tp

p!

( ∑
i≥p+1

si
ti

i!

)m−1

.

Let 0 ≤ p < r, n := (np+1, np+2, . . . , nr) and let A(n, m;n) be the subset
of all surjections f in A(n, m) such that

νi(f) = ni for i = p + 1, p + 2, . . . , r.

When si := 1 for all i ≥ r + 1, identity (2.3) rewrites as:

(2.4)
∑

n≥m(p+1)

tn−1

(n− 1)!

∑
n

#A(n, m;n)
∏

p+1≤i≤r

sni
i

= msp+1
tp

p!

(
et − Sr+1(t) + sp+1

tp+1

(p + 1)!
+ · · ·+ sr

tr

r!

)m−1

.

Now let i, j be two distinct integers in [m] and for each n ≥ (p+1)m let
B(n− 1, i, j) be the set of surjections f : [n− 1] → [m] with the following

4



THE COLLECTOR’S BROTHERHOOD PROBLEM

properties: with I(f) := f−1(i), J(f) := f−1(j) then #J(f) = p and the
restriction of f to [n−1]\J(f) belongs to Surj≥p+1([n−1]\J(f), [m]\{j}).
Then form the generating polynomial

(2.5) Fn−1(t) =
∑

f∈B(n−1,i,j)

t#I(f).

Still using (2.1) a little reflection shows that the following identity holds:

(2.6)
∑

n≥(p+1)m

un−1

(n− 1)!
Fn−1(t) =

up

p!
(
eut−Sp+1(ut)

)(
eu−Sp+1(u)

)m−2
.

3. The Newman-Shepp symbolic method. Let m ≥ 1 and
consider the algebra of power series in the variables u1, u2, . . . , un. If
a = a(u1, . . . , un) is such a series, write it as

a(u1, . . . , un) =
∑
i≥0

1
i!

ai(u1, . . . , un),

where ai(u1, . . . , un) is the sum of all monomials of degree i in a. Now
define

Nm a(u1, . . . , un) :=
∑
i≥0

1
mi

ai(u1, . . . , un),

so that the exponential normalization has be replaced by the power normal-
ization. We next reproduce the integral expression for Nm a(u1, . . . , un) as
derived by Newman and Shepp (op. cit.).

Lemma 3.1. We have the identity:

Nm a(u1, . . . , un) = m

∫ +∞

0

e−mx a(xu1, . . . , xun) dx.

For each n = 1, 2, . . . let Yn be the label of the coupon which is
obtained at time n. By assumption, the random variables Yn (n = 1, 2, . . . )
are assumed to be independent and uniformly distributed on the coupon
label set {1, 2, . . . ,m}. The event {Tp > n} is realized if and only if the
mapping f : i 7→ Yi (1 ≤ i ≤ n) belongs to the set Surjc≥p+1([n], [m]) :=
[m]n \ Surj≥p+1([n], [m]). Hence P{Tp > n} = #Surjc≥p+1([n], [m])/mn.
But it follows from (2.2) that

emt − (et − Sp+1(t))m =
∑
n≥0

tn

n!
# Surjc≥p+1([n], [m]),
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so that

Nm

(
emt − (et − Sp+1(t))m

)
=
∑
n≥0

tn

mn
# Surjc≥p+1([n], [m])

=
∑
n≥0

P{Tp > n}tn = HTp
(t).

Hence, by Lemma 3.1

HTp
(t) = m

∫ +∞

0

e−mx(emtx −
(
etx − Sp+1(tx))m

)
dx,

which reduces to (1.8). To get (1.9) we make use of the traditional relation
GTp(t) = 1−(1−t)HTp(t). Finally, when we plug t = 1 in (1.8), we recover
formula (1.2) already derived by Newman and Shepp (op. cit.).

4. The multivariable generating function. Keep the same nota-
tions for the sequence (Yn) (n = 1, 2, . . . ) of coupon labels that occur at
time n = 1, 2, . . . and for the variables X

(k)
n defined in the introduction.

Then, the event {Tp = n, X
(p+1)
Tp

= np+1, . . . , X
(r)
Tp

= nr} is realized if and
only if the mapping f : i 7→ Yi (1 ≤ i ≤ n) belongs to the set A(n, m;n)
introduced in (2.4). Hence, P{Tp = n, X

(p+1)
Tp

= np+1, . . . , X
(r)
Tp

= nr} =
#A(n, m;n)/mn. It follows from (2.4) that

Nm

(
msp+1

tp

p!

(
et − Sr+1(t) + sp+1

tp+1

(p + 1)!
+ · · ·+ sr

tr

r!

)m−1)
=

∑
n≥m(p+1)

tn−1

mn−1

∑
n

#A(n, m;n)
∏

p+1≤i≤r

sni
i ,

so that, by multiplying both members by t/m,

t Nm

(
sp+1

tp

p!

(
et − Sr+1(t) + sp+1

tp+1

(p + 1)!
+ · · ·+ sr

tr

r!

)m−1)
=

∑
n≥m(p+1)

tn

mn

∑
n

#A(n, m;n)
∏

p+1≤i≤r

sni
i

=
∑
n,n

P{Tp = n, X
(p+1)
Tp

= np+1, . . . , X
(r)
Tp

= nr}tns
np+1
p+1 · · · snr

r

= GTp,X(t, s).

This establishes identity (1.10) by using again Lemma 3.1.
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5. A generating function for the expected times. We may write

G
(p)
X (t) :=

∑
k≥p+1

E[X(k)
Tp

] tk =
∑

k≥p+1

∑
1≤i≤m

E[X(k)
Tp,i] t

k

=
∑

k≥p+1

∑
1≤i≤m

P{X(k)
Tp,i = 1} tk

=
∑

k≥p+1

∑
1≤i≤m

∑
n≥(p+1)m

∑
1≤j≤m

P{X(k)
n,i = 1, Tp = n, Yn = j} tk

= tp+1 +
∑

n≥(p+1)m

∑
i

∑
j 6=i

∑
k≥p+1

P{X(k)
n−1,i = 1, Tp = n, Yn = j} tk.

Now the event {X(k)
n−1,i = 1, Tp = n, Yn = j} is realized if and only if

the mapping f : k 7→ Yk (1 ≤ k ≤ n− 1) belongs to the set B(n− 1, i, j)
introduced in (2.5)–(2.6) and if Yn = j. Hence, keeping the same notations,∑

k≥p+1

P{X(k)
n−1,i = 1, Tp = n, Yn = j}tk =

1
mn

Fn−1(t),

so that

G
(p)
X (t) = tp+1 + m(m− 1)

∑
n≥(p+1)m

1
mn

Fn−1(t).

With the introduction of a new variable u define:

G
(p)
X (t, u) := tp+1 + (m− 1)

∑
n≥(p+1)m

un−1

mn−1
Fn−1(t).

Then

G
(p)
X (t, u) = Nm

(
tp+1 + (m− 1)

∑
n≥(p+1)m

un−1

(n− 1)!
Fn−1(t)

)

= Nm

(
tp+1 + (m− 1)

up

p!
(
eut − Sp+1(ut)

)(
eu − Sp+1(u)

)m−2
)

by using (2.6). Next applying Lemma 3.1 we get:

G
(p)
X (t, u) = tp+1

+ m(m− 1)
∫ +∞

0

e−mx (ux)p

p!
(
euxt −Sp+1(uxt)

)(
eux −Sp+1(ux)

)m−2
dx,

which reduces to (1.11) by making u = 1.
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6. Concluding Remarks. Identity (1.1) together with the evalua-
tions E[X(1)

T0
] = Hm and E[X(k)

T0
] = K

(k)
m (k ≥ 2) can be rewritten as

(6.1) G
(0)
X (t) =

∑
k≥1

E[X(k)
T0

]tk = −1+t+
1

(1− t/2)(1− t/3) · · · (1− t/m)
.

That identity, derived by Foata et al. (op. cit.), can also be obtained
from its integral form (1.11). When p = 0, the factor xp in the integrand
vanishes. With the change of variables u = e−x the integral in (1.11)
reduces to the evaluation of two bêta integrals:

G
(0)
X (t) = t + m(m− 1)

∫ 1

0

(u−t+1 − u)(1− u)m−2 du

= t + m(m− 1)
(Γ(2− t)Γ(m− 1)

Γ(m− t + 1)
− Γ(2)Γ(m− 1)

Γ(m + 1)

)
= t +

m!
(m− t)(m− t− 1) · · · (2− t)

− 1

= −1 + t +
1

(1− t/2)(1− t/3) · · · (1− t/m)
.

Unfortunately, for p > 0, it does not seem to be possible to evaluate
the integral in closed form, since then the integral representation is hybrid,
involving a polynomial in the variable and its exponential. Hence it lies
outside the jurisdiction of the holonomic paradigm, and in general there is
no reason why the integral should evaluate to something ‘nice’, and indeed
it, most probably, does not!
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Foata, Dominique; Han Guo-Niu; Lass, Bodo (2001). Les nombres hy-
perharmoniques et la fratrie du collectionneur de vignettes, Sém. Lothar.
Combin., 47, B47a, 2001, 20 pages [http://mat.univie.ac.at/∼slc/].

Newman, Donald J.; Shepp, Lawrence (1960). The Double Dixie Cup
Problem, Amer. Math. Monthly, 67, p. 58–61.

Pintacuda N. (1980). Coupon Collectors via the Martingales, Boll.
Un. Mat. Ital. A, 17, p. 174–177.

Wilf, Herb (2001). Some finite structures of the coupon collector’s
problem. Preprint.

Dominique Foata
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7, rue René-Descartes
F-67084 Strasbourg, France
foata@math.u-strasbg.fr

Doron Zeilberger
Department of Mathematics
Hill Center-Busch Campus
Rutgers, The State University of New Jersey
110 Frelinghuysen Rd
Piscataway, NJ 08854-8019, USA
zeilberg@math.rutgers.edu

9


