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Abstract. — The following article aims at presenting classical aspects of
dynamical systems preserving a geometric structure, focusing on 3-dimensional
Lorentzian dynamics. The reader won’t find here any new result, but rather an
expository approach of classical ones. Our main goal, in particular, is to intro-
duce part of the techniques and arguments used in [7] to obtain the classification
of closed 3-dimensional Lorentzian manifolds admitting a non-compact isometry
group. Doing so, we will present a self-contained, and somehow shortened proof
of Zeghib’s classification [24] of non-equicontinuous Lorentzian isometric flows in
dimension 3.

1. An invitation to Lorentzian dynamics

1.1. From dynamical systems to geometry

A flow ϕtX , generated by a vector field X, on a closed manifold M is
said to be Anosov when it is non-singular, and there exists a ϕtX-invariant
splitting TM = E− ⊕RX ⊕E+ such that vectors of E− (resp. of E+) are
exponentially contracted (resp. dilated) under ϕtX . Precisely, there exist
positive constants c and λ such that

‖DϕtX(u−)‖ 6 ce−λt‖u−‖

for every u− ∈ E−, t > 0, and

‖Dϕ−tX (u+)‖ 6 ce−λt‖u+‖

for every u+ ∈ E+, t > 0. Here, the norms are taken with respect to any
auxiliary Riemannian metric on M .
Examples of Anosov flows are provided by the geodesic flows of a closed,

negatively curved, Riemannian manifolds (N,h) (the manifoldM then cor-
responds to T 1N , the unit tangent bundle of N).
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The very definition of Anosov flows already involves a (weak) geometric
structure, namely the splitting TM = E− ⊕RX ⊕E+. A beautiful aspect
of the theory is that under certain circumstances, additional and more
rigid invariant structures naturally appear. Assume, for simplicity, that
our manifold M is 3-dimensional, so that E− and E+ are 1-dimensional.
Assume moreover that the flow ϕtX preserves a smooth volume form ω (this
is for instance the case if ϕtX is the geodesic flow of a smooth Riemannian
surface). One can then define a metric g on M , given by the relations
g(X,X) = 1, g(u−, u+) = ω(X,u−, u+) for every (u−, u+) ∈ E−×E+, and
RX is g-orthogonal to E− ⊕ E+. Observe that this metric is Lorentzian,
namely has signature (−,+,+), and is ϕtX-invariant by construction. Our
volume-preserving condition thus turned our Anosov flow into an isometric
Lorentzian flow.
All this nice picture is however damaged by regularity issues. In full

generality, the splitting E− ⊕ RX ⊕ E+ is only Hölder continuous, and
so is our Lorentzian metric g. This low regularity is a strong limitation
(at least until now) to take advantage of this new geometrical data. But
if one assumes that the distributions E− and E+ are smooth (as well as
the field X), then all the tools of differential geometry can be used to
understand the dynamical system (M,ϕtX).

It seems that Kanai [13] was one of the first to apply this kind of ideas in
the study of the geodesic flow of negatively curved surfaces. É. Ghys went
further and obtained the following beautiful classification of 3-dimensional
Anosov flows with smooth distributions E−, E+.

Theorem 1.1 ([10]). — Let ϕtX be a smooth, orientable, Anosov flow
on a closed 3-dimensional manifold M . Then ϕtX is either the suspension
of an Anosov diffeomorphism on the 2-torus, or smoothly orbit equivalent
to the right diagonal flow, acting on a compact quotient Γ \ S̃L(2,R).

Actually, Ghys did not use an invariant Lorentzian metric to achieve
his classification, but rather another rigid geometric structure often called
“contact Lagrangian”. This structure comes from the geometrization of sec-
ond order ODE’s, and its study can be traced back to E. Cartan. Theo-
rem 1.1 can also be obtained using Lorentzian geometry, as will be seen in
this article.
In arbitrary dimension, when the distributions E+, E− are smooth, and

E+ ⊕ E− defines a contact distribution, then an Anosov flow ϕtX pre-
serves a smooth pseudo-Riemannian (not Lorentzian in general) metric,
what allowed Y. Benoist, P. Foulon and F. Labourie to extend the initial
3-dimensional classification to all contact Anosov flows on closed manifolds,
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with smooth stable and unstable distributions (see [1, 2]). A particularly
inspiring discussion of that topic can be found in [5, Section 2].

1.2. Some nice Lorentzian dynamical systems

We now illustrate what was said before on a few paradigmatic examples.

1.2.1. Suspensions of Anosov diffeomorphisms

We call sol the 3-dimensional Lie algebra generated by T, Y, Z, with
bracket relations [T, Y ] = Y , [T,Z] = −Z and [Y,Z] = 0. By, SOL, we
mean the associated connected, simply connected Lie group.
There is an identification of SOL as the following subgroup of affine

transformations:

SOL '
{(

et 0 0
0 1 0
0 0 e−t

)
+
(
u
t
v

) ∣∣∣ (t, u, v) ∈ R3
}
.

It is easily seen that this group acts freely and transitively on R3, preserving
the flat Lorentz metric dx1dx3 + dx2

2. Let us identify SOL with R3 via the
orbit map g 7→ g.0. If ht denotes the 1-parameter group generated by the
element T , then the isometric flow x 7→ x + te2 corresponds to the right
multiplication by ht. To summarize, we have endowed SOL with a complete
flat metric, invariant by the group SOL×{ht}.
If we now pick Γ a lattice in SOL, and look at the right action of ht

on Γ\SOL, we get an isometric flow on the (flat) Lorentzian manifold
Γ\ SOL. It is easily checked that Γ\ SOL is diffeomorphic to a hyperbolic
torus bundle T3

A, with A ∈ SL(2,Z) a hyperbolic matrix, and the right
action of ht is the suspendion flow of the action of A on T2.

1.2.2. Examples derived from geodesic and horocyclic flows on hyperbolic
surfaces

The Lie group PSL(2,R) admits a lot of interesting left-invariant
Lorentzian metric. The most symmetric one is the anti-de Sitter metric
gAdS . It is obtained by left-translating the Killing form of the Lie algebra
sl(2,R). The space (PSL(2,R), gAdS) is a complete Lorentz manifold with
constant sectional curvature −1, called anti-de Sitter space AdS3. Because
the Killing form is Ad-invariant, the metric gAdS is invariant by left and
right multiplications of PSL(2,R) on itself. It follows that for any uniform
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lattice Γ ⊂ PSL(2,R), the metric gAdS induces a Lorentz metric gAdS on
the quotient manifold Γ\PSL(2,R), with a non-compact isometry group
coming from the right action of PSL(2,R) on Γ\PSL(2,R).

Exponentiating the matrix ( 0 1
0 0 ) (resp.

(
1/2 0
0 −1/2

)
), one gets a unipotent

(resp. R-split) flows {ut} (resp. {ht}) in PSL(2,R). The right action of ht
(resp. of ut) on Γ\PSL(2,R) is an algebraic model for the horocyclic (resp.
geodesic) flow on the unit tangent bundle of the hyperbolic surface Γ \H2

(when Γ is torsionfree).
A remarkable feature is the possibility of deforming in a non-trivial way

the previous examples. Consider a representation ρh : Γ → {ht} (resp.
ρu : Γ → {ut}), and the group Γρh

⊂ PSL(2,R) × PSL(2,R) (resp. Γρu
)

defined by {(γ, ρh(γ)) | γ ∈ Γ} (resp. {(γ, ρu(γ)) | γ ∈ Γ}). When the
representations ρh and ρu are close enough to the trivial representation, the
groups Γρh

and Γρu act properly discontinuously on PSL(2,R), preserving
the metric gAdS .
We get in this way (anti-de Sitter) Lorentz manifolds Γρh

\PSL(2,R)
and Γρu

\PSL(2,R), with a (right) isometric action of {ht} and {ut} re-
spectively. While the topological type of the closed manifolds obtained is
the same as that of Γ\PSL(2,R), the new flow {ht} is no longer conju-
gated, as a flow, to the geodesic flow. This was noticed by Ghys in [10,
Section 2]. However, there still exists a smooth orbit equivalence between
the deformed flow and the initial one [10, Proposition 2.4].
The adjoint action of each of the groups {ht} and {ut}, admits invari-

ant Lorentz scalar products on sl(2,R), which are not equal to a multiple
of the Killing form. One can left-translate those scalar products and get
metrics gu and gh on PSL(2,R) which are respectively PSL(2,R) × {ut}
and PSL(2,R) × {ht}-invariant. Actually there are families of such met-
rics gu and gh which are not pairwise isometric. In the sequel, the metric
gAdS and metrics of the form gu or gh, will be refered to as Lorentzian,
non-Riemannian, left-invariant metrics on PSL(2,R). Those are the only
left-invariant metrics on PSL(2,R), the isometry group of which does not
preserve a Riemannian metric. Such metrics induce Lorentzian metrics gh
(resp. gu) on the quotients Γρh

\PSL(2,R) (resp. Γρu\PSL(2,R)) which are
invariant by the right action of {ht} (resp. of {ut}).

1.3. Classification results

The previous sections are a motivation for the general study of 3-dimens-
ional Lorentzian manifolds (M3, g), admitting an isometric flow ϕtX which
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is “dynamically interesting”, namely which does not have compact closure
in Iso(M, g).

Theorem 1.2 ([24, Theorems 1 and 2]). — Let (M, g) be a smooth,
closed 3-dimensional Lorentz manifold. Let ϕtX be a flow of Lorentzian
isometries which is not relatively compact in Iso(M, g), then up to finite
cover, and after replacing eventually ϕtX by ϕαtX for α ∈ R∗, we are in
exactly one of the following situations:

(1) The manifold M is a torus bundle T3
A, A ∈ SL(2,Z) hyperbolic,

and g is a flat metric. The flow ϕtX is the suspension of the Anosov
diffeomorphism A.

(2) The manifold (M, g) is isometric to a quotient Γρh
\PSL(2,R) (resp.

Γρu\PSL(2,R)) endowed with a metric gAdS or gh (resp. gAdS or
gu). The flow ϕtX coincides with the right action of {ht} (resp. of
{ut}).

By “up to finite cover”, we mean that we allow taking finite covers and
quotients. This statement implies Theorem 1.1 (at least for Anosov flows
preserving a smooth volume form, as it is the case for instance for contact
flows). Let us observe however, that the proof given in [24] uses Ghys’s
result. We will try in the following to provide an alternative proof (which
will be independant of Theorem 1.1).
The condition that there exists in Iso(M, g) a 1-parameter group which is

not relatively compact in Iso(M, g), amounts to the non-compactness of the
identity component Isoo(M, g). One may wonder if Theorem 1.2 concludes
the classification of 3-dimensional closed Lorentzian manifolds having a
non-compact isometry group.
The answer is negative as the simple following example shows. Let us

consider R3 with the flat metric −dx2
1+dx2

2+dx2
3. This metric is translation

invariant, hence induces a metric gflat on the 3-torus T3 (obtained as the
quotient of R3 by the action of Z3 by translations). The isometry group
Iso(T3, gflat) is O(1, 2)Z n T3, hence non-compact (recall that O(1, 2)Z is
a lattice in O(1, 2)). We see on this example, that the non-compactness
comes from the discrete part of the isometry group. Other 3-dimensional
closed Lorentz manifolds display this property (see [7, Section 2]), and
some of them (as T3) have a topological type which is not represented
by the manifolds of Theorem 1.2. A complete description of the Lorentz
3-manifolds (M, g) for which Iso(M, g) is non-compact was recently given
in [7].

VOLUME 1 (-1)
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Theorem 1.3 ([7, Theorem A]). — Let (M, g) be a smooth, closed 3-
dimensional Lorentz manifold. Assume that (M, g) is orientable and time-
orientable, and that Iso(M, g) is non-compact. Then M is homeomorphic
to one of the following spaces:

(1) A quotient Γ\P̃SL(2,R), where Γ ⊂ P̃SL(2,R) is any uniform lat-
tice.

(2) A 3-torus T3, or a torus bundle T3
A, where A ∈ SL(2,Z) can be any

hyperbolic or parabolic element.
Conversely, any smooth compact 3-manifold homeomorphic to one of the
examples above can be endowed with a smooth Lorentz metric with a non-
compact isometry group.

Our aim in this article is to present some ideas involved in the proof of
Theorem 1.3, and apply them to give a self-contained proof of Theorem 1.2.

2. Curvature, Killing fields and the integrability theorem

We consider in this section a 3-dimensional Lorentz manifold (M, g) (ac-
tually, the material presented in this section fits into the much more general
framework of Cartan geometries, but we stick to the Lorentz case for the
sake of simplicity).
Let π : M̂ →M denote the bundle of orthonormal frames on M̂ . This is a

principal O(1, 2)-bundle over M , and it is classical (see [15, Chapter IV.2])
that the Levi-Civita connection associated to g can be interpreted as an
Ehresmann connection α on M̂ , namely a O(1, 2)-equivariant 1-form with
values in the Lie algebra o(1, 2). Let θ be the soldering form on M̂ , namely
the R3-valued 1-form on M̂ , which to every ξ ∈ Tx̂M̂ associates the coordi-
nates of the vector π∗(ξ) ∈ TxM in the frame x̂. The sum α+ θ is a 1-form
ω : TM̂ → o(1, 2) n R3 called the canonical Cartan connection associated
to (M, g).

Observe that for every x̂ ∈ M̂ , ωx̂ : Tx̂M̂ → o(1, 2)nR3 is an isomorphism
of vector spaces, and the form ω is O(1, 2)-equivariant (where O(1, 2) acts
on o(1, 2) nR3 via the adjoint action).

2.1. Killing fields and killloc-orbits

Recall that a local Killing field on (M, g) is a vector field Z, defined
on some open subset U ⊂ M , such that the Lie derivatives LZg vanishes
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identically. In other words, the local flow ϕtZ consists in local isometries
for g.
Given an open set U , the Killing fields on U define a finite-dimensional

Lie algebra kill(U). Hence, given a point x ∈M , and a decreasing sequence
(Un) of nested neighborhoods of x, the isomorphism type of the Lie algebras
kill(Un) stabilizes for n large. This define a Lie algebra killloc(x) that we
will call (abusively) the Lie algebra of Local Killing fields around x. For
3-dimensional Lorentz manifolds, the dimension of killloc(x) is at most 6,
with equality when g has constant curvature in a neighborhood of x. For
analytic structures, the analytic continuation property for Killing fields
ensures that the algebraic type of killloc(x) does not depend on x. In the
smooth category, which is the one we consider here, the situation is very
different. The dimension, as well as the algebraic type of killloc(x) may not
be constant.
Observe that because local isometries map orthonormal frames to or-

thonormal frames, any local isometry lifts to a local bundle isomorphism
on M̂ , which preserves ω. In the same way, any local Killing field Z de-
fined on U lifts to a vector field defined on Û := π−1(U) which satisfies
LZω = 0. In particular Z commutes with the O(1, 2)-action on M̂ . Con-
versely, any vector field defined on a connected open subset of M̂ , and
such that LZω = 0, projects to a local Killing field on M̂ . We will thus
indistinctly speak about local Killing fields on M and on M̂ .

The killloc-orbit of a point x, is the set of points that can be reached from
x, by flowing along finitely many successive local Killing fields.

2.2. Curvature

We assume now that the structures considered are of class C∞. The
notion of Riemannian curvature for g, as well as its higher order covariant
derivatives have a counterpart in M̂ . Actually, we will see that it is really
fruitful to work on the bundle M̂ instead of the manifold M itself. In all
the sequel, we will denote by g the Lie algebra o(1, 2) nR3.
The curvature of the Cartan connection ω is a 2-form K on M̂ , with

values in g, defined as follows. If X and Y are two vector fields on M̂ , the
curvature is given by the relation:

K(X,Y ) = dω(X,Y ) + [ω(X), ω(Y )].

Because at each point x̂ of M̂ , the Cartan connection ω establishes an
isomorphism between Tx̂M̂ and g, it follows that any k-differential form
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on M̂ , with values in some vector space W, can be seen as a map from
M̂ to Hom(⊗kg,W). This remark applies for the curvature form K itself,
yielding a curvature map κ : M̂ →W0, where the vector space W0 is a sub
O(1, 2)-module of Hom(∧2(g/o(1, 2)); g) (the curvature is antisymmetric
and vanishes when one argument is tangent to the fibers of M̂).

2.2.1. The curvature module

We give here more algebraic informations on the curvature module W0
in our special case of a 3-dimensional Lorentz manifold.
Let us consider on R3 the Lorentzian form, with matrix in a basis e, h, f

given by J =
(

0 0 1
0 1 0
1 0 0

)
.

We will identify in all what follows the group O(1, 2) with the subgroup
of GL(3,R) preserving the bilinear form determined by J . Its Lie algebra
is denoted by o(1, 2), and admits the following basis :

E =

 0 1 0
0 0 −1
0 0 0

, H =

 1 0 0
0 0 0
0 0 −1

, F =

 0 0 0
1 0 0
0 −1 0

.
Notice the commutation relations [H,E] = E, [H,F ] = −F and
[E,F ] = H.
Under the natural identification of g/o(1, 2) with R3, our curvature mod-

ule W0 is a 6-dimensional Hom(∧2(R3), o(1, 2)) (this constraint on the di-
mension comes from Bianchi’s identities). Choosing e ∧ h, e ∧ f , h ∧ f
as a basis for ∧2(R3), and E,H,F as a basis for o(1, 2), an element of
Hom(∧2(R3), o(1, 2)) is merely given by a 3×3 matrix. The action of O(1, 2)
on Hom(∧2(R3), o(1, 2)) corresponds to the conjugation on matrices.
Scalar matrices are O(1, 2)-invariant, and form a 1-dimensional irre-

ducible submodule (corresponding to constant sectional curvature).
The other irreducible submodule of the curvature module is 5-dimens-

ional, spanned by the matrices: 0 0 1
0 0 0
0 0 0

,
 0 1 0

0 0 1
0 0 0

,
 1 0 0

0 −2 0
0 0 1

,
 0 0 0

1 0 0
0 1 0

,
 0 0 0

0 0 0
1 0 0

.
2.2.2. Generalized curvature map

We now differentiate the map κ, getting a map Dκ : TM̂ →W0. As we
already explained it, the connection ω allows to identify Dκ with a map
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Dκ : M̂ → W1, where W1 = Hom(g,W0). We can then differentiate once
again and see D(Dκ) as a map D2κ : M̂ → W2 = Hom(g,W1) Repeating
this procedure, we can define the rth-derivative of the curvature Drκ :
M̂ → Hom(g,Wr) (with Wr defined inductively by Wr = Hom(g,Wr−1)).
The generalized curvature map of our Lorentz manifold (M, g) is the map
κg = (κ,Dκ,D2κ, . . . ,Ddim(g)κ). The O(1, 2)-module Hom(g,Wdim(g)) will
be rather denoted Wκg in the following.

Remark 2.1. — Of course, we could have replaced dim(g) by 6 in the
expressions above, but we want to emphasize the role of the bound dim(g)
when working in the general framework of Cartan geometries.

2.2.3. The integrability theorem

We are now coming to the most important result of this section. To
understand its statement, we first make the trivial remark that given a local
Killing field Z defined on some open subset Û ⊂ M̂ , then Dκg(Z) = 0. The
question is about the converse of this property. Given a point x̂ ∈ M̂ , and
ξ ∈ Tx̂M̂ such that Dκg(ξ) = 0, can we ensure that ξ is the evuation at x̂
of a local Killing field Z?
The remarkable fact is that the answer is positive if x̂ stays in a nice

dense open subset of M̂ the integrability locus of M̂ . This locus is defined
as the subset M̂ int ⊂ M̂ where the rank of the map κg is locally constant.
Observe that M̂ int is a dense open subset in M̂ , which is O(1, 2)-invariant.
We will denote by M int its projection on M . The integrability theorem can
then be stated as follows:

Theorem 2.2 (Integrability theorem). — Let M̂ int ⊂ M̂ the integra-
bility locus of the smooth Lorentz manifold (M, g).

(1) For every x̂ ∈ M̂ int, and every ξ ∈ Ker(Dx̂κ
g), there exists a local

Killing field Z around x̂ such that Z(x̂) = ξ.
(2) The connected components of the fibers of κg in M̂ int coincide whith

the killloc-orbits in M̂ int.

Some comments about this result are in order. The deepest, and most
difficult part, of the theorem is the first point. A first, and weaker version
of this statement, can be found in [18]. Actually, the intergability condition
stated in [18] required the vector ξ to be in the kernel of all successive
derivatives of the curvature map κ, which makes the conclusions less inter-
esting. It was M. Gromov’s insight to see that Killing generators of a finite,
sufficiently large order are locally integrable. He stated this integrability
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result, as well as its amazing consequences for the structure of Isloc-orbits
in [12, Section 1.6]. Quite recently, those results were recast in the frame-
work of Cartan geometries by K. Melnick in the analytic case (see [17]). The
reference [19] gives an alterative approach, allowing to deal with smooth
Cartan geometries, leading to the statement of Theorem 2.2. A proof that
the integrability property actually holds on the set where the rank of κg is
locally constant (first point of the theorem) follows Pecastaing’s ideas and
can be found in Annex A of [8].

2.3. Enriched structures

We have given the statement of Theorem 2.2 in the case where (M, g)
is a (3-dimensional) Lorentz manifold. Actually, this theorem holds for all
pseudo-Riemannian manifolds, and also for a much larger class of geometric
structures called Cartan geometries. We invite the reader wanting to learn
more about this topic, to look at the very comprehensive books [21], and [3].
In particular, [3, Chapter 4] provides an extensive discussion of examples.
The integrability theorem is actually available for an even greater class

of structures, that we call enriched structures, namely a Cartan geometry
together with additional tensorial datas (see [19, Section 4] for a detailed ac-
count). The example which will be relevant for us is that of a 3-dimensional
Lorentz manifold (M, g), together with a Killing field X. The geometric
structure considered is then the triple (M, g,X). Given x ∈ M , we can
consider local Killing fields for our enriched structure (M, g,X), defined in
a neighborhood of x. They are the Killing vector fields for g which moreover
commute with X. The Lie algebra of such local fields will be denoted by
zX(x). With the same definition as above, we will speak about the zX-orbit
of a given point.
Our Killing field X lifts to a vector field (still denoted X) on the bundle

M̂ , and provides there a O(1, 2)-equivariant map λX : M̂ → g defined by
λX(x̂) = ω(X(x̂)). Any local vector field Z in zX(x) will lift to a vector
field (still denoted Z) in a neighborhood of x̂ ∈ π−1{x} so that LZω = 0
and Z.λX = 0 (or in other words [Z,X] = 0).

We can now put the curvature κ and the map λX together, and build a
new generalized curvature map

κg
X := (κ,Dκ, . . . ,Ddim(g)κ, λX ,DλX , . . . ,Ddim(g)λX).

This defines an integrability locus M̂ int
X ⊂ M̂ comprising all point where

the rank of κg
X is locally constant. As before this set is O(1, 2)-invariant
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and projects on a dense open subset M int
X ⊂ M . One can then formulate

an integrability theorem similar to Theorem 2.3 for the enriched structure
(M, g,X).

Theorem 2.3 ([19, Theorem 4.4]). — Let (M, g,X) be the geometric
structure comprising the Lorentz metric g and the Killing field X.

(1) For every x̂ ∈ M̂ int
X , and every ξ ∈ Ker(Dx̂κ

g
X), there exists a local

field Z around x̂, which is the lift an element of zX(x), and such
that ω(Z(x̂)) = ξ.

(2) The connected components of the fibers of κg
X in M̂ int coincide

whith the zX-orbits in M̂ int.

2.4. Components of the integrability locus

The integrability locusM int
X is a dense open subset, which can be written

as a (possibly infinite) union of connected components. Above each such
componentM, the generalized curvature map κg

X has constant rank, hence
the dimension of zX(x) is constant as x ranges overM. The isomorphism
type of zX(x) is thus constant too, so that we will write zX(M) for the Lie
algebra isomorphic to zX(x) for all x ∈ M. Observe that when M is not
simply connected, monodromy phenomena may appear, so that generally,
zX(M) won’t admit a realization as a subalebra of vector fields onM.

3. Basic facts about Lorentzian isometric flows

Before tackling the proof of Theorem 1.2, we recall briefly some elemen-
tary facts about isometries of Lorentz manifolds. The first one is a rigidity
property of Lorentz isometries.

Proposition 3.1. — Let (M, g) be a smooth connected Lorentz
manifold.

(1) If an isometry f of (M, g) fixes a point x ∈M , and satisfies Dxf =
id, then f is the identity map on M .

(2) If (fk) is a sequence of Iso(M, g), and if x ∈ M is such that fk(x)
is bounded in M , and Dxfk is bounded, then (fk) has compact
closure in Iso(M, g).

Proof. — The fact is classical, and we only outline its proof, which re-
lies essentially on the fact that the exponential map locally linearizes any

VOLUME 1 (-1)
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Lorentz isometry. More precisely, if ξ 7→ exp(x, ξ) denotes the exponential
map at x ∈M , and f ∈ Iso(M, g), the relation:

f(exp(x, ξ)) = exp(f(x), Dxf(ξ))

holds for every ξ ∈ TxM in a small neighborhood of 0. In particular, this
relation shows that if f(x) = x and Dxf = id, then f is the identity on
a neighborhood of x. Actually, we also get that the set of points where
f(y) = y and Dyf = id is open. Since it is clearly closed, we conclude that
f is the identity map.

The second point is a refinement of this reasoning. Under the asumption
that fk(x) and Dxfk are bounded, we may find an extraction such that
fk(x) converges to x∞, and Dxfk converges to a linear, invertible, map
A∞ : TxM → Tx∞M . Then the relation f(exp(x, ξ)) = exp(f(x), Dxf(ξ))
ensures that on a small neighborhood U of x, fk converges for the C∞
topology to a local isometry f∞ : U → V . As before, one shows that the set
of points in M , having a neighborhood on which fk converges is open and
closed in M . As a consequence, one may extract from every subsequence
of (fk) a converging sequence, showing that (fk) is relatively compact in
Iso(M, g). �

We now focus on flows of Lorentz isometries on closed 3-dimensional
manifolds. The following result was proved in [24, Proposition 4.1].

Lemma 3.2. — Let (M3, g) be a smooth, closed, 3-dimensional Lorentz
manifold. Let X be a Killing field on M generating a flow ϕtX which is not
relatively compact in Iso(M, g). Then

(1) The Lorentz norm g(X,X) is constant on M , and nonnegative.
(2) The field X has no singularities.
(3) If X is lightlike, then any Killing field on M commuting with X is

of the form λX, for some λ ∈ R.
(4) If X is spacelike, then any lightlike geodesic whose direction u is

orthogonal to X is complete.

Proof. — We introduce the (smooth) function ψ = g(X,X), and we
assume that it is not constant to zero (if not the first point is proved). We
pick a ∈ R \ {0} a regular value of ψ. Let Σ be the level set ψ−1{a}. It
is a smooth submanifold of M . We pick x ∈ Σ. By compactness of Σ, we
can choose a sequence (tk) tending to infinity in R, such that yk := ϕtkX (x)
converges to y∞ in Σ.

We choose U and V small open neighborhoods of x and y∞, as well as
R = (E1, E2, E3) a field of orthonormal frames on U ∪V . If we read Dxϕ

tk
X

in this frame field, we get a sequence Ak of matrices in O(1, 2).
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We first assume a < 0. Then the identity Dxϕ
tk

X (X(x)) = X(yk) yields
a timelike vector u such that Ak.u converges in R1,2. It follows easily that
(Ak) is bounded in O(1, 2), and Proposition 3.1 implies that {ϕtX} is rela-
tively compact in Iso(M, g). This is in contradiction with our hypotheses.
If a > 0 we complete X into a local frame field (X,E1, E2) on U ∪

V , with (E1, E2) spanning X⊥ and satisfying g(E1, E1) = g(E2, E2) =
0, g(E1, E2) = 1. Considering Ak as above we have Ak(E1) = λkE1
and Ak(E2) = 1

λk
E2, for a sequence λk → 0. The invariance of ψ un-

der ϕtX shows that ψ(exp(x, sE1)) = exp(yk, λksE1). It follows that s 7→
exp(x, sE1) is included in Σ, hence E1(x) ∈ TxΣ. Then E1(yk) ∈ Tyk

Σ for
all k ∈ N, and finally E1(y∞) ∈ Ty∞Σ.
One also has ψ(exp(x, sλkE2)) = exp(yk, sE2), what shows that s 7→

exp(y∞, sE2) is included in Σ. We reach the conclusion that the three in-
dependant vectors E1(y∞), E2(y∞), X(y∞) belong to Ty∞Σ, contradicting
the fact that Σ is a surface.
Observe also that in this last case a > 0, if U and V are shrunk so that all

geodesics of direction E1(y) or E2(y) are defined on (−τ, τ), τ > 0, then the
geodesics of direction E1(x) and E2(x) will be defined on (−λ−1

k τ, λ−1
k τ)

for every k ∈ N. It follows that those geodesics are complete, proving the
last point of the proposition.
We now show thatX does not have any singularity. This of course obvious

if g(X,X) is constant and positive. Now if g(X,X) is constant equal to 0.
Let us assume that x0 is a singularity of X, and let us look at the action
of Dx0ϕ

t
X on the 1-sphere corresponding to lightlike directions at x0. If

this action is nontrivial, then there exist some x on the local lightcone
with vertex x0 (denoted C(x0)), such that X(x) is tangent to C(x0) and
transverse to the lightlike geodesic through x and x0. This forces g(X,X) >
0 at x, a contradiction.
If the action on the lightlike directions at x0 is trivial, then Dx0ϕ

t
X = id,

and we get that X is identically 0 by Proposition 3.1. This is again a con-
tradiction. Observe that we have proved the general fact that a nontrivial
lightlike Killing field has no singularity.
It remains to prove the third point of the proposition. Let Y be a Kiliing

field commuting with X, where X is Killing and lightlike. If Y is colinear
to X at each x ∈ M , then there exists a real λ such that Y − λX has a
singularity. Since Y −λX is Killing and lightlike, the remarks above imply
that Y − λX = 0, and we are done.
It remains to investigate the case where X and Y are linearly inde-

pendant in a neighborhood of a point x ∈ M . Since ϕtX preserves the
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Lorentz volume on M , which is finite by compactness of M , we may as-
sume that x is a recurrent point for ϕtX . In this case, there exists a local
frame field (E1, E2, E3) around x, with g(E1, E2) = g(E3, E3) = 1 and
g(E1, E1) = g(E2, E2) = g(E1, E3) = g(E2, E3) = 0, such that Dxϕ

t
X

expressed in the frame (E1, E2, E3) is the identity. The second point of
Proposition 3.1 then implies that ϕtX is relatively compact. This is a con-
tradiction. �

4. A Killing field factory

4.1. Recurrence produces Killing fields

We are no proving an essential fact, namely that a non-compact flows
ϕtX produces extra local Killing fields. In the following statement, we use
the notation IsX(x) for the isotropy at x, namely the subalgebra of zX(x)
comprising all local Killing fields in zX(x) vanishing at x.

Proposition 4.1. — Let (M3, g) be a smooth, closed, 3-dimensional
Lorentz manifold. Let X be a Killing field on M generating a flow ϕtX
which is not relatively compact in Iso(M, g).

(1) For every x ∈ M int
X , the isotropy algebra IsX(x) is 1-dimensional,

and generates a non-compact subgroup of O(TxM). This subgroup
is hyperbolic (resp. parabolic) if X is spacelike (resp. X is lightlike).

(2) On each componentM⊂M int
X , the Lie algebra zX(M) has dimen-

sion 3 or 4. In the first case, the zX-orbits onM have dimension 2.
In the second case, the componentM is a single 3-dimensional zX-
orbit.

Proof. — The metric g defines a Lorentz volume (attributing volume 1
to any orthonormal frame), which is finite onM and ϕtX-invariant. Poincaré
reccurence theorem ensures that the set of points which are recurrent for
ϕtX has full measure. Let x be such a recurrent point for ϕtX and choose
x̂ ∈ M̂ in the fiber of x. The recurrence hypothesis means that there exist
sequences (tk) and (pk) in R and O(1, 2) respectively, satisfying |tk| → ∞
and ϕtkX (x̂).p−1

k → x̂. Observe that (pk) tends to infinity in O(1, 2), because
Iso(M, g) acts properly on M̂ (Proposition 3.1). By equivariance of the
generalized curvature map, we also have

pk.κ
g
X(x̂)→ κg

X(x̂).
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The linear action of O(1, 2) on Wκg
X

is algebraic, hence its orbits are
locally closed. As a consequence, there exists a sequence (εk) in O(1, 2)
with εk → id and εk.pk.κg

X(x̂) = κg
X(x̂). We infer that the stabilizer S(x̂) of

κg
X(x̂) in O(1, 2) is a non-compact subgroup. This group is algebraic, hence

its identity component is non-compact too, and the Lie algebra s(x̂) is
nontrivial. But Theorem 2.3 actually says that elements in s(x̂) are images
under ω of evaluations (at x̂) of elements of IsX(x). In particular IsX(x)
is not reduced to {0}. If Y ∈ IsX(x), then because [X,Y ] = 0, the 1-
parameter subgroup etωx̂(Y (x̂)) fixes the vector ωx̂(X(x̂)). In particular, the
horizontal part of ωx̂(X(x̂)), which is nonzero by point (2) of Lemma 3.2,
is fixed and thus IsX(x) is 1-dimensional. The flow etωx̂(Y (x̂)) is hyperbolic
if X(x) is spacelike and parabolic if X(x) is lightlike. The first point of the
proposition follows by density of recurrent points in M int

X .
To prove the second point, we start with x ∈M int

X , and consider a simply
connected neighborhood U ⊂M int

X of x. Then, every algebra IsX(y), y ∈ U ,
is realized as a Lie algebra of Killing fields defined on U . By the first part
of our proof, there exists Y a nontrivial Killing field of zX on U , such that
Y (x) = 0. The zero locus of Y is a nowhere dense set in U . We can thus
pick y ∈ U satisfying Y (y) 6= 0, and apply again the first point of the
proof at y. We get a second nontrivial Killing field Z defined on U , and
vanishing at y. Let us consider a lightlike direction u ∈ TyM such that
gy(u, Y (y)) 6= 0, and u is transverse to the zero locus of Z. Let t 7→ γu(t)
be the geodesic passing through y at t = 0 and such that γ̇u(0) = u. Then
Clairault’s equation ensures that g(γ̇u, Y ) is constant on γu, hence does not
vanish on γu by our choice of u.
Clairault’s equation also ensures that gγu

(γ̇u, Z) = 0, and Z(γu(t)) 6= 0
for small, nonzero, values of t. Hence, on some open subset of U , the zX-
orbits have dimension > 2, while for every point z ∈ U , the dimension of
IsX(z) is > 1 by the first part of the proof. It follows that the dimension
of zX(M) is at least 3. Because the dimension of M is 3, the dimension of
zX(M) can be 3 (in which case the zX-orbits onM are 2-dimensional) or
4 (in which caseM is a single 3-dimensional zX-orbit). �

4.2. Hyperbolic and parabolic components

Proposition 4.1 shows that components of M int
X split into two categories.

The ones for which the isotropy algebra generates a 1-parameter hyper-
bolic group will be called hyperbolic components. Those for which the
isotropy algebra generates a 1-parameter parabolic group will be called
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parabolic components. Hyperbolic and parabolic components can them-
selves be divided into two subgategories. The ones for which zX(M) is
4-dimensional, which are locally homogeneous, and the others for which
zX(M) is 3-dimensional. We will call those later components non locally
homogeneous. Observe that this is a property about the local action of zX ,
and there is no obstruction for the metric g itself to be locally homogeneous
on a non locally homogeneous component.

4.3. Existence of closed zX-orbits

One key consequence of the previous results is that components M for
which the dimension of zX(M) is minimal, contain closed killloc-orbits.

Proposition 4.2. — Let (M3, g) be a smooth, closed, 3-dimensional
Lorentz manifold. Let X be a Killing field onM generating a flow ϕtX which
is not relatively compact in Iso(M, g). Then every component M ⊂ M int

X

such that zX(M) has minimal dimension contains a killloc-orbit which is
closed in M .

Proof. — The proof follows essentially from two remarks.
The first one is that the stabilizer of κg

X(x̂) in O(1, 2) is 1-dimensional
for every x̂ ∈ M̂ . Indeed, Proposition 4.1 and the density of M̂ int

X in M̂

shows that this stabilizer is always at least 1-dimensional. Since there are
no 2-dimensional stabilizers in a finite dimensional linear representation of
O(1, 2), the only other possibility is that κg

X(x̂) is stabilized by Oo(1, 2).
Because the map κg

X has the map λX as one of its factors, this would imply
that λX(x̂) is Oo(1, 2)-invariant, hence equal to zero. Contradiction with
Lemma 3.2.
Because for an algebraic action, orbits can accumulate only on orbits of

smaller dimension, we infer that for every x̂ ∈ M̂ , the O(1, 2)-orbit (as well
as the Oo(1, 2)-orbit) of κg

X(x̂) is closed in κg
X(M̂).

We then call Ω̂ the open subset of M̂ , where the rank of κg
X achieves its

maximal value, that we call rmax. Theorem 2.3 ensures that Ω̂ ⊂ M̂ int
X . Let

us denote by Λ̂ the set of points in M̂ where the rank of κg
X is 6 rmax − 1.

Sard’s theorem says that the rmax-dimensional Hausdorff measure of the
set κg

X(M̂) is zero. It follows that there must be x̂0 ∈ Ω̂ such that Σ :=
(κg

X)−1(κg
X(x̂0)) is included in Ω̂. Now Σ is a closed submanifold of M̂ .

Theorem 2.3 says that the projection π(Σ) is a submanifold of M int
X the

connected components of which are zX-orbits. Our first remarks show that
the saturation of Σ by the action of O(1, 2) is also closed in M̂ , since it is the
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inverse image of a O(1, 2)-orbit inWκg
X
and such orbits are closed in κg

X(M̂).
We infer that π(Σ) is closed in M , and the proposition is proved. �

5. Heisenberg structures and the geometry of parabolic
components

5.1. Heisenberg structures on surfaces

We consider the following realisation of the 3-dimensional Heisenberg
group as a subgroup of affine transformations of the plane:(

1 t

0 1

)
+
(
x

y

)
, x, y, t ∈ R

We will denote by Heis this group.
If Σ is a surface, we will call a (Heis,R2)-structure on Σ the data of

an atlas (Ui, ϕi), taking values in R2, so that transition maps ϕj ◦ ϕ−1
i

are restrictions of elements of Heis. Observe that the action of Heis on R2

preserves the (degenerate) metric dy2, and commutes with the 1-parameter
group given by the transformations (x, y) 7→ (x+t, y), t ∈ R. It follows that
any (Heis,R2)-structure S on Σ defines accordingly a degenerate metric λ
on Σ, as well as a flow ψt. We will say that λ (resp. ψt) is the standard
metric (resp. the standard flow) associated to the structure S. In the fol-
lowing, we will often use the terminology Heisenberg structure instead of
(Heis,R2)-structure.
Here is an equivalent point of view for Heisenberg structures. Let us

consider the Lie algebra h ⊂ o(1, 2) n R3, spanned by the vectors e, h,E.
The corresponding Lie subgroup H ⊂ O(1, 2) n R3 is isomorphic to Heis,
and the action of Heis on R2 is conjugated to that of H on the homogeneous
space H/{etE}. We will retain in the sequel H/{etE} as a model space for
Heisenberg structures. Actually, we will also use the following dual point of
view for Heisenberg structure. Let us consider ωH the Maurer–Cartan form
on the group H. Then a Heisenber structure on a surface Σ is equivalent
to the data of a {etE}-principal bundle Σ̂ over Σ, as well as a 1-form ω on
Σ̂ with values in h, such that the fiber bundle (Σ̂, ω) is locally isomorphic
to (H,ωH).
We end up this section with the following completeness result.
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Proposition 5.1. — Let Σ be a closed surface, endowed with an Heisen-
berg structure S. Then:

(1) The surface Σ is a 2-torus, and the structure is complete, namely
is the quotient of R2 by a discrete subgroup of Heis isomorphic to
Z2.

(2) For such a structure, the standard flow ψt on Σ is periodic.

Proof. — An Heisenberg structure provides an orientation of Σ, and be-
cause the standard flow ψt does not have singularity, the Euler character-
istic of Σ is zero. Hence Σ is a 2-torus.

The Heisenberg structure on Σ yields a developing map δ : Σ̃ → R2,
which is a smooth immersion. Here, Σ̃ stands for the universal cover of
Σ. The map δ is ρ-equivariant for a representation ρ : π1(Σ) → Heis.
The standard flow ψt is complete on Σ. It follows that the image δ(Σ̃) is
saturated by lines of the form

Du = {(t, u) | t ∈ R}.

Let us call I the projection of δ(Σ̃) on the second coordinate axis, namely

I = {u ∈ R, Du ⊂ δ(Σ̃)}.

Then I is invariant by the action of ρ(π1(Σ)) on the set of lines of the form
Du. It turns out that this action is by translations, and it must also be
cocompact since δ is ρ-equivariant and π1(Σ) acts cocompactly on Σ̃. This
forces I = R, and δ is onto.

To ckeck that δ is injective, we considerW a vector field on Σ, transverse
to the orbits of ψt, and satisfying λ(W,W ) = 1, where λ stands for the
standard metric on Σ defined by the Heisenberg structure. We lift W to Σ̃
to get a (complete) flow φtW , whose orbits are transverse to those of ψt. Let
us pick x ∈ Σ̃, and consider the curve γ : s 7→ φsW .x. The map δ is injective
in restriction to γ. Indeed, if we write δ(γ(s)) = (u(s), v(s)), we notice
that |v′(s)| = 1, since λ(W,W ) = 1. It follows also that v(R) = R, and
we conclude that {ψt(φsW (x)) | (s, t) ∈ R2} is mapped injectively onto R2.
One deduce easily that δ has the path-lifting property, and δ is a covering
between Σ̃ and R2, hence a diffeomorphism. We conclude that ρ(π1(Σ)) is
a discrete subgroup of Heis isomorphic to Z2, proving the first point of the
proposition.
All discrete copies of Z2 in Heis intersect the center of Heis nontrivially.

This shows that the standard flow ψt is periodic. �
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5.2. Existence of Heisenberg structures on zX-orbits

We now study in more details the geometry of non locally homogeneous
components. This section will be devoted to the proof of the next proposi-
tion.

Proposition 5.2. — Let M be a parabolic component which is not
locally homogeneous. Then:

(1) The Lie algebra zX(M) is isomorphic to the 3-dimensional Heisen-
berg algebra heis.

(2) Any zX-orbit ofM is endowed with an invariant Heisenberg struc-
ture, for which the restriction of ϕtX (resp. of the Lorentz product g)
coincides with the standard flow (resp. the standard metric).

Let us fix a point x ∈ M. We work in the fiber bundle M̂ (and lift all
local Killing fields there). Let Y be a generator of the local isotropy at x.
Then we can find x̂ ∈ M̂ in the fiber of x such that ω(Y (x̂)) = E. Because
X commutes with Y , we must have ω(X(x̂)) = e+ αE. Finally, there is a
third vector field in zX(x) such that ω(Z(x̂)) = h+ βH + γF .

We call κ0 the element of Hom(∧2(R3), o(1, 2)) corresponding to the
identity matrix, namely κ0 maps e ∧ h to E, e ∧ f to H and h ∧ f to F .
We also call κ1 the element of Hom(∧2(R3), o(1, 2)) corresponding to the
matrix

(
0 0 1
0 0 0
0 0 0

)
(see Section 2.2.1).

The two dimensional vector space spanned by κ0 and κ1 is the set of
fixed points of the action of {etE}t∈R on the curvature module. We infer
that κ(x̂) is of the form κ = σκ0+bκ1. In particular, the following identities
hold at x̂:

(5.1) κ(e ∧ h) = σE, κ(e ∧ f) = σH, κ(h ∧ f) = bE + σF.

Notice that σ, b, α,β,γ depend on x and x̂, but since those points are fixed
once for all in the following, there will be considered as constant.
Cartan’s formula LXω = ιXdω + d(ιXω) shows that whenever U, V are

two Killing fields on M̂ , the following relation holds:

(5.2) ω([U, V ]) = K(U, V )− [ω(U), ω(V )]

We now write Equation (5.2) at x̂, using identities (5.1), when U and V
range over Z, X, Y . For instance, the first equation is (at x̂):

ω([X,Z]) = (σ + αβ)E + (β − α)e+ γh− γαH.

Now [X,Z] = 0 hence γ = 0, β = α and σ = −α2.
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We now write the second equation (still at x̂):

ω([Y,Z]) = −e+ αE = ω(−X + 2αY ).

Next, two Killing fields which coincide at x̂ must be equal (by freeness of
the action of isometries on the orthonormal frames). We get the following
relation at the level of the Lie algebra zX(x):

[Y,Z] = −X + 2αY.

We see in particular that at each z ∈M, if U is a local Killing field around
z generating the isotropy at z, then ad(U) is a nilpotent endomorphism of
zX(z).

At x, X(x) is lightlike and nonzero and Z(x) is spacelike, orthogonal to
X(x). The orthogonal to Z(x) at x is a Lorentzian plane spanned by X(x)
and another vector w ∈ TxM . Let us call t 7→ γ(t) the geodesic through
x satisfying γ̇(0) = w. Clairault’s equation ensures that the quantities
g(γ̇(t), Z(γ(t))), g(γ̇(t), X(γ(t))) and g(γ̇(t), Y (γ(t))) do not depend on t.
In particular, for t > 0, both Y (γ(t)) and Z(γ(t)) are orthogonal to γ̇(t)
while X(γ(t)) is not. For t > 0 small enough, Z(γ(t)) is still spacelike,
hence nonzero, and γ(t) belongs toM. In particular, the zX-orbit at γ(t) is
not 3-dimensional, so that there must exist some real number λt for which
Y (γ(t)) = λtZ(γ(t)). Observe finally that w is transverse to the curve
where Y vanishes, hence for t > 0 small λt 6= 0. Using our bracket relation
[Y,Z] = −X + 2αY , we compute

Trace(ad(Y − λtZ)) = 2λtα.

Because we observed that ad(Y − λtZ) must be nilpotent at γ(t), we get
α = 0.

To summarize, we have shown that α = 0 and σ = α2 = 0 (in particular
κx̂(e ∧ h) = 0). Moreover, at x̂:

ω(X) = e, ω(Y ) = E, ω(Z) = h,

and the bracket relations for zX(M) are

[X,Y ] = [X,Z] = 0, [Z, Y ] = X,

showing that zX(M) is isomorphic to heis.
Finally, let us consider Σ̂ the zX-orbit of x̂. Calling, as in Section 5.1,

h the Lie subalgebra spanned by e, h,E in o(1, 2) n R3, the invariance of
ω under local killing flows show that ω(T Σ̂) ≡ h. This makes Σ̂ into a
{etE}-principal bundle over Σ. The restriction of ω to T Σ̂ yields a Cartan
connexion ω′ : T Σ̂ → h. The curvature of this induced Cartan connection
ω′ is given by κ(e ∧ h), which is identically 0 on Σ̂ since we have σ ≡ 0. It
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thus follows that (Σ̂, ω′) is locally isomorphic, as {etE}-principal bundle to
(H,ωH) fibering onH/{etE}, where ωH stands for the Maurer–Cartan form
on H. As explained in Section 5.1, this defines an Heisenberg structure on
Σ. Because ω′ = ω|T Σ̂, and because ω(X(ŷ)) = e for every ŷ ∈ Σ̂, it follows
that the restriction of g to Σ yields the standard metric of the Heisenberg
structure, and ϕtX coincides with the standard flow.

6. Local homogeneity

The next step is to show that under our assumtion that the flow ϕtX is
not relatively compact, our manifold (M, g) is locally homogeneous.

Proposition 6.1. — Let (M3, g) be a smooth, closed, 3-dimensional
Lorentz manifold. Let X be a Killing field on M generating a flow ϕtX
which is not relatively compact in Iso(M, g). Then M consists in a single
zX-orbit, hence is locally homogeneous.

Proposition 6.1 will be proved if we can show there are no closed
2-dimensional zX-orbits. Indeed, Proposition 4.2, together with Propos-
ition 4.1 then imply that all zX-orbits in M int

X have dimension 3, hence
are open. Proposition 4.2 again shows that one of those zX-orbits must be
closed, hence is the entire manifold M . By those remarks, Proposition 6.1
will just be a consequence of Lemmas 6.2 and 6.3 below.

Lemma 6.2. — Let (M3, g) be a smooth, closed, 3-dimensional Lorentz
manifold. Let X be a Killing field on M generating a flow ϕtX which is not
relatively compact in Iso(M, g). Then there are no non locally homogeneous
hyperbolic components.

Proof. — By Proposition 4.1, it is sufficient to prove that for any hy-
perbolic component M, the zX-orbits are not 2-dimensional. Assume for
a contradiction that such M contains a point x having a 2-dimensional
zX-orbit, denoted Σ. Let us denote by The Lie algebra IsX(x) is generated
by a local Killing field Y around x, vanishing at x, and such that the flow
{Dxφ

t
Y } ⊂ O(TxM) is a hyperbolic flow. Linearizing Y around x thanks

to the exponential map, we see there are two distinct lightlike directions
u and v in TxM such that the two geodesics γu : s 7→ exp(x, su) and
γv : s 7→ exp(x, sv) are left invariant by φtX . In particular, for s 6= 0 close
to 0, γ̇u(s) and γ̇v(s) are colinear to Y , hence tangent to the zX-orbits at
γu(s) and γv(s) respectively. By continuity, this property must still hold
for s = 0. We infer that u and v are tangent to Σ at x, hence Σ has Lorentz
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signature. By local homogeneity of Σ, the Gaussian curvature of Σ is con-
stant. The Lie algebra zX(M) should then be isomorphic to the Lie algebra
sol (case of curvature 0) or o(1, 2) (case of nonzero constant curvature).
This yields a contradiction since the center of both sol and o(1, 2) is trivial
(we have implicitely used the fact that a local Killing field on M which
vanishes on Σ is trivial, what is easily proved using Proposition 3.1). �

Lemma 6.3. — Let (M3, g) be a smooth, closed, 3-dimensional Lorentz
manifold. Let X be a Killing field on M generating a flow ϕtX which is not
relatively compact in Iso(M, g). Then there are no non locally homogeneous
parabolic components.

Proof. — If such a non locally homogeneous parabolic component M
existed, then Proposition 4.2 would provide a killloc-orbit Σ ⊂ M which
is a closed surface. Proposition 5.2 ensures that Σ is endowed with an
Heisenberg structure, for which the standard flow ψt coincides with ϕtX .
Then, Proposition 5.1 shows that the restriction of ϕtX to Σ is cyclic, namely
there exists T > 0 such that ϕTX restricts to identity on Σ. But one easily
checks that a 1-parameter group in o(1, 2) fixing pointwise an hyperplane
must be trivial, so that point (1) of Proposition 3.1 ensures that ϕTX is
the identity on M . This contradicts the fact that {ϕtX} is not relatively
compact in Iso(M, g). �

7. Local models and the classification theorem

7.1. Three homogeneous 3-dimensional Lorentzian manifolds

7.1.1. Lorentz–Heisenberg geometry

We call heis the 3-dimensional Heisenberg Lie algebra, namely the Lie
algebra generated by X,Y, Z, with relation [Y,Z] = X. Let Heis be the con-
nected, simply connected, associated Lie group. The Lorentz scalar product
defined by < X,Y >= 1, < Z,Z >= 1, and all other products are zero,
can be left-translated on Heis to give an homogeneous Lorentz metric gLH
called the Lorentz–Heisenberg metric on Heis.
The 1-dimensional group of automorphism Ih of Heis, which acts on heis

by the matrices
(
et 0 0
0 et 0
0 0 1

)
, t ∈ R (in the basis Y,Z,X) acts isometrically

on (Heis, gLH). The group Gh generated by Ih and the left translations
coincides with identity component of Iso(Heis, gLH). Its Lie algebra gh
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is generated by X,Y, Z, and a fourth element T satisfying [T, Y ] = Y ,
[T,Z] = −Z and [T,X] = 0. It is isomorphic to the semi-direct product
Rnh heis (the subscript h means that the R-factor integrates into a group
of hyperbolic automorphisms of heis). We call XLH the pair (Heis, gLH),
modelling the Lorentz–Heisenberg geometry. Notice that XLH = Gh/Ih as
an homogeneous space.

7.1.2. The geometry Xh

We still consider the group Gh, and we call Iu the Lie subgroup generated
by Y +Z. It is easily checked that the adjoint action of Iu on gh/Iu is unipo-
tent and preserves a Lorentz scalar product. This defines a Gh-invariant
Lorentz metric on Gh/Iu (or more accurately, a 2-parameter family of such
metrics, since there is such a family of Lorentz scalar products preserved
by Ad(Iu)). The corresponding Lorentzian homogeneous space Gh/Iu will
be denoted by Xh. The identity component of its isometry group is Gh.

7.1.3. The geometry Xe

We now consider a different 4-dimensional Lie algebra ge, generated by
T,X, Y, Z, and defined in the following way. The elements X,Y, Z generate
a Lie algebra isomorphic to heis, with bracket relation [Y,Z] = X. The
element T normalizes this subalgebra, and the relations are [T, Y ] = −Z,
[T,Z] = Y , [T,X] = 0.
The algebra ge is again a semi-direct product R ne heis (subscript e

indicates that the R-factor induces a group of elliptic automorphisms on
heis). Let I be the 1-dimensional group generated by Y + Z. As in the
previous example, it is easily checked that Ad(I) acts on ge/I by unipotent
transformations, preserving a Lorentzian scalar product (actually, again a
2-parameters family of such scalar products). This yields a homogeneous
Lorentzian manifold Ge/I, denoted by Xe. The identity component of its
isometry group is Ge.

7.1.4. Natural foliations, and characteristic flow

We discuss now some remarkable geometric features of the spaces Xh

and Xe.
The groups Gh and Ge have a derived subgroup H isomorphic to Heis.

The center of H is a 1-parameter subgroup {zt}, which coincides with the
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center of Gh (resp. Ge). It follows that zt induces a well defined flow on any
manifold M locally modelled on XLH , Xh or Xe. This flow will be called
the characteristic flow of the structure.
The foliation of Gh (resp. Ge) the leaves of which are given by the classes

gH, induces a Gh-invariant (resp. Ge-invariant) codimension one foliation
F on Xh (resp. Xe). All leaves are lightlike and naturally endowed with an
Heisenberg structure (see Section 5.1).
Let α be the degenerate bilinear form on gh (resp. ge) such that X,Y, Z

generate the Kernel of α, and α(T, T ) = 1. Observe that the adjoint action
of Ih (resp. of I) leaves α invariant, resulting on a Gh (resp. Ge) invariant
degenerate metric on Xh (resp. Xe). It follows that any manifoldM locally
modelled on Xh or Xe is naturally endowed with a metric α of signature
(+, 0, 0), such that the foliation F integrates the Kernel of α. This yields
a transverse Riemannian structure for the foliation F .

7.2. Identifying the Lie algebra zX and the homogeneous models

We are now in position to describe all the possible local homogeneous
models, for a Lorentzian manifold (M3, g) with a non-relatively compact
isometric flow.

Proposition 7.1. — Let (M3, g) be a smooth, closed, 3-dimensional
Lorentz manifold. Let X be a Killing field on M generating a flow ϕtX
which is not relatively compact in Iso(M, g). Then either ϕtX preserves a
metric of constant curvature g0 on M , or the geometry (M, g) is locally
modelled on XLH , Xh or Xe, and ϕtX coincides with the characteristic
flow.

The list of local models is pretty short, and will be shortened even more
in the next section.

Obtaining those local models amounts to determine the possibilities for
the algebra zX , as well as for the isotropy algebras. It turns out that this
can be obtained by very simple algebraic computations, similar to those
made in the proof of Proposition 5.2 (we keep the notations of this proof
in the following).
Let us start with the computations when the isotropy algebra is hyper-

bolic (namely M coincides with a hyperbolic component). We pick x ∈M ,
x̂ ∈ M̂ in the fiber of X, and T,X, Y, Z generating zX (and Y generating
the isotropy). We can choose T, Y, Z and x̂ so that the following relations
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hold at x̂.

ω(X) = h+ αH,ω(Y ) = H,

ω(Z) = e+ βE + γF, ω(T ) = f + λE + µF,

for some real numbers α, β, γ, λ, µ.
The curvature κ(x̂) is invariant under the isotropy, namely the flow
{etH}, hence of the form κ(x̂) = σκ0 + bκ2 (see notation in Section 2.2.1).
In particular, at x̂, κ(e ∧ h) = (σ + b)E, κ(e ∧ f) = (σ − 2b)H, and

κ(h ∧ f) = (σ + b)F .
Recall the equation

(7.1) ω([U, V ]) = K(U, V )− [ω(U), ω(V )]

available for every pair U, V of local Killing fields around x̂. We first express
that X is in the center of zX (all equalities below are available at x̂).

ω([Z,X]) = 0 = κ(e ∧ h) + [h+ αH, e+ βE + γF ]
= (α− β)e+ γf + (σ + b+ αβ)E + αγF

which implies
γ = 0, α = β, σ + b+ α2 = 0.

We use these relations to compute

ω([X,T ]) = 0 = κ(h ∧ f) + [f + λE + µF, h+ αH]
= λe+ (α− µ)f − αλE

leading to the extra relations

λ = 0, α = µ.

From the simplified relations ω(X) = h+αH, ω(Z) = e+αE and ω(T ) =
f + αF , one proceeds writing

ω([Z, T ]) = κ(e ∧ f) + [f + αF, e+ αE] = 2αω(X) + (3σ − α2)ω(Y ),
ω([Y,Z]) = −[H, e+ αE] = −ω(Z)
ω([Y, T ]) = −[H, f + αF ] = ω(T ).

Because two Killing fields which coincide at x̂ coincide, we obtain the
bracket relations for zX . The possibilities split into three cases.

Case 1: α and σ are zero. — This implies b = 0 because of the relation
σ + b + α2 = 0, so that the geometry is flat. The only nontrivial bracket
relations are [Y, Z] = −Z and [Y, T ] = T . The Lie algebra zX is isomorphic
to sol⊕R.
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Case 2: α 6= 0 and α2 = 3σ. — Then we put X ′ = 2αX, and we
have [Z, T ] = X ′. It follows that Z, T,X ′ generate a subalgebra isomorphic
to heis, that acts locally freely on M , and zX is isomorphic to gh. Our
manifold (M, g) is locally modelled on the Lorentz–Heisenberg geometry
XLH . Let us make a further observation. Our computations led to the
relations ω(Z) = e+ αE and ω(T ) = f + αF . Because [E, e] = 0 = [F, f ],
we get that the curves t 7→ etY and t 7→ etZ are (lightlike) geodesics for the
Lorentz–Heisenberg metric.

Case 3: α 6= 0 and α2 6= 3σ. — Then we can define Y ′ = 2αX + (3σ −
α2)Y , and the bracket relations become [Z, T ] = Y ′, [Y ′, Z] = −(3σ−α2)Z,
[Y ′, T ] = 3(3σ − α2)T . We see that Y ′, Z, T generate a Lie algebra iso-
morphic to sl(2,R), that acts locally freely on M . The Lie algebra zX is
isomorphic to sl(2,R)⊕R. We conclude that we have a ϕtX-invariant (G,X)-
structure on M , where X = P̃SL(2,R), and G = P̃SL(2,R) × {h̃t}. Here
{h̃t} is the 1-dimensional subgroup of P̃SL(2,R) obtained by exponentiat-
ing

( 1 0
0 −1

)
. Because the group P̃SL(2,R)× {h̃t} preserves the bi-invariant

metric on P̃SL(2,R) coming from the Killing form, it follows that ϕtX pre-
serves a Lorentz metric g0 of constant curvature −1 on M .

Similar computations can be carried out to determine zX in the case
where the isotropy is parabolic. Actually, those computations were already
detailed in [8, Section 4.3.3], where all possibilities for local geometries hav-
ing a 4-dimensional Lie algebra of Killing fields, and a parabolic isotropy,
were listed. We restrict here to Lie algebras having a nontrivial center
(which are the only candidates for zX). Again, if we rule out the possibility
of (M, g) being of constant curvature, [8, Proposition 4.3] yields three more
possibilities for the Lie algebra zX .

Case 4. — The Lie algebra zX is isomorphic to gh (and the isotropy is
parabolic). The local model for (M, g) is then Xh.

Case 5. — The Lie algebra zX is isomorphic to ge. The local model for
(M, g) is then Xe.

Case 6. — The Lie algebra zX is isomorphic to sl(2,R) ⊕ R. This time
the isotropy is parabolic, so that the local model for (M, g) is P̃SL(2,R),
endowed with a Lorentz metric invariant under P̃SL(2,R)×{ũt}. Here {ũt}
is the 1-dimensional subgroup of P̃SL(2,R) obtained by exponentiating
( 0 1

0 0 ). Again, there is then a Lorentz metric g0 of constant curvature −1
on M , which is invariant under ϕtX .
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7.3. Completeness results

The final step toward the classification theorem 1.2 is the global un-
derstanding of the manifold M . In this section, X will denote indistinctly
Xh,Xe or XLH . Any Lorentzian manifold (M, g) locally isometric to X
is automatically endowed with a (Iso(X),X)-structure (see [23] for more
material on this notion). Such a (G,X)-structure onM gives rise to a devel-
oping map δ : M̃ → X and a holonomy morphism ρ : Iso(M̃, g̃)→ Iso(X).
Considering a finite cover of (M, g) we may assume that (M, g) is en-

dowed with a (Gh,Xh), (Gh,XHL) or (Ge,Xe)-structure.
Of crucial importance then, are completeness results for the (G,X)-struc-

tures we are considering. For the geometries Xe,Xh and XLH , this com-
pleteness is respectively proved in [6, Proposition 7.3] and [6, Section 8.1].
Observe that the proof given in [6], of the completeness of compact man-
ifolds locally modelled on the Lorentz–Heisenberg geometry uses Theo-
rem 1.2. To avoid any vicious circle, we give below an independent proof
(under our standing asumption that ϕtX is not relatively compact), which
follows the arguments of [10, Theorem 5.7].

Proposition 7.2. — Any compact Lorentzian manifold locally mod-
elled on XLH , Xh or Xe, and for which the characteristic flow is not rel-
atively compact is complete. Namely, the structure is the quotient of the
model space by a discrete subgroup of isometries.

Proof. — We first sketch the arguments for structures modelled on Xh

or Xe. In Section 7.1.4, we explained that any M modelled on Xh or Xe

is endowed with a lightlike, codimension 1 foliation F , the leaves of which
have a Heisenberg structure. The foliation F integrates the distibution
X⊥. Replacing M by a double cover, we can pick W a global vector field
on M such that g(W,W ) = 1 and g(W,X) = 0. This vector field W is
complete, and the proof of Proposition 5.1 works verbatim to show that
the Heisenberg structure of each leaf of F is complete. Taking again a
double cover of M , we can also pick another vector field W ′ on M which is
transverse to F and satisfies α(W ′,W ′) = 1 (here α is the degenerate metric
of signature (+, 0, 0) introduced in Section 7.1.4 and defining the transverse
Riemannian structure of F . Then, just as in the proof of Proposition 5.1, we
get that if F̃ is any lift of a leaf F to the universal cover M̃ , and if ψt is the
flow of the lift ofW ′ to M̃ , then ∪t∈Rψt(F̃ ) is mapped diffeomorphically on
Xe (resp. Xh) by the developing map δ : M̃ → Xe (resp. Xh). One easily
deduced that δ has the path-lifting property, hence is a diffeomorphism
from M̃ to Xe (resp. Xh).
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Let us now consider the case of Lorentz–Heisenberg geometry. We have
again a developing map δ : M̃ → XLH . We recall the basis T,X, Y, Z in-
troduced in Section 7.1.1. Our remark in the study of case 2 (Section 7.2)
says that for every g ∈ Heis, the curves t 7→ etY and t 7→ etZ are lightlike
geodesics for the Lorentz–Heisenberg metric. Those geodesics are orthogo-
nal to the flow generated by the center zt. Our hypothesis that the char-
acteristic flow ϕtX is not relatively compact ensures that lightlike geodesics
orthogonal to X inM are complete (Lemma 3.2). It follows that any piece-
wise smooth curve of Heis, obtained by successively flowing along the right
multiplication under etY , etZ and zt = etX , can be lifted to M̃ through the
map δ, with arbitrary initial condition. Let us fix ε > 0 such that the map
f : (r, s, t) 7→ Heis defined by f(r, s, t) = erY esZzt yields a diffeomorphism
from (−ε, ε)× (−ε, ε)× (−ε, ε) to its image Bε. Our previous remark about
completeness ensures that whenever x̃ is a point of M̃ , such that δ(x̃) = g,
then gBε can be lifted to U containing x̃, such that δ : U → gBε is a dif-
feomorphism. One easily deduces that δ : M̃ → XLH has the path-lifting
property, hence is a diffeomorphism. �

Corollary 7.3 (see [24, Section 14]). — For every compact Lorentzian
manifold locally modelled on XLH , Xh or Xe, the characteristic flow is
relatively compact.

Proof. — Our manifold (M, g) is endowed with a (G,X) structure, where
X is XLH , Xh or Xe, and G is Gh or Ge. We denote by Γ the image of
π1(M) by the holonomy morphism ρ. Because we have shown that the
developing map δ is a diffeomorphism, Γ is a discrete subgroup of G. The
flow ϕtX is mapped by ρ to the center {zt} of G.

The algebraic structure is in all the three cases that of a semi-direct
product R n Heis. Moreover, G is always the identity component of an al-
gebraic group, so that it makes sense to consider Γ, the identity component
of the Zariski closure of Γ in G.

Case 1: Γ∩Heis = {1}. — In this case Γ projects injectively on R, hence
is abelian. The only connected abelian subgroups of G have dimension 1
or 2. If the dimension of Γ is one, then Γ is the exponentiation of some
U ∈ g. Observe that U is centralized by an index 2 subgroup of Γ. If U lies
in the center of g, then ϕtX is a periodic flow. If U is not in the center of
g, then U gives rise to a Killing field on M which is not proportional to X
and commutes with X. Lemma 3.2 says that ϕtX is relatively compact. If
the dimension of Γ is 2, we directly get that γ contains the center {zt}, so
that {zt} is relatively compact in Γ/Γ. It follows again that ϕtX is relatively
compact.
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Case 2: Γ ∩ Heis 6= {1}. — In this case Γ′ = Γ ∩ Heis is a nontrivial,
discrete, normal subgroup of Γ. Either Γ′ is cyclic, in which case it is in-
cluded in a 1-parameter group of Heis. If this group is the center, then ϕtX
is periodic. If this group is not the center, we again get a Killing field on
M which commutes with X, without being proportional to X, so that ϕtX
is relatively compact by Lemma 3.2. Any non-cyclic discrete subgroup of
Heis intersects the center nontrivially. hence, if Γ′ is not cyclic, then ϕtX is
periodic. �

7.4. Structures with constant curvature and classification

All our work so far says that whenever (M, g) is a closed 3-dimensional
Lorentz manifold, and ϕtX is a non relatively compact isometric flow, then
either g is flat, or ϕtX preserves a metric g0 with constant curvature −1 on
M . We are thus reduced to study structures of constant curvature having
a non relatively compact flow of isometries.
Thanks to the work of Y. Carrière [4] (curvature zero) and B. Klingler [14]

(arbitrary curvature), closed Lorentz manifolds of constant curvature are
complete, namely are obtained as a quotient of the 1-connected, complete
model space of constant curvature by a discrete subgroup Γ of isometries (it
follows that the curvature has to be zero or negative). Those completeness
results are deeper, and more difficult, than the ones presented above for
geometries Xe, Xh, XLH , and we can’t present them here. They will allow
us to recover the classification of Theorem 1.2.

7.4.1. Flat structures

The model space in this case is Minkowski space R1,2, namely R3 endowed
with the metric dx1dx3+dx2

2. The flow ϕtX has constant norm (Lemma 3.2),
hence its orbits are geodesics. It follows that ϕtX is mapped by the holonomy
morphism to a flow zt of translations, which may be spacelike or lightlike
(the timelike case is ruled out by Lemma 3.2). We thus may assume, after
conjugating in Iso(R1,2), that zt is the flow of lightlike translations T te1

, or
of spacelike translations T te2

.
The following result states the completeness of closed flat Lorentz mani-

folds ([4]), as well as a Bieberbach type theorem proved in [9] (see also [11]):

Theorem 7.4 (Bieberbach’s theorem for flat Lorentz manifolds). —
Let (M, g) be a closed, 3-dimensional, flat Lorentz manifold. There exists a
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discrete subgroup Γ ⊂ Iso(R1,2) such that (M, g) is isometric to the quotient
Γ\R1,2. Moreover, there exists a connected 3-dimensional Lie group G ⊂
Iso(R1,2), which is isomorphic to R3, Heis or SOL, and which acts simply
transitively on R1,2, satisfying that Γ0 = G∩Γ has finite index in Γ and is
a uniform lattice in G.

Considering a finite cover of (M, g) we may assume Γ = Γ0 in the previous
statement. The centralizer of T te1

in Iso(R1,2) is the following 4-dimensional
Lie group

G1 =
{(

1 s − s2
2

0 1 −s
0 0 1

)
+
(
t
u
v

) ∣∣∣∣ (s, t, u, v) ∈ R4
}
.

The centralizer of T te2
in Iso(R1,2) is the following 4-dimensional Lie

group
G2 =

{(
es 0 0
0 1 0
0 0 e−s

)
+
(
u
t
v

) ∣∣∣ (s, t, u, v) ∈ R4
}
.

There are no copies of SOL in the group G1, and all copies of R3 and Heis
contain the translations along e1, namely the 1-parameter group {zt}. We
infer that any lattice Γ in such a group meets {zt} non-trivially, implying
that ϕtX is cyclic. We thus rule out this case, and focus on the case where
ϕtX is spacelike, and the centralizer of {zt} is G2.
There are no copies of Heis in G2. The only copy of R3 is the subgroup

of transations, hence any lattice Γ in it will meet {zt} non-trivially. We
again get a cyclic flow ϕtX in this case, what contradicts our hypothesis of
non-compactness. The only remaining case is when G < G2 is isomorphic
to SOL. It is thus a group of the form

G =
{(

es 0 0
0 1 0
0 0 e−s

)
+
(
u
βs
v

) ∣∣∣ (s, u, v) ∈ R3
}
,

for some β ∈ R∗.
The action of the flow T te2

on the quotient Γ\G is (after a possible
reparametrization Tαte2

, α ∈ R∗) the suspension of a hyperbolic toral auto-
morphism. We are in the first case of Theorem 1.2.

7.4.2. Anti-de Sitter structures

We investigate now the case when ϕtX preserves a Lorentz metric g0
of curvature −1 on M . Klingler’s completeness theorem [14] ensures that
(M, g0) is the quotient of (P̃SL(2,R), g̃AdS (the universal cover of anti-de
Sitter space, see Section 1.2.2) by a discrete group of isometries Γ̃. An
important result, known as finiteness of level, says that Γ̃ must intersect
the center of P̃SL(2,R) non trivially. This property was first stated in [16].
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A detailed proof can be found in [20, Theorem 3.3.2.3]. It follows that up to
finite cover, (M, g) is actually isometric to a quotient of (PSL(2,R), gAdS)
by a discrete subgroup Γ ⊂ PSL(2,R) × PSL(2,R). The structure of the
group Γ is well understood. Up to conjugacy, there exists Γ0 a uniform
lattice in PSL(2,R), and a representation ρ : Γ0 → PSL(2,R) such that

Γ = Γρ = {(γ, ρ(γ)) ∈ PSL(2,R)× PSL(2,R) | γ ∈ Γ0}.

This was established in [16, Theorem 5.2] when Γ is torsion-free. For a
group with torsion, the adapted proof can be found in [22, Lemma 4.3.1].
Denoting by zt the image of ϕtX by the holonomy morphism, we see that
zt must centralize the group Γ. It is thus a flow of the form {id} × {ut}
(in which case Γρ is of the form Γρu

, see Section 1.2.2), or of the form
{id} × {ht} (in which case Γρ is of the form Γρh

).
The manifold (M, g0) is isometric to a quotient Γρu

\PSL(2,R) (resp.
Γρh
\PSL(2,R)) endowed with a metric gAdS . The flow ϕtX coincides with

the right action of {ht} (resp. of {ut}). Regarding the initial metric g, it
must come from a Ad(ut)-invariant (resp. Ad(ht)-invariant) Lorentz scalar
product on sl(2,R). It is thus of the form gu or gAdS (resp. gh or gAdS).
This completes the proof of Theorem 1.2.
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