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Abstract. We prove a structure theorem for the isometry group Iso(M, g) of a
compact Lorentz manifold, under the assumption that a closed subgroup has ex-
ponential growth. We don’t assume anything about the identity component of
Iso(M, g), so that our results apply for discrete isometry groups. We infer a full
classification of lattices that can act isometrically on compact Lorentz manifolds.
Moreover, without any growth hypothesis, we prove a Tits alternative for discrete
subgroups of Iso(M, g).

1. Introduction

In this article, we are interested in the question of which groups can appear as the group
of isometries of a compact pseudo-Riemannian manifold (M, g). Although this question
makes sense, and has been considered, for more general classes of geometric structures, it is
striking to note that a complete answer is only known in a very small number of cases. One
of the most natural examples, for which we have a complete picture, is that of Riemannian
structures (all the structures considered in this article are assumed to be smooth, i.e of
class C∞). A famous theorem of Myers and Steenrod [MS], ensures that the group of
isometries of a compact Riemannian manifold is a compact Lie group, the Lie topology
coinciding moreover with the C0 topology. Conversely, for any compact Lie group G, one
can construct a compact Riemannian manifold (M, g) for which Iso(M, g) = G. This was
proved independently in [BD], [SZ]. This settles completely the Riemannian case.

Regarding compact Lorentzian manifolds, which are the subject of this article, things
get substantially more complicated. Indeed, although it is always true that the group
of isometries of a Lorentzian manifold is a Lie transformation group, a new phenomenon
appears: even for compact manifolds (M, g), the group Iso(M, g) may well not be compact.
For instance, it is quite possible that this group is infinite discrete.

Seminal works are owed to R. Zimmer, which paved the way for the study of the
isometry group of Lorentz manifolds. A first important contribution was [Zim2], where
it is shown that any connected, simple Lie group G, acting isometrically on a compact
Lorentz manifold, must be locally isomorphic to SL(2,R). Several deep contributions
followed, [Gr1], [Kw], before S. Adams, G. Stuck, and independently A. Zeghib obtained,
about ten years later, a complete classification of all possible Lie algebras for the group
Iso(M, g). Their theorem can be stated as follows:

Theorem. [AS1], [AS2], [Z5], [Z4]. Let (M, g) be a compact Lorentz manifold. Then the
Lie algebra Iso(M, g) is of the form s⊕ a⊕ k where:

(1) k is trivial, or the Lie algebra of a compact semisimple group.
(2) a is an abelian algebra (maybe trivial).
(3) s is trivial, sl(2,R), a Heisenberg algebra heis(2d+ 1), or an oscillator algebra.

Altough this classification is only at the Lie algebra level, we have a fairly good picture
of the possibilities for the identity component Isoo(M, g) (see [Z4] for a discussion about
this identity component).

Few attemps were done to go beyhond the understanding of Isoo(M, g), and complete
the picture for the full group of isometries of a compact Lorentz manifold (M, g). An
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intermediate situation was studied in [ZP], where the authors assume that Isoo(M, g) is
compact (but still nontrivial), and the discrete part Iso(M, g)/ Isoo(M, g) is infinite.

In the purely discrete case, the most advanced results were obtained by R. Zimmer,
who proved in [Zim2, Theorem D] that no discrete, infinite, subgroup of Iso(M, g) can
have Kazhdan’s property (T ). For instance, this rules out the possibility that Iso(M, g)
is isomorphic to a lattice in some higher rank simple Lie group, or in the group Sp(1, n),
n ≥ 2. Besides this result, and to the best of our knowledge, almost nothing was known
when the group Iso(M, g) is infinite discrete. Our aim here, is to begin filling this gap.
Theorems A and B below are a step in this direction.

1.1. Lorentzian isometry groups with exponential growth. We begin our general
study of the isometry group of a compact Lorentz manifold, by making a growth assump-
tion, namely there exists a closed, compactly generated subgroup of Iso(M, g) having
exponential growth. In this case, we get a pretty clear picture of the situation: The group
Iso(M, g) is either a compact extension of PSL(2,R), or a compact extension of a Kleinian
group (a Kleinian group is any discrete subgroup of PO(1, d), d ≥ 2). In particular,
whenever Iso(M, g) is discrete, and contains a finitely generated subgroup of exponential
growth, then Iso(M, g) must be virtually isomorphic to a Kleinian group, what reduces
substantially the possibilities.

Theorem A. Let (M, g) be a smooth, compact, (n+1)-dimensional Lorentz manifold, with
n ≥ 2. Assume that the isometry group Iso(M, g) contains a closed, compactly generated
subgroup with exponential growth. Then we are in exactly one of the following cases:

(1) The group Iso(M, g) is virtually a Lie group extension of PSL(2,R) by a compact
Lie group.

(2) There exists a discrete subgroup Λ ⊂ PO(1, d), for 2 ≤ d ≤ n, such that Iso(M, g)
is virtually a Lie group extension of Λ by a compact Lie group.

By a Lie group extension, we mean a group extension 1 → K → G → H → 1 in
the usual sense, where each group K,G,H is a Lie group, and each arrow a Lie group
homomorphism.

Let us make a few comments about the theorem. Although the hypotheses relate to
a subgroup of Iso(M, g), the conclusion holds for the full isometry group. We do not
make directly a growth assumption about Iso(M, g), because even if the Lorentz manifold
(M, g) is assumed to be compact, we don’t know if Iso(M, g) itself is compactly generated
(making the notion of growth ill defined). The closedness assumption about the subgroup
of exponential growth is mandatory, to avoid for instance the “trivial” situation, where a
non abelian free group is embedded in a compact subgroup of Iso(M, g).

It is easy to prove that for a compact Lorentz surface, the isometry group is either
compact, or a compact extension of Z, so that the assumptions of the theorem are never
satisfied in dimension 2, hence our hypothesis n+ 1 ≥ 3 in the statement. Actually, when
M is 3-dimensional, Theorem A and its proof show that (M, g) has to be of constant
sectional curvature −1 or 0. In the first case, the isometry group is a finite extension
of PSL(2,R), and in the second one, (M, g) is a flat 3-torus. The group Λ of Theorem
A is then an arithmetic lattice in PO(1, 2). All of this also follows from the complete
classification of compact 3-dimensional Lorentz manifold having a noncompact isometry
group (see [Fr1]). In higher dimension, the proof of Theorem A suggests that the geometry
of (M, g) can be described completely. We will adress this issue in later work.

If we are in the first case of Theorem A, then Iso(M, g) has finitely many connected
components. The identity component Isoo(M, g) is finitely covered by a product K ×
PSL(2,R)(m), where K is a connected compact Lie group, and PSL(2,R)(m) stands for
the m-fold cover of PSL(2,R). Such a situation appears through the following well known
construction. On the Lie group PSL(2,R), let us consider the Killing metric, namely
the metric obtained by pushing the Killing form on sl(2,R) by left translations. This is a
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Lorentzian metric of constant sectional curvature −1, which is actually bi-invariant. If one
considers a uniform lattice Γ ⊂ PSL(2,R), the quotient PSL(2,R)/Γ is a 3-dimensional
Lorentz manifold, and the left action of PSL(2,R) is isometric. Actually the isometry
group of PSL(2,R)/Γ is virtually PSL(2,R). Taking products with compact Riemannian
manifolds, provides examples of compact Lorentzian manifolds, having isometry group
virtually isomorphic to K × PSL(2,R), for K any compact Lie group.

Let us now investigate the second case of Theorem A. The situation is then reversed:
The identity component Isoo(M, g) and the discrete part Iso(M, g)/ Isoo(M, g) is infinite,
isomorphic to a (finite extension of a) Kleinian group. Here is a classical construction
illustrating this case. On Rn+1, n ≥ 2, let us consider a Lorentzian quadratic form q. It
defines a Lorentzian metric g0 on Rn+1 which is flat and translation-invariant. If Γ ' Zn+1

is the discrete subgroup of translations with integer coordinates, we get a flat Lorentzian
metric g0 on the torus Tn+1 = Rn+1/Γ. The isometry group of (Tn+1, g0) is easily seen to
coincide with O(q,Z) n Tn+1. If q is chosed to be a rational form (namely q has rational
coefficients), then due to a theorem of A. Borel and Harish-Chandra, O(q,Z) is a lattice
in O(q) ' O(1, n) (in particular, it is finitely generated of exponential growth). In section
2.4.2, we will elaborate on this construction, and provide examples of compact Lorentzian
manifolds (M, g) for which the group Iso(M, g) is discrete and isomorphic to O(q,Z) as
above. The question of which Kleinian groups Λ may appear in point (2) of Theorem A
is interesting would certainly deserve further investigations.

Observe finally, that the statements of Theorem A also contains known, but nontrivial
facts, about isometric actions of connected Lie groups. For instance it is shown in [AS2],
[Z4] that if the affine group of the line Aff(R) acts faithfully and isometrically on a compact
Lorentz manifold, then the action extends to an isometric action of a group G locally
isomorphic to PSL(2,R). It is plain that if Aff(R) acts isometrically, then we must be
in the first case of Theorem A, so that the theorem provides directly a subgroup locally
isomorphic to PSL(2,R) in Iso(M, g). Actually, a generalization of [AS2], [Z4] will be
needed during the proof of Theorem A (see Theorem 7.7).

1.2. A Tits alternative for the isometry group. We now investigate what can be
said if we remove the growth assumption made in Theorem A. It is then still possible to
describe the discrete, finitely generated subgroups of Iso(M, g). This is the content of our
second main result.

Theorem B (Tits alternative for discrete subgroups). Let (Mn+1, g) be a smooth compact
(n+ 1)-dimensional Lorentz manifold, with n ≥ 2.

Then every discrete, finitely generated, subgroup of Iso(M, g) either contains a free
subgroup in two generators, in which case it is virtually isomorphic to a discrete subgroup
of PO(1, d), or is virtually nilpotent of growth degree ≤ n− 1.

In the previous statement, we say that a group G1 is virtually isomorphic to a group G2,
if there exists a finite index subgroup G′1 ⊂ G1, and a finite normal subgroup G′′1 ⊂ G′1,
such that G′1/G

′′
1 is isomorphic to G2.

Theorem B is obtained by combining Theorem A, together with the recent results about
coarse embeddings of amenable groups, obtained by R. Tessera in [Te] (see Section 2.5).

Actually, a generalization of [DKLMT, Theorem 3], from the setting of finitely gener-
ated, to that of compactly generated, unimodular amenable groups, would allow to prove
a Tits alternative – in its classical formulation – for all finitely generated subgroups of
Iso(M, g) (without the discreteness assumption). Also, it would yield a statement simi-
lar to that of Theorem B for finitely generated subgroups of Iso(M, g)/ Isoo(M, g). We
defer those developpements to subsequent works, when such generalizations of [DKLMT,
Theorem 3] will be available.

1.3. Lorentz isometric actions of lattices. Another interesting corollary of Theorem
A, is a complete desciption of lattices (in noncompact simple Lie groups), which can
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appear as discrete subgroups of Iso(M, g), where (M, g) is a compact Lorentz manifold.
We will indeed obtain:

Corollary C. Let (Mn+1, g) be a compact (n+1)-dimensional Lorentz manifold. Assume
that a discrete subgroup Λ ⊂ Iso(M, g) is isomorphic to a lattice in a noncompact simple
Lie group G.

(1) Then G is locally isomorphic to PO(1, k), for 2 ≤ k ≤ n.
(2) If equality k = n holds, then (Mn+1, g) is either a 3-dimensional anti-de Sitter

manifold, or a flat Lorentzian torus, or a two-fold cover of a flat Lorentzian torus.

We recover this way, but by other methods, Zimmer’s results ([Zim2, Theorem D])
saying that lattices having property (T ) do not appear as discrete subgroups of Iso(M, g).
The novelty in Corollary C is to cover the case of lattices in O(1, k) or SU(1, k), which
was, to the best of our knowledge, not known.

1.4. Coarse embeddings, ingredients of the proofs, and organisation of the
paper. Let us explain roughly what is the general strategy to prove our main Theorem
A, and its corollaries.

The starting point of our study, and an essential tool throughout this article, is the
notion of coarse embedding, introduced by M. Gromov in [Gr1]. Thus, Section 2 is de-
voted to recalling what this important notion is. Gromov’s fundamental observation was
that the isometry group of a compact (n + 1)-dimensional Lorentzian manifold admits a
coarse embedding into the real hyperbolic space Hn. This mere remark already provides
important restrictions on the group Iso(M, g), through basic coarse invariants such as the
asymptotic dimension, or some growth properties. To give the reader a flavour of how
those basic tools can be used in the context of isometric actions, we prove a particular
case of Corollary C in Section 2.4. Then, we explain how to link our main Theorem A to
the results of [Te], in order to obtain Theorem B.

Section 3 is devoted to the notion of limit set associated to a coarse embedding into
Hn, and the related limit set for the isometry group Iso(M, g). It is explained in Sections
3.4 and 3.5, how our assumtion of a compactly generated subgroup of exponential growth
forces this limit set to be infinite. The crucial step here, is to prove that the growth
assumption we made on a subgroup of Iso(M, g), implies exponential growth of derivatives
for the action of Iso(M, g).

This property is exploited further in Section 4. Using Gromov’s theory of rigid geomet-
ric structures, one establishes a link between the limit set of the isometry group on the
one hand, and local Killing fields on the manifold (M, g) on the other hand. The general
picture is that when Iso(M, g) has a big (infinite) limit set, then the manifold (M, g) must
have a lot of local Killing fields. This statement is made precise in Theorem 4.1.

The abundance of local Killing fields proved in Section 4, allows us to exhibit, in
Section 5.2, a compact Lorentz submanifold Σ ⊂ M , which is locally homogeneous (with
semisimple isotropy) and left invariant by a finite index subgroup Iso′(M, g) ⊂ Iso(M, g).
This is the content of Theorem 5.1. The restriction morphism ρ : Iso′(M, g) → Iso(Σ, g)
is proper (it has closed image and compact kernel), what essentially reduces the proof of
Theorem A to the setting of locally homogeneous manifolds.

In Section 6, we thus tackle the problem of describing all compact Lorentz manifolds,
which are locally homogeneous with semisimple isotropy, and have an isometry group of
exponential growth. To this aim, we have to prove a completeness theorem for this class
of manifolds, akin to the one obtained by Y. Carrière and B. Klingler for compact Lorentz
manifolds of constant sectional curvature. This is done in Theorem 6.7.

This completeness result opens the way for the final proof of Theorem A, which is
achieved in the last Section 7.

2. Coarse embedding associated to an isometric action
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2.1. Coarse embeddings between metric spaces and groups. Let (X, dX) and
(Y, dY ) be two metric spaces. A map α : X → Y is called a coarse embedding if
there exist two nondecreasing functions φ− : R+ → R and φ+ : R+ → R+ satisfying
limr→+∞ φ

±(r) = +∞, such that for any x, y in X, one has:

(1) φ−(dX(x, y)) ≤ dY (α(x), α(y)) ≤ φ+(dX(x, y))

Equivalently, for any pair of sequences (xk), (yk) in X, one has dY (α(xk), α(yk))→ +∞
if and only if dX(xk, yk)→ +∞.

The function φ+ (resp. φ−) is called the upper control (resp. the lower control). In the
case where φ+ and φ− are affine functions, we recover the more popular notion of quasi-
isometric embedding. The spaces (X, dX) and (Y, dY ) are said to be coarsely equivalent
whenever there exists a second coarse embedding β : (Y, dY )→ (X, dX) such that β ◦α is
a bounded distance from identity.

It seems that this notion was considered for the first time by M. Gromov in [Gr1,
Section 4], under the name of placement.

2.1.1. Coarse embeddings between groups, adpated metrics. We will often speak in this
paper of coarse embeddings between groups, or from a group to a metric space. To
make this notion precise, say that a distance d on a topological group G is called an
adapted metric, when it is right invariant, proper (the balls are relatively compact sets),
and when compact subsets have finite diameter for d. Observe that we don’t require d to
be continuous, so that the last condition is nontrivial. It is a classical result (see [Str])
that any locally compact, second countable, topological group admits an adapted metric
(actually one can even find adapted metrics generating the topology of G).

An important example of adapted metric will be the word metric on a second countable,
locally compact, compactly generated group. Those are groups G, for which there exists
a compact subset S, that we may assume symmetric, namely S = S−1, such that G =⋃
n∈N S

n. Here Sn = S.S. . . . .S denotes the set of g ∈ G that can be written as a product

g = w1....wn with wk ∈ S (and S0 = {1G}). One can define `S(g) = min{n ∈ N, g ∈ Sn}.
Then, defining dS(g, h) = `S(gh−1), we obtain an adpated metric on G, called the word
metric (associated to the generating set S). Observe that generally, this metric is not
continuous.

By a coarse embedding α : G1 → G2 between two (locally compact, second countable)
topological groups, we will mean in what follows that α is coarse between (G1, d1) and
(G2, d2), with d1, d2 adapted metrics. The notion does not depend on the choice of such
metrics, because of the following easy topological characterization:

Fact 2.1. A map α : G1 → G2 between two topological groups, endowed with adapted
metrics, is a coarse embedding, when for each pair of sequences (fk) and (gk) in G1,
fkg
−1
k stays in a compact subset of G1 if and only if α(fk)α(gk)−1 stays in a compact

subset of G2.

2.2. The derivative cocycle is a coarse embedding.

2.2.1. Lie topology on Iso(M, g). Let (Mn+1, g) be a compact (n+1)-dimensional Lorentz
manifold. We recall briefly how one makes Iso(M, g) into a Lie transformation group. Let

us call M̂ the bundle of orthogonal frames on M , which is a O(1, n)-principal bundle over

M . Notice that every f ∈ Iso(M, g) induces naturally a diffeomorphism f̂ : M̂ → M̂ ,

which moreover preserves a parallelism on M̂ , coming from the Levi-Civita connection

of g. One then shows that Iso(M, g) acts freely on M̂ , and orbits of Iso(M, g) on M̂ are

closed submanifolds of M̂ (closed but of course generally not compact). This identification

of Iso(M, g) as a submanifold of M̂ is the way one defines the Lie group topology on
Iso(M, g) (see [St, Cor VII.4.2] for a more detailed account). In particular Iso(M, g) is
secound countable and locally compact, hence admits adapted metrics. Observe that for
a compact Lorentz manifold (M1+n, g), it is not clear (and maybe false, eventhough we
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don’t have any example) that the group Iso(M, g) is compactly generated. Using the fact
that the exponential map of g locally linearizes isometries, it is not very hard to check
that this Lie topology is actually the C0-topology on Iso(M, g), making Iso(M, g) a closed
subgroup of Homeo(M). The very definition of the Lie topology implies that Iso(M, g)

acts properly on M̂ .

2.2.2. Coarse embedding of Iso(M, g) into O(1, n). We fix once for all a section σ : M → M̂

such that the image σ(M̂) has compact closure in M̂ . Such sections exist since M is
compact. In all the paper, we will always deal with such bounded sections.

Having fixed a bounded section σ : M → M̂ as above, we get for every x ∈M a map

Dx : Iso(M, g)→ O(1, n)

defined by the following relation:

σ(f(x)) = f̂(σ(x)).(Dx(f))−1.

The element Dx(f) is nothing but the matrix of the tangent mapDxf : TxM → Tf(x)M ,
if we put the frames σ(x) and σ(f(x)) on TxM and Tf(x)M respectively.

In [Gr1], M. Gromov made the following crucial observation:

Lemma 2.2 (see [Gr1] Sections 4.1.C and 4.1.D). Let (Mn+1, g) be a compact Lorentz
manifold. Then for every x ∈ M , the derivative cocycle Dx : Iso(M, g) → O(1, n) is a
coarse embedding.

Proof. The proof follows easily from the properness of the action of Iso(M, g) on M̂ .
Indeed, given two sequences (fk) and (gk) of Iso(M, g), fkg

−1
k stays in a compact subset

of Iso(M, g) if and only if f̂kĝ
−1
k σ(gkx) stays in a compact set of M̂ (because σ(gkx) is

contained in a compact subset of M̂ and Iso(M, g) acts properly on M̂). But from the
relation:

f̂kĝ
−1
k σ(gkx)Dx(gk)Dx(fk)−1 = σ(fkx),

and the properness of the right action of O(1, n) on M̂ , we see that our initial assertion
is equivalent to Dx(gk)Dx(fk)−1 (hence Dx(fk)Dx(gk)−1) staying in a compact subset of
O(1, n), and we conclude by Fact 2.1. �

2.2.3. Coarse embedding into Hn. Let Hn denote the real hyperbolic space, and let o ∈ Hn
be a base point. The group O(1, n) acts isometrically on Hn. If x ∈ Mn+1 is given,

we can derive from Dx a coarse embedding Dx : Iso(M, g) → (Hn, dhyp), defined by

Dx(f) = Dx(f)−1.o. The embedding Dx is coarse because so is Dx, and the action of
O(1, n) on Hn is proper.

2.3. Coarse embeddings and obstructions to isometric actions.

2.3.1. Restriction to quasi-geodesic spaces of bounded geometry. To get useful invariants
under coarse equivalence of metric spaces, it is better to focus on spaces which are quasi-
geodesic, and of bounded geometry. We recall that a metric space (X, dX) is quasi-geodesic
if there exist a, b > 0 such that each pair of points (x, y) in X can be joigned by a (a, b)-
quasi-geodesic. In other words, there exists, for any such pair (x, y) an interval [0, L], as
well as a map γ : [0, L]→ X with γ(0) = x and γ(L) = y, and for every t, t′ ∈ [0, L]:

1

a
|t′ − t| − b ≤ dX(γ(t′), γ(t)) ≤ a|t′ − t|+ b.

A metric space (X, dX) has bounded geometry, if it is quasi-isometric to some (X ′, dX′)
satisfying:

(1) (X ′, dX′) is uniformly discrete, namely there exists C > 0 such that infx 6=x′ dX′(x, x
′) ≥

C.
(2) For every r > 0, there exists nr such that every ball of radius r has at most nr

elements.
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For us, the basic examples of quasi-geodesic metric spaces of bounded geometry will be
homogeneous Riemannian manifolds, for instance Euclidean space Rn or real hyperbolic
space Hn. Also very important is the case of a second countable, locally compact and
compactly generated group G, endowed with a word metric dS . The very definition of
the word metric makes (G, dS) a quasi-geodesic space. It may not be locally finite, but
we can always consider Λ ⊂ X be a C-metric lattice in G. It means that d(x, x′) ≥ C if
x 6= x′ in Λ, and also that there is a constant D > 0 such that any x ∈ X is at distance
at most D from Λ. Such lattices exist by Zorn lemma, and for C > 0 big enough, (Λ, dS)
is locally finite, uniformly discrete, and quasi-isometric to (G, dS). In particular (Λ, dS) is
quasi-geodesic.

One important feature of the quasi-geodesic assumption is the following:

Lemma 2.3. Let (X, dX) and (Y, dY ) be two metric spaces, with (X, dX) quasi-geodesic.
Then for any coarse embedding α : X → Y , the upper control function φ+ can be chosen
affine.

Proof. By assumption, there exist a, b > 0 such that between any pair of point x and
y, there exists a (a, b)-quasi-geodesic. Since α is a coarse embedding, there exists c > 0
such that for every x, y ∈ X, dX(x, y) ≤ a + b implies dY (α(x), α(y) ≤ c. Let x, y ∈ X,
and γ : [0, L] → X be a (a, b)-quasi-geodesic between x and y. Then dY (α(x), α(y)) ≤
Σ
E(L)
i=0 dY (α(γ(i)), α(γ(i+1))) ≤ Lc. But since γ is a (a, b)-quasi-geodesic, we have 1

a
L−b ≤

dX(x, y), so that dY (α(x), α(y)) ≤ ac dX(x, y) + abc. �

2.3.2. Coarse embeddings and growth. Let (X, dX) be a metric space of bounded geometry,
that we assume first to be uniformly discrete. For any x0 ∈ X, and r > 0, we denote by
βX(x0, r) = |B(x0, r)| (the number of points in B(x0, r)).

Given two functions f : R+ → R+ and g : R+ → R+, one says that f � g when there
exist constants λ, µ and c such that f(r) ≤ λg(µr + c), and f ≈ g when f � g and g � f .

It is pretty clear that changing x0 into y0, one gets βX(x0, )̇ ≈ βX(y0, )̇.
Recall that (X, dX) is said to have polynomial growth if there exists a constant C > 0,

and d ∈ N, such that βX(x0, r) ≤ Crd for r big enough. The minimal d for which it holds
is then called the growth degree of (X, dX).

One says that (X, dX) has exponential growth, when there exists some a > 0 such that
βX(x0, r) ≥ ear for r big enough.

The property βX(x0, )̇ ≈ βX(y0, )̇ ensures that this definition is independent of the
choice of x0.

If (X, dX) is a space with bounded geometry, which is not locally finite, we take some
(X ′, dX′) which is quasi-isometric to (X, dX) and locally finite, and define βX = βX′

(equality makes sense up to the relation ≈).

Lemma 2.4. Let (X, dX) and (Y, dY ) be two quasi-geodesic metric spaces of bounded
geometry. Then the growth function of Y dominates that of X, namely βX � βY . In
particular, if (Y, dY ) has polynomial growth of degree d, then (X, dX) has polynomial growth
of degree d′ ≤ d, and if (X, dX) has exponential growth, then the same holds for (Y, dY ).

Proof. We may assume again that X and Y are uniformly discrete. Because α is a coarse
embedding, there exists C > 0 such that if dX(x, y) ≥ C, then dY (α(x), α(y)) ≥ 1. Now
let Λ ⊂ X be a C-metric lattice in X. It means that d(x, x′) ≥ C if x 6= x′ in Λ, and also
that there is a constant D > 0 such that any x ∈ X is at distance at most D from Λ.
From the fact that all balls of radius D have at most kD points, it is easy to check that if
x0 ∈ Λ, then

(2) βΛ(x0, r) ≤ βX(x0, r) ≤ kDβΛ(x0, r +D).

Let us call y0 = α(x0). From Lemma 2.3, there exist a, b > 0 such that α(BX(x0, r)) ⊂
BY (y0, ar+ b). By definition of C, α is one-to-one in restriction to Λ, so that βΛ(x0, r) ≤
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βY (y0, ar + b). From (2), we infer βX(x0, r) ≤ kDβY (y0, ar + aD + b), which concludes
the proof. �

If we consider (Mn+1, g) a Lorentz manifold, and G ⊂ Iso(M, g) a closed, compactly

generated subgroup, then we inherits a coarse embedding Dx : G→ Hn (see Section 2.2.3).
Since the growth of Hn is exponential, Lemma 2.4 does not put any restriction on G. But
when some extra geometric informations are available, then some useful conclusions can
be drawn, as we see now (see also Section 3.4).

2.3.3. Reduction of the structure group on compact sets. It is plain that one can restrict
the derivative cocycle Dx to closed subgroups of Iso(M, g), still getting a coarse embedding.
This can be especially interesting when such a subgroup preserves a reduction of the bundle

M̂ . We have indeed:

Corollary 2.5. Let (Mn+1, g) be a Lorentz manifold. Assume that there exists a closed
subgroup G ⊂ Iso(M, g), leaving invariant a compact subset K ⊂M , as well as a reduction

of M̂ above K, to an H-subundle with H ⊂ O(1, n) a closed subgroup.
Then there exists a coarse embedding α : G→ H.

Proof. The proof is a straigthforward rephrasing of that of Lemma 2.2, looking at a

bounded section σ : K → N̂ , where N̂ is the H-subbundle over K. �

As a toy application in the realm of Lorentz geometry, let us formulate the following

Proposition 2.6. Let (M1+n, g) be a compact, (n + 1)-dimensional Lorentz manifold.
Assume that there exists on M a nontrivial Killing field X which is everywhere lightlike ,
namely g(X,X) = 0. Then every closed, finitely generated, subgroup Λ ⊂ Iso(M, g) which
commutes with X is virtually nilpotent, of growth degree at most n− 1.

Proof. It is classical that nontrivial lightlike Killing fields on Lorentz manifolds can not

have singularities. Thus, the field X defines a reduction of the frame bundle M̂ to the
group L ⊂ O(1, n), where L is the stabilizer of a lightlike vector in Minkowski space
R1,n. This group L is isomorphic to O(n − 1) n Rn−1. Any closed finitely generated
Λ ⊂ Iso(M, g) commuting with X preserves the reduction, hence coarsely embeds into L
by corollary 2.5. Lemma 2.4 implies that Λ has polynomial growth, with growth degree
≤ n− 1. The proposition follows from Gromov’s theorem about groups with polynomial
growth. �

2.3.4. Coarse embedding and asymptotic dimension. The notion of asymptotic dimension
of a metric space appears in [Gr1, Section 4], and was developped in [Gr2].

One says that (X, dX) has asymptotic dimension at most n, written Asdim(X) ≤ n, if
for every r > 0, there exists a covering X =

⋃
i∈I Ui with the following properties

• All the Ui’s are uniformly bounded.
• The Ui’s can be splitted into (n+ 1) families U0, . . . ,Un, with the property that

whenever Ui and Uj , i 6= j, belong to a same family Uk, then dX(Ui, Uj) > r.

The asymptotic dimension of (X, dX) is the minimal n for which one has Asdim(X) ≤ n.
The following lemma follows almost directly from the definitions.

Lemma 2.7. Let (X, dX) and (Y, dY ) be two metric spaces, and α : X → Y a coarse
embedding. Then Asdim(X) ≤ Asdim(Y ).

In particular, two spaces which are coarse-equivalent will have the same asymptotic
dimension.

It is known that Asdim(Rn) = Asdim(Hn) = n for every n ∈ N (see for instance [BS,
chap. 10]). Hence, Lemma 2.7 says, for instance, that if (M1+n, g) is a compact, (n+ 1)-
dimensional manifold, and if Λ ⊂ Iso(M, g) is a discrete subgroup isomorphic to Zk, then
k ≤ n. One has the sharper upper bound k ≤ n− 1, as the following statement shows:
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Proposition 2.8. Let n ≥ 1. Then there is no coarse embedding α : Rn → Hn.

Observe that horospheres in Hn yield coarse embeddings of Rn−1 into Hn.

Proof. The proposition can not be derived in a straigthforward way, because Lemmas
2.4 and 2.7 are obviously useless in our situation. The ingredients of the proof are more
elaborate (though classical for the experts), and involve “coarse topological arguments”.
The details can be found in [DK, section 9.6], and especially Theorem 9.69 there. This
theorem states that if a coarse embedding α : Rn → Hn would exist, then it should be
almost surjective (namely the image is cobounded). Then it is easy to build a coarse
inverse β : Hn → Rn to α. But the existence of such a β is forbidden because of Lemma
2.4. �

2.4. A first glance at Lorentz isometric actions of lattices.

2.4.1. Isometric actions of lattices in O(1, k). To illustrate how the basic tools of coarse
geometry presented so far can already say interesting things about isometric actions on
Lorentz manifolds, let us prove part of Corollary C, without appealing to Theorem A.

Proposition 2.9. Let (Mn+1, g) be a compact Lorentz manifold. Then if k ≥ n + 1,
Iso(M, g) does not contain any discrete subgroup Λ isomorphic to a lattice of O(1, k).

Proof. Assume that Λ ⊂ Iso(M, g) is discrete and isomorphic to a lattice in O(1, k).
Observe first that Λ is closed and finitely generated, hence we can apply all what we did
so far. If Λ is uniform in O(1, k), then its asymptotic dimension is that of Hk, and by the

coarse embedding Dx : Λ → Hn of Section 2.2.3 and Lemma 2.7, we get k ≤ n, and we
are done. If Λ is not uniform, then the thick-thin decomposition (see [Th, Section 4.5])
provides a discrete subgroup of Λ, virtually isomorphic to Zk−1. But then Proposition 2.8
forces k − 1 ≤ n− 1, which concludes the proof.

�

The statement is optimal. Indeed, we saw in the introduction that on any torus Tn+1

(n ≥ 2), there exist flat Lorentz metrics, with isometry group Λ n Tn+1, where Λ is some
lattice in O(1, n).

2.4.2. Compact Lorentz manifolds having a lattice as isometry group. At this point, it
is worth noticing that one can produce examples of compact Lorentz (n + 1)-manifolds
(n ≥ 3) admitting an isometry group which is virtually a lattice in O(1, n−1). Here is the
construction. We start with a Lorentz quadratic form q on Rn, n ≥ 3, which is rational.
Then, Borel Harish-Candra theorem ensures that Λ := O(q,Z) is a lattice in O(q). The
quadratic form q defines a Lorentz metric g0 on Rn, which is flat and translation invariant.
We consider R × Rn, with coordinates (t, x1, . . . , xn), and we endow it with the Lorentz
metric ga := dt2 + a(t)g0, where a : t 7→ a(t) is a positive, 1-periodic function on R. Now,
let Γ be the subgroup generated by γ : (t, x1, . . . , xn) 7→ (t + 1,−x1, . . . ,−xn) and the
translations τi : (t, x1, . . . , xi, . . . , xn) 7→ (t, x1, . . . , xi + 1, . . . , xn), 1 ≤ i ≤ n. This is a
discrete subgroup, acting by isometries for ga.

The quotient manifold M := (R×Rn)/Γ is topologically a Tn-bundle over the circle. It
inherits a Lorentz metric ga, for which the action of Λ is isometric. Actually, for a generic
choice of the 1-periodic function a, Iso(M, ga) will coincide virtually with Λ (see [Fr1, Sec.
2.2, Lemma 2.1] for the precise genericity condition that has to be put on a).

2.5. Deducing Theorem B from Theorem A. All the invariants of coarse embeddings
(growth, asymptotic dimension) presented so far are very basic. More sofisticated tools,
leading to obstructions for a group to admit a coarse embedding into some real hyperbolic
space Hd can be found in [HS]. For instance, it is shown in [HS, Cor. 1.3] that a finitely
generated, virtually solvable group, which is not virtually nilpotent does not admit such
a coarse embedding (see also Theorem 2.10 below). It follows that those groups do not



10 CHARLES FRANCES

appear as closed subgroups of isometries for a compact Lorentz manifold. Observe that
this result can also be infered from Theorem A, because it is easy to check that a discrete
subgroup of O(1, d) which is virtually solvable has to be virtually abelian.

Recently, several authors ([DKLMT], [HMT], [LG]) studied the behaviour of notions
such as separation, and isoperimetric profiles, with respect to coarse embeddings. This
led to the following quite amazing result of R. Tessera:

Theorem 2.10. [Te, Th. 1.1] Let Λ be a finitely generated, amenable group. If there
exists a coarse embedding from Λ to Hn, then Λ is virtually nilpotent of growth degree at
most n− 1.

This result, combined with Theorem A implies easily Theorem B. Indeed, let (Mn+1, g)
be a compact, (n+ 1)-dimensional, Lorentz manifold, and let Λ ⊂ Iso(M, g) be a discrete,
finitely generated, subgroup. We endow Λ with a word metric, and consider its growth
function, namely β : n 7→ |B(1Λ, n)|. If the growth of Λ is subexponential, namely if
limn→∞

1
n

log(β(n)) = 0, then Λ is amenable. Because Λ coarsely embeds into Hn by
Lemma 2.2, Tessera’s theorem ensures that Λ is virtually nilpotent, of growth degree at
most n− 1.

If on the contrary, the growth of Λ is exponential, then we can apply Theorem A.
We obtain, in both cases covered by the theorem, a finite index subgroup Λ′ ⊂ Λ, and a

proper homomorphism ρ : Λ′ → PO(1, n), n ≥ 2. The image ρ(Λ′) is a discrete subgroup
Λρ of PO(1, n), and because the kernel of ρ is finite, Λ is virtually isomorphic to Λρ. Now
discrete subgroups of PO(1, n) split into two categories (see [MT] for an introduction to
Kleinian groups). The elementary ones, for which the limit set is finite. Those groups are
virtually abelian, hence don’t have exponential growth. This case is not compatible with
our growth assumption on Λ. The non-elementary groups of PO(1, n) have infinite limit
set. It is known that such groups contain pairs of loxodromic elements α, β with pairwise
disjoint fixed points (see for instance [MT, Lemma 2.3]). It is then clear that suitable
powers αn and βn satisfy the Ping-pong lemma, hence generate a free group. The inverse
image of this free group in Λ′ is also a free subgroup, what concludes the proof of Theorem
B.

The remaining of the paper is devoted to the proof of Theorem A.

3. The limit set of an isometric action

3.1. Dynamical definition of the limit set. Let (M, g) be a compact Lorentz manifold.
Following [Z1, Section 9.1], one can introduce a notion of (fiberwise) limit set for the
action of the isometry group Iso(M, g). For each x ∈ M the “limit set” Λ(x) ⊂ P(TxM)
comprises all nonzero lightlike directions [u] ∈ P(TxM), for which there exists a sequence
(fk) ∈ Iso(M, g) tending to infinity in Iso(M, g), and a sequence (uk) ∈ TM tending to
u, such that Dfk(uk) is bounded in TM . It follows from the definition that if Iso(M, g)
is compact, then Λ(x) = ∅ for every x ∈ M . Conversely, it is pretty easy to check that
Λ(x) 6= ∅ for every x ∈ M as soon as Iso(M, g) is noncompact. As we will see later, the
existence of a “big” limit set at each x ∈ M has strong geometric consequences on the
Lorentz manifold (M, g). To estimate the size of Λ(x), and give a precise meaning of big
limit set, we introduce the map cardΛ : M → N∪ {∞} which to a point x ∈M associates
the number of points in Λ(x). It will be also useful to consider EΛ(x), the vector subspace
of TxM spanned by Λ(x), and denote by dΛ(x) the dimension of EΛ(x).

3.2. Asymptotically stable distributions and semi-continuity properties. A to-
tally geodesic, codimension one, lightlike foliation on M , is a codimension one foliation,
the leaves of which are totally geodesic, and such that the restriction of the metric g to the
leaves is degenerate (one says lightlike). The work [Z1] makes a link between directions
in the limit set, and totally geodesic codimension one lightlike foliations on M . To be
precise, A. Zeghib introduces, for every sequence (fk) going to infinity in Iso(M, g), the
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asymptotically stable distribution AS(fk) ⊂ TM of (fk) as follows: the vectors of AS(fk)
are those u ∈ TM for which there exists a sequence (uk) of TM converging to u, and such
that Dfk(uk) is bounded.

Theorem 3.1. [Z1, Theorem 1.2] Let (M, g) be a compact Lorentz manifold, and let (fk)
be a sequence of Iso(M, g) going to infinity. Then, after considering a subsequence of (fk),
the asymptotically stable set AS(fk) is a codimension one lightlike distribution, which is
tangent to a Lipschitz totally geodesic codimension one lightlike foliation.

If [u] is a direction belonging to Λ(x), then it follows from the definitions that there
exists a sequence (fk) going to infinity in Iso(M, g) such that u ∈ AS(fk). Actually,
after considering a subsequence, AS(fk)(x) is a lightlike hyperplane of TxM coinciding
with u⊥. Let us call F the totally geodesic codimension one lightlike foliation integrating
AS(fk), the existence of which is asserted by Theorem 3.1. For every y ∈M , if v ∈ TyM
is a nonzero lightlike vector such that v⊥ is tangent to the leaf of F containing y, then
[v] ∈ Λ(y). It is known that totally geodesic codimension one lightlike foliations have
Lipschitz transverse regularity. We thus get:

Corollary 3.2. Each direction [u] ∈ Λ(x) can be extended to a Lipschitz field of lightlike
directions y 7→ ∆[u](y) on M , such that ∆[u](y) ∈ Λ(y) for every y ∈M .

This yields the following semi-continuity property.

Corollary 3.3. The map x 7→ dΛ(x) is lower semi-continuous. For any m ∈ N∗, the sets
K≥m := {x ∈M | cardΛ(x) ≥ m} are open.

3.3. The point of view of coarse embeddings. Let us consider a subset G ⊂ O(1, n),
and a point o ∈ Hn. We call OG the set:

OG := {g−1.o | g ∈ G }.

Then we introduce the limit set of G , denoted ΛG , as ΛG := OG ∩ ∂Hn. The closure OG

is taken in the topological ball Hn. We notice that ΛG = ∅ if and only if G has compact
closure in O(1, n).

If G ⊂ Iso(M, g) is a closed subgroup and if for x ∈ M , Dx : G → O(1, n) is the
coarse embedding given by the derivative cocycle (see Section 2.2.2), then it makes sense
to consider the limit set ΛDx(G), that we will rather write ΛD(x) to ease the notations.

It turns out that the sets Λ(x) and ΛD(x) encode the same object. Let us explain
why. First, denote by R1,n the space Rn+1 endowed with the quadratic form q1,n =
2x1xn+1 + x2

2 + . . . + x2
n. The group O(1, n) is the subgroup of GL(n + 1,R) preserving

q1,n. We will use the projective model for real hyperbolic space Hn, namely we see the Hn
as the set of timelike lines (satisfying q1,n(x) < 0) in R1,n. Its boundary ∂Hn coincides
with the set of lightlike lines. The action of O(1, n) on those sets is the obvious one, coming

from the linear action of O(1, n) on R1,n. Let us consider a bounded section σ : M → M̂
as in section 2.2.2, which defines the coarse embedding Dx : Iso(M, g) → O(1, n). Each
frame σ(x) can be seen as a linear isometry σ(x) : R1,n → TxM . Let us denote by
ιx : TxM → R1,n the inverse map. We claim:

Lemma 3.4. For every x ∈M , we have ΛD(x) = ιx(Λ(x)).

Proof. The very definition of Dx yields, for every f ∈ Iso(M, g), every x ∈ M , and every
u ∈ TxM , the equivariance relation

(3) Dxf(u) = σ(f(x))(Dxf(ιx(u))).

Now if [u] ∈ Λ(x), there exists a sequence (uk) in TxM , and a sequence (fk) going
to infinity in Iso(M, g) such that |Dxfk(uk)| remains bounded. Relation (3) shows that
Dxfk(ιx(uk)) remains bounded in R1,n. Let us perform a Cartan decomposition of Dxfk
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in O(1, n), namely write Dxfk = mkaklk where (mk) and (nk) stay in a maximal compact
group of O(1, n) and ak is a diagonal matrix of the from

ak =

 λk 0 0
0 In−1 0
0 0 λ−1

k

 ,

where λk → +∞. We may also consider a subsequence, so that mk converges to m∞ and
lk to l∞. Then it is plain that because Dxfk(ιx(uk)) is bounded and ιx(u) is lightlike,
one must have ιx(u) ∈ R.l−1

∞ (en+1). Also quite obvious is the fact that for every timelike
vector v, (Dxfk)−1(v) tends projectively to [l−1

∞ (en+1)]. This shows [ιx(u)] ∈ ΛD(x). The
inclusion ΛD(x) ⊂ ιx(Λ(x)) is shown in the same way. �

3.4. Exponential growth and exponential growth of derivatives. We consider G ⊂
Iso(M, g) a closed, compactly generated subgroup. We choose S a symmetric compact set
generating G, and we consider the associated word metric dS (see Section 2.1.1). For
g ∈ G, we will denote by `(g) the distance dS(1G, g).

Given a function ψ : G → R+, one says that ψ has exponential growth, if there exists
λ > 0, and a sequence (gi) in G, which tends to infinity, and such that ψ(gi) ≥ eλ`(gi).

We fix from now on an auxiliary Riemannian metric h on M . The statements below will
involve estimates with respect to this metric, but by compactness of M , their conclusions
won’t depend on the choice of h. The norm of a vector u ∈ TM with respect to the
metric h will be denoted by |u|. For x ∈ M , and ϕ ∈ Diff(M), we denote by |Dxϕ| :=
sup|u|=1 |Dxϕ(u)|.

Proposition 3.5. Let (M, g) be a compact Lorentz manifold. Let G ⊂ Iso(M, g) be a
closed, compactly generated subgroup. If G has exponential growth, then for every x ∈M ,
the function g ∈ G 7→ |Dxg| has exponential growth.

Proof. We consider, for each x ∈ M , the coarse embedding Dx : G → O(1, n) given by
the derivative cocycle (see Section 2.2.2). Because Dx is defined relatively to a bounded

section σ : M → M̂ , Proposition 3.5 amounts to proving that g 7→ |Dxg| has exponential
growth, where we put any norm | . | on the space of matrices.

Let us recall Iwasawa’s decomposition in O(1, n). Each Dxg ∈ O(1, n) can be written in
a unique way as Dxg = k(g)a(g)n(g), where k(g) belongs to a maximal compact subgroup
K ⊂ O(1, n)

a(g) =

 eλ(g) 0 0
0 In−1 0

0 0 e−λ(g)

 , λ(g) ∈ R

n(g) =

 1 v(g) −<v(g),v(g)>
2

0 In−1 −tv(g)
0 0 1

 , v(g) ∈ Rn−1.

In the formula above, if v = (v1, . . . , vn−1), then < v, v >= v2
1 + . . . + v2

n−1. We will use
the notation |v| for

√
< v, v >.

Lemma 3.6. Assuming that G has exponential growth, either g 7→ e|λ(g)| or g 7→ |v(g)|
has exponential growth.

Proof. Assume for a contradiction that both maps have subexponential growth.
Working in the upper-half space model R∗+ ×Rn−1 for Hn, with coordinates (t, x), the

action of a(g) is given by (t, x) 7→ (eλ(g)t, eλ(g)x), and that of n(g) by (t, x) 7→ (t, x+v(g)).
We consider the point o = (1, 0) ∈ R∗+ × Rn−1, which is precisely the point fixed by the
compact group K.
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We already observed in Section 2.2.3 that the map: Dx : G→ Hn defined by

Dxg := (Dxg)−1.o = n(g)−1a(g)−1.o

is a coarse embedding.
Our subexponential growth assumption tells that for every ε > 0, there exists Nε ∈ N

such that for every k ≥ Nε, and every g satisfying `(g) ≤ k, e|λ(g)| ≤ ekε and |v(g)| ≤ ekε.
Geometrically, it means that for k ≥ Nε, the ball B(1G, k) is mapped by Dx into a
rectangle Rk,ε = [e−kε, ekε]× [−ekε, ekε]n−1 ⊂ R∗+ ×Rn−1. Let us compute the hyperbolic
volume of this rectangle in Hn:

volhyp(Rk,ε) = 2n−1ek(n−1)ε

∫ ekε

e−kε

1

tn
dt =

2n−1

n− 1
(e2k(n−1)ε − 1).

Now Dx being a coarse embedding, there exists c > 0 such that for avery pair of
elements g, h ∈ G, dS(g, h) ≥ c implies dHn(Dxg,Dxh) ≥ 1. Let us choose a c-metric
lattice L in G. Because G has exponential growth, there exists µ > 0 such that nk =
](L ∩ B(1, k)) ≥ eµk for k big enough. On the other hand, Dx(L ∩ B(1G, k)) ⊂ Rk,ε
contains nk points at mutual hyperbolic distance at least 1. Hence there exists a constant
C > 0 (independent of k and ε), such that nk ≤ C volhyp(Rk,ε). We end up with the

inequality eµk ≤ C 2n−1

n−1
(e2k(n−1)ε − 1), available for k big enough. If we chosed ε small,

for instance 0 < ε < µ
4(n−1)

, this yields a contradiction as k tends to infinity. �

We see that if a(g) =

 eλ(g) 0 0
0 Idn−1 0

0 0 e−λ(g)

 and n(g) =

 1 v(g) |v(g)|2
2

0 Idn−1 −tv(g)
0 0 1


then:

a(g)n(g) =

 eλ(g) eλ(g)v eλ(g)|v(g)|2
2

0 Idn−1 −tv
0 0 e−λ(g)

 .

If g 7→ e|λ(g)| has exponential growth, then so has |a(g)n(g)| (look at diagonal terms).
If g 7→ |v(g)| has exponential growth, then so has |a(g)n(g)| (look at the last column).
Since Dxg = k(g)a(g)n(g) with k(g) in a compact set, it follows from Lemma 3.6 that
g 7→ |Dxg| has exponential growth. This concludes the proof. �

3.5. Exponential growth implies infinite limit set.

Proposition 3.7. Let (M, g) be a compact Lorentz manifold. Let G ⊂ Iso(M, g) be
a closed, compactly generated subgroup. If at some x ∈ M , the map g 7→ |Dxg| has
exponential growth, then the limit set Λ(x) has at least two points.

Proof. The main ideas of the proof are borrowed from [HKR].
We will use again the map Dy : G→ O(1, n) defined in Section 2.2.2, which is a coarse

embedding for every y ∈ M . We consider S a compact, symmetric generating set for the
group G. Let us call Σ = SZ the set of bi-infinite words w = (. . . w−2w−1w0w1w2 . . .) in
the alphabet S. The shift σ : Σ → Σ is defined as σ(w) = w′ where w′i = wi+1 (we shift

to the right). We call O the closure of the orbit G.x, and we define θ : Σ×O → Σ×O by
θ(w, y) = (σ(w), w0.y). We observe that θ−1(w, y) = (σ−1(w), w−1

−1.y).
The action of G on M defines naturally a map A : Σ ×M → O(1, n), by the formula

A(w, y) := Dyw0. Let us put

A(k)(w, y) = A(θk−1(w, y))A(θk−2(w, y)) . . . A(θ(y))A(y),

which by the cocycle property of the derivative cocycle is nothing but Dywk−1....w1w0. In
the same way we define

A(−k)(w, y) = A−1(θ−k(w, y)) . . . A−1(θ−1(w, y)),
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which coincides Dyw
−1
−k . . . w

−1
−2w

−1
−1.

We obtain in this way a cocycle over θ : Σ ×M → Σ ×M with values into O(1, n).

Because Σ × O is compact, there exists ν an ergodic θ-invariant Borel probability mea-
sure on Σ × O. Observe that (w, y) 7→ log ||A(w, y)|| and (w, y) 7→ log ||A−1(w, y)|| are
integrable for ν because those are Borel maps which are bounded (since S is compact and
the derivative cocycle (x, f) 7→ Dxf is defined relatively to a bounded frame field).

Let us recall the conclusions of Oseledec theorem in this context (see for instance [L,
Theorem 4.2]).

Theorem 3.8 (Oseledec Theorem). There exists a θ-invariant Borel subset B ⊂ Σ × O
with ν(B) = 1, a measurable decomposition Rn+1 = W 1

z ⊕ . . . ⊕ W r
z , z ∈ B, and real

Lyapunov exponents λ1 < λ2 < . . . < λr satisfying the properties:

(1) The decomposition Rn+1 = W 1
z ⊕. . .⊕W r

z is invariant in the sense that A(z)W i
z =

W i
θ(z) for all z ∈ B and 1 ≤ i ≤ r.

(2) A vector v belongs to W i
z if and only if

(4) lim
k→±∞

1

k
log ||A(k)(z).v|| = λi.

Recall that the matrices A(k)(z) preserve a Lorentz scalar product <,>1,n on Rn+1

hence have determinant 1. It follows that the sum λ1+. . .+λr = 0 (see [L, Prop. 1.1]). One
infers easily from equation (4) that the Lyapunov spaces W i

z are mutally orthogonal for
<,>1,n, and spaces associated to nonzero exponents are isotropic (hence 1-dimensional).
We thus see that only two cases may occur. Either there is a single exponent and this
exponent is 0, or there are exactly three exponents (if n ≥ 2) λ+ > 0, 0 and λ− = −λ+.
In this last case, we say that the measure ν is partially hyperbolic. We then denote by
W−z , W 0

z and W+
z the Lyapunov spaces associated to λ−, 0 and λ+ respectively.

Let us proceed with the proof of the proposition, assuming that we have found such a
partially hyperbolic measure ν. Oseledec theorem above yields a point z = (w, y) ∈ B,
and linearly independent vectors u+ ∈W+

z and u− ∈W−z such that,

lim
k→+∞

1

k
log(||A(k)(w, y).u−||) = −λ+

and

lim
k→+∞

1

k
log(||A(−k)(w, y).u+||) = −λ+.

Let w = (. . . w−2w−1w0w1w2 . . .). We define gk = wk−1 . . . w0 and g′k = w−1
−k . . . w

−1
−1.

Then:

lim
k→+∞

1

k
log ||Dygk(u−)|| = −λ+ and lim

k→+∞

1

k
log ||Dyg

′
k(u+)|| = −λ+.

In particular both sequences (gk) and (g′k) tend to infinity, and u− (resp. u+) is a lightlike
asymptotically stable vector for (gk) (resp. for (g′k)). It follows that the directions [u±]
belong to the limit set Λ(y), showing that this set has at least two points. In an open
set U around y, we must have dΛ ≥ 2 (semi-continuity property shown in Corollary 3.3).

Because y ∈ O, it follows that for some point, hence any (by isometric invariance) point
of O, dΛ ≥ 2. This concludes the proof of Proposition 3.7 in this case.

It remains to show the existence of a θ-invariant, ergodic, partially hyperbolic measure
on Σ × O. This is here that our assumption of exponential growth for the derivatives
of G comes into play. We fix an auxiliary Riemannian metric h on M , and denote by
UTM the unit tangent bundle of h. Exponential growth of derivatives at x yields λ > 0,
a sequence (gk) in G such that `(gk)→∞, as well as a sequence vk of UTxM , such that

||Dxgk(vk)|| ≥ eλ`(gk).

This growth condition can also be formulated using the sequence A(k) in the following

way. For each k, gk can be written as gk = s
(k)

`(gk)−1s
(k)

`(gk)−2 . . . s
(k)
1 s

(k)
0 , which is a word of



ISOMETRY GROUP OF LORENTZ MANIFOLDS 15

length `(gk) in elements of S. Then, let us consider the bi-infinite, periodic word w(k) ∈ SZ

which is defined by w
(k)
i = s

(k)
i for 0 ≤ i ≤ `(gk) − 1, and completed by periodicity. The

growth condition yields the existence of uk a sequence of vectors in Rn+1, such that
||uk|| = 1 (we use here any norm) and

||A(`(gk))(w(k), x).uk|| ≥ eλ`(gk).

We now lift the map θ to a map θ̂ : Σ×O × RPn → Σ×O × RPn by the formula

θ̂(w, y, [u]) = (θ(w, y), A(w, y).[u])

Let us also introduce ψ : Σ×O×RPn → R defined by ψ(w, y, [u])) = log(||A(w, y).u||/||u||)
Now look at the sequence of measures on Σ×O×RPn, defined by ν̂k = 1

`(gk)
Σ
`(gk)
m=1 (θ̂m)∗δ(w

k, uk).

We compute
∫

Σ×O×RPn
ψdν̂k = 1

`(gk)
Σ
`(gk)
m=1ψ(θ̂m(w(k), x, [uk])). This expression is

nothing but 1
`(gk)

log ||A(`(gk))(w(k), x).uk||, so that
∫

Σ×O×RPn
ψdν̂k ≥ λ.

Because the space Σ×O×RPn is compact, we can find a subsequence (ν̂ik ) converging

for the weak-star topology to a probability measure ν̂ on Σ × O × RPn. It is easily

checked that ν̂ is θ̂-invariant, and we still have
∫

Σ×O×RPn
ψdν̂ ≥ λ. Performing an ergodic

decomposition, we get an ergodic, θ̂-invariant measure ν̂e on Σ×O × RPn satisfying

(5)

∫
Σ×O×RPn

ψdν̂e ≥ λ.

We push ν̂e forward to an ergodic, θ-invariant measure νe on Σ × O. From (5) and

[L, Prop. 5.1], we conclude that the cocycle A(k) admits a Lyapunov exponent which is
≥ λ (hence positive). It means precisely that νe is partially hyperbolic, and the proof is
complete.

�

Proposition 3.7 uses only an hypothesis involving growth of derivatives. When the
group G itself has exponential growth, the conclusions of Proposition 3.7 can be strengthen
in the following way:

Corollary 3.9. Let (M, g) be a compact Lorentz manifold. Let G ⊂ Iso(M, g) be a closed,
compactly generated subgroup. If G has exponential growth, then the limit set Λ(x) is
infinite for every x ∈M . In particular dΛ(x) ≥ 3 for every x ∈M .

Proof. By Propositions 3.5 and 3.7, we now that cardΛ(x) ≥ 2 for every x ∈ M . We
call cmin ∈ {2, 3, . . .} ∪ {∞} the minimal value achieved by x 7→ cardΛ(x) on M . If the
minimal value cmin is +∞, we are done. If on the contrary cmin is finite, we are going to
get a contradiction. To see this, we define:

Kmin := {x ∈M | cardΛ(x) = cmin}.
By corollary 3.3, the set K≥cmin+1 is open, hence Kmin is a compact subset of M .

If cmin = 2 then we have two lightlike Lipschitz directions on K, which are preserved
by G, or an index two subgroup of G. Because the subgroup of O(1, n) leaving invariant
two linearly independent lightlike directions is isomorphic to R × O(n − 1), we get a G-

invariant (Lipschitz) reduction of the bundle M̂ to the group R × O(n − 1) above Kmin.
Lemma 5.11 then provides a coarse embedding α : G → R × O(n − 1). By Lemma 2.4,
this is impossible since G is assumed to have exponential growth, while R×O(n− 1) has
linear growth. It means that we have +∞ > cmin ≥ 3. But the subgroup of O(1, n)
leaving individually invariant a finite family of lightlike directions spanning a subspace of
dimension ≥ 3, is a compact group isomorphic to some group O(k), 1 ≤ k ≤ n−2. Again,

looking at a finite index subgroup of G, we have a G-invariant reduction of the bundle M̂
to the group O(k). Lemma 5.11 then provides a coarse embedding α : G→ O(k). This is
a new contradiction since no noncompact group can be coarsely embedded into a compact
one. �
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4. Exponential growth and Killing fields

We have shown in Corollary 3.9 that the existence of a closed subgroup with exponential
growth in the isometry group of a compact Lorentz manifold (Mn+1, g) forces the limit set
to be infinite at each point. The aim of the present section is to derive the first geometric
consequences of this fact.

Recall that a local Killing field on M is a vector field defined on some open subset
U ⊂ M , such that the Lie derivative LXg = 0. In other words, the local flow of X acts
isometrically for g. In the neighborhood of each point x ∈M , the algebra of local Killing
fields is a finite dimensional Lie algebra, that will be denoted killloc(x). The isotropy
algebra ix is the subalgebra of killloc(x) comprising all local Killing fields vanishing at x.

The main theorem of this section shows that the existence of a big limit set for Iso(M, g)
produces many local Killing fields, at least on a nice open and dense subset M int, called
the integrability locus, to be defined later on.

Theorem 4.1. Let (M, g) be a compact Lorentz manifold. Assume that the limit set Λ(x)
of Iso(M, g) is infinite for every x ∈M . Then for every x in the integrability locus M int,
the isotropy Killing algebra ix is isomorphic to o(1, kx), with kx ≥ 2.

Observe that by Corollary 3.9, Theorem 4.1 will hold as soon as Iso(M, g) contains a
closed, compactly generated subgroup of exponential growth.

The Killing fields appearing in Theorem 4.1 will be obtained using integrability results,
which were first proved in [Gr1], and that we present below.

4.1. Canonical Cartan connection, and the generalized curvature map. In all
what follows, we will denote by g0 the Lie algebra o(1, n)nRn+1. We consider (Mn+1, g)

a (n+1)-dimensional Lorentz manifold. Let π : M̂ →M denote the bundle of orthonormal
frames on M . This is a principal O(1, n)-bundle over M , and it is classical (see [KN][Chap.
IV.2 ]) that the Levi-Civita connection associated to g can be interpreted as an Ehresmann

connection α on M̂ , namely a O(1, n)-equivariant 1-form with values in the Lie algebra

o(1, n). Let θ be the soldering form on M̂ , namely the Rn+1-valued 1-form on M̂ , which

to every ξ ∈ Tx̂M̂ associates the coordinates of the vector π∗(ξ) ∈ TxM in the frame x̂.

The sum α+θ is a 1-form ω : TM̂ → g0 called the canonical Cartan connection associated
to (M, g).

Observe that for every x̂ ∈ M̂ , ωx̂ : Tx̂M̂ → g0 is an isomorphism of vector spaces,
and the form ω is O(1, n)-equivariant (where O(1, n) acts on g0 = o(1, n) n Rn+1 via the
adjoint action).

The notion of Riemannian curvature for g, as well as its higher order covariant deriva-

tives have a counterpart in M̂ . The curvature of the Cartan connection ω is a 2-form K

on M̂ , with values in g0, defined as follows. If X and Y are two vector fields on M̂ , the
curvature is given by the relation:

K(X,Y ) = dω(X,Y ) + [ω(X), ω(Y )].

Because at each point x̂ of M̂ , the Cartan connection ω establishes an isomorphism be-

tween Tx̂M̂ and g0, it follows that any k-differential form on M̂ , with values in some

vector space W , can be seen as a map from M̂ to Hom(⊗kg0,W ). This remark applies

for the curvature form K itself, yielding a curvature map κ : M̂ → W0, where the vector
space W0 is a sub O(1, n)-module of Hom(∧2(Rn+1); g0) (the curvature is antisymmetric

and vanishes when one of its arguments is tangent to the fibers of M̂).

We now differentiate the map κ, getting a map Dκ : TM̂ → W0. The connection ω

allows to identify Dκ with a map Dκ : M̂ → W1, where W1 = Hom(g0,W0). the rth-

derivative of the curvature Drκ : M̂ → Hom(g0,Wr) (with Wr defined inductively by
Wr = Hom(g0,Wr−1)). The generalized curvature map of our Lorentz manifold (M, g) is
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the map κg = (κ,Dκ,D2κ, . . . ,Ddim(g0)κ). The O(1, n)-module Hom(g0,Wdim(g0)) will be
rather denoted Wκg in the sequel.

4.2. Integrating formal Killing fields.

4.2.1. Integrability locus. One defines the integrability locus of M̂ , denoted M̂ int, as the

set of points x̂ ∈ M̂ at which the rank of Dκg is locally constant. Notice that M̂ int is a

O(1, n)-invariant open subset of M̂ . Because the rank of a smooth map can only increase
locally, this open subset is dense. We define also M int ⊂M , the integrability locus of M ,

as the projection of M̂ int on M . This is a dense open subset of M .

4.2.2. The integrability theorem. Local flows of isometries on M clearly induce local flows
on the bundle of orthonormal frames, which moreover preserve ω. It follows that any local

Killing field X on U ⊂ M lifts to a vector field X̂ on Û := π−1(M), satisfying LX̂ω = 0.

Conversely, local vector fields of M̂ such that LX̂ω = 0, that we will henceforth call

ω-Killing fields, commute with the right O(1, n)-action on M̂ . Hence, they induce local
vector fields X on M , which are Killing because their local flow maps orthonormal frames
to orthonormal frames. It is easily checked that a ω-vector field which is everywhere

tangent to the fibers of the bundle M̂ →M must be trivial. As a consequence, there is a

one-to-one correspondence between local ω-Killing fields on M̂ and local Killing fields on
M . We will use this correspondence all along the paper. The same remark holds for local
isometries.

Observe finally that if X̂ is a ω-Killing field on M̂ (namely LX̂ω = 0), then the local

flow of X̂ preserves κg, hence X̂ belongs to Ker(Dx̂κ
g) at each point. The integrability

theorem below says that the converse is true on the set M̂ int.

Theorem 4.2 (Integrability theorem). Let (M, g) be a Lorentz manifold. Let M int ⊂M
denote the integrability locus. For every x̂ ∈ M̂ int, and every ξ ∈ Ker(Dx̂κ

g), there exists

a local ω-Killing field X̂ around x̂ such that X̂(x̂) = ξ.

An akin integrability result for Killing fields of finite order first appeared in the seminal
paper [Gr1]. The results were recast in the framework of real analytic Cartan geometry
in [M2], and [P] provides an alterative approach for smooth Cartan geometries, leading to
the statement of Theorem 4.2 (see also Annex A of [Fr2], which elaborates slightly on the
statement proved in [P]).

4.2.3. Connected components of M int, and “analytic continuation” of Killing fields. A
first important consequence of Theorem 4.2 is that on the set M int, Killing fields have a
particularly nice behavior. To see that, let us recall that for any x ∈ M , there is a good
notion of local Killing algebra at x. Indeed, there exists U a small enough neighborhood
of x, such that for every neighborhood V ⊂ U containing x, any Killing field on V will
be the restriction of a Killing field of U . We then call killloc(x) the (abstract) Lie algebra
kill(U) of all Killing fields defined on U . Theorem 4.2 shows that if M is a connected
component of M int, then the dimension of killloc(x) does not depend of x ∈ M , because

this dimension is just the corank of κg on M̂ . As a consequence, the local Killing fields on
M behave much like Killing fields of a real analytic metric. In particular, given a Killing
field X defined on some open set U ⊂M , and given a path γ starting at a point of U , one
can perform the “analytic continuation” of X along γ. It follows that if U is a 1-connected
open subet of M , and if X is a Killing field defined on V ⊂ U , then there exists a Killing
field defined on U , whose restriction to V is X. Those nice properties will often be used
implicitely in the sequel.
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4.2.4. Isotropy algebra and stabilizers of the generalized curvature. Another corollary of
Theorem 4.2, which will be of particular interest to prove Theorem 4.1, is the following:

Corollary 4.3. For every point x ∈M int, the isotropy algebra ix is isomorphic to the Lie

algebra sx of the stabilizer of κg(x̂) in O(1, n), for any x̂ ∈ M̂ in the fiber of x.

Proof. Every element X ∈ ix defines a local Killing field in a neighborhood of x, that can

be lifted to a ω-Killing field X̂ on a neighborhood of x̂. Observe that X̂ is tangent to

the fiber of x̂ since X vanishes at x. The map ρ : X 7→ ωx̂(X̂(x̂)) yields a Lie algebra
morphism from ix to sx. The map is injective since two local ω-Killing fields coinciding at
x̂ must coincide on an open subset around x̂. The map is onto, because if Y ∈ sx, and if
ξ = ω−1

x̂ (Y ), then ξ ∈ Ker(Dx̂κ
g). Theorem 4.2 then provides a local Killing field around

x, such that X̂(x̂)) = ξ. In particular X(x) = 0 so that X ∈ ix. �

4.3. Infinite limit set implies semisimple isotropy. We can now proceed to the proof

of Theorem 4.1. In light of Corollary 4.3, it is enough to show that for every x̂ ∈ M̂ int,
the stabilizer of κg(x̂) in O(1, n) contains a subgroup isomorphic to SOo(1, k), for k ≥ 2.

We recall the bounded section σ : M → M̂ , thanks to which we built the derivative
cocycle D : M × Iso(M, g) → O(1, n), with D(x, f) = Dxf (see Section 2.2.2). We fix

x ∈ M in the sequel. Because σ(M) is included in a compact subset of M̂ , we have that
κg(σ(M)) is also contained in a compact subset K of Wκg . Let f ∈ Iso(M, g). By the
definition of Dxf , one has the relation

f(σ(x)).(Dxf)−1 = σ(f(x)).

This yields

κg(σ(f(x))) = Dxf.κ
g(σ(x)),

and we infer that Dxf.κ
g(σ(x)) belongs to the compact set K for every f ∈ Iso(M, g).

This leads to the following general notion of stability. Let n ≥ 2, and ρ : O(1, n) →
GL(V ) be a finite dimensional representation. If G is a subset of O(1, n), and v ∈ V is a
vector, we say that v is stable under G , if ρ(G ).v is a bounded subset of V . The previous
discussion shows that κg(σ(x)) ∈ Wκg is stable under the set Dx(Iso(M, g)).

In full generality, we wonder if a vector v ∈ V is stable under a set G ⊂ O(1, n) having
a big limit set ΛG in ∂Hn (see Section 3.3), then v is fixed by a big subgroup of O(1, n).

To make things a little bit precise, we see ∂Hn as the set of lightlike directions in R1,n,
and we introduce the linear hull of the limit set ΛG , denoted EΛG , as the linear span of
ΛG in R1,n. The dimension of EΛG will be denoted dΛG . We can now state:

Proposition 4.4 (Big limit set implies big stabilizer). Let ρ : O(1, n)→ GL(V ) be a finite
dimensional representation. Let G ⊂ O(1, n) such that the limit set ΛG ⊂ ∂Hn satisfies
the property dΛG ≥ 3. Then for every vector v0 ∈ V which is stable under G , the stabilizer
of v0 in O(1, n) contains a subgroup isomorphic to SOo(1, dΛG − 1).

If we take this proposition for granted, then Theorem 4.1 follows easily. Indeed, the
asumption of Theorem 4.1 implies that dΛ(x) ≥ 3. Proposition 4.4, applied for the rep-
resentation ρ : O(1, n) → GL(Wκg), and G = Dx(Iso(M, g)) then says that the stabilizer
of κg(σ(x)) in O(1, n) contains a subgroup isomorphic to SOo(1, dΛ(x) − 1). We then
conclude thanks to Corollary 4.3.

4.4. Proof of Proposition 4.4. The remaining of this section is devoted to the proof of
Proposition 4.4.

4.4.1. First easy reduction, and dynamical properties. By hypothesis, n ≥ 2, hence o(1, n)
is simple. The representation ρ : O(1, n) → GL(V ) is thus a direct sum of irreducible
representations. It is enough to prove proposition 4.4 for irreducible representations ρ.
To avoid cumbersome notations, we will denote in the following g.v instead of ρ(g).v (the
image of the vector v ∈ V under the linear transformation ρ(g)).



ISOMETRY GROUP OF LORENTZ MANIFOLDS 19

Let us consider a subset G ⊂ O(1, n), and recall the notion of limit set λG introduced in
Section 3.3. If K ⊂ O(1, n) is a compact subset, and if k : G → K , we can define a new

set G
′

:= {k(g)g | g ∈ G }. If for some point ν ∈ Hn, a sequence (gk) of O(1, n) satisfies
g−1
k .ν → p, where p ∈ ∂Hn, then for any compact subset C ⊂ Hn, we have g−1

k .C → p
(the limit has to be understood for the Hausdorf distance between compact subsets of

Hn). Thus it is clear that G and G
′

have the same limit set, and if ρ : O(1, n)→ GL(V ) is

a finite dimensional representation, then stable vectors for G and G
′

coincide. It follows
from Iwasawa decomposition O(1, n) = KAN (see the proof of Proposition 3.5) that we
may assume, to prove Proposition 4.4, that G ⊂ AN . We will do this in the sequel.

We recall that in the upper-half space model Hn = R∗+ × Rn−1, elements of A act
as homothetic transformations as : (t, x) 7→ (est, esx), s ∈ R. The group N is abelian,
isomorphic to Rn−1 and it acts as n(v) : (t, x) 7→ (t, x + v), v ∈ Rn−1. The dynamics

of as on Hn has two distinct fixed points p+ and p− on ∂Hn, and for every p ∈ Hn,
lims→+∞ a

s.p = p+ (resp. lims→−∞ a
s.p = p−). The group N fixes p+ and acts simply

transitively on ∂Hn \ {p+}.
We can now formulate the following dynamical lemma.

Lemma 4.5. Let us consider an unbounded sequence gk = asknk of AN ⊂ O(1, n), and
let us pick a point o ∈ Hn. After considering maybe a subsequence, we are in one of the
following four cases.

(1) The sequence (sk) converges to −∞. Then g−1
k .o→ p+.

(2) The sequence (sk) converges in R and nk →∞ in N. Then g−1
k .o→ p+.

(3) The sequence (sk) tends to +∞ and nk →∞ in N . Then g−1
k .o tends to p+.

(4) The sequence (sk) tends to +∞ and (nk) tends to n∞ ∈ N . Then g−1
k .o tends to

p = n−1
∞ .p− 6= p+.

4.4.2. Proof of Proposition 4.4 for n = 2. We first do the proof of Proposition 4.4 for a
representation ρ : O(1, 2)→ GL(V ). The Lie algebras o(1, 2) and sl(2,R) are isomorphic,
and there is a 2-fold covering π : SL(2,R)→ SOo(1, 2). Thus there exists a representation
ρ′ : SL(2,R)→ GL(V ) such that ρ′ = ρ ◦ π. If V is m-dimensional, then irreducible finite
representations of SL(2,R) occur from the natural action of SL(2,R) on homogeneous
polynomials of degree m − 1 in two variables. Here m = 2l + 1 must be odd for ρ′ to
induce a representation of SOo(1, 2).

At the level of Lie algebras, let us introduce H =

(
1 0
0 −1

)
, E =

(
0 1
0 0

)
.

We assume in the following that l ≥ 1 (namely the representation is not 1-dimensional).
If ρ : sl(2,R) → gl(V ) is the induced representation, then there is a suitable basis
e1, . . . , e2l+1 of V where

ρ(H) =


2l

2l − 2

. . .

−2l + 2
−2l

 , ρ(E) =



0 1 0

. . . 2
. . .

. . .
. . . 0

. . . 2l
0


.

After identifying sl(2,R) and o(1, 2) under the adjoint action, we see that if nt = etE ,
then
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ρ(nt) =


1 a12t a13t

2 . . . a1mt
m−1

0 1 a23t . . . a2mt
m−2

0 0
. . .

...
...

0 0 0 1 am−1,mt
0 0 0 0 1

 ,

for positive coefficients ai,j where 1 ≤ i ≤ j ≤ m = 2l + 1. We also see that the vectors
v ∈ V which are stable under as := esH , s ≥ 0, are vectors in V − = Span(el+1, . . . , e2l+1).

We are now ready to prove the following lemma, which is a reformulation of Proposition
4.4 for n = 2.

Lemma 4.6. Let ρ : O(1, 2)→ GL(V ) be a finite dimensional representation. Let o ∈ H2

be a point, and let (gk), (g′k) and (g′′k ) three sequences in O(1, 2). Assume that there exists
three pairwise distinct points p, p′, p′′ in ∂H2 such that g−1

k .o → p, (g′k)−1.o → q and

(g′′k )−1.o → r. Then any vector v ∈ V which is stable for (gk), (g′k) and (g′′k ) is actually
SOo(1, 2)-invariant.

Proof. We first assume that ρ is irreducible, and V is not 1-dimensional. We observe that
the conclusions of the Lemma are unaffected if we conjugate the three sequences (gk),
(g′k) and (g′′k ) by an element h ∈ O(1, 2) and replace p, p′, p′′ by h.p, h.p′, h.p′′. Therefore,
because the action of O(1, 2) is transitive on triplets in ∂H2, we may assume that p = p−,
p′ = p+ and p′′ ∈ ∂H2 is different from p+ and p−. As explained in Section 4.4.1, after
having performed such a conjugacy, we still may left-multiply our sequences by sequences
with values in a maximal compact group K ⊂ O(1, 2) without affecting the conclusions.
Hence we will also assume that (gk), (g′k) and (g′′k ) are sequences in AN ⊂ SOo(1, 2).

We thus write gk = askntk , g′k = as
′
knt
′
k g′′k = as

′′
knt

′′
k .

Our first assumption is that g−1
k .o → p+. We have seen in Lemma 4.5 that it can

happen in three different ways.

(1) First case: The sequence (sk) is bounded in R (and |tk| → ∞). Then, v is stable
under eskHetkE if and only if it is stable under etkE . This only occurs if v ∈ R.e1.

(2) Second case: The sequence (sk) tends to −∞. Then if v is stable under eskHetkE ,
the coordinates of etkE .v along Vect(el+2, . . . , e2l+1) must tend to 0. In particular,
v2l+1 = 0. Then v2l + a2l,2l+1tkv2l+1 → 0 as k → ∞, hence v2l = 0. We proceed
in the same way to get v2l−1 = . . . = vl+2 = 0, and v ∈ Vect(e1, . . . , el+1).

(3) Third case: The sequence (sk) tends to +∞. Then g−1
k .o→ p+ means that |tk| →

+∞. If the vector v is stable under eskHetkE , then necessarily, the coordinates of
ntk .v along Vect(e1, . . . , el) tend to 0. Looking at the coordinate along e1 we get
that

v1 + a12tkv2 + . . .+ a1,2l+1t
2l
k v2l+1 → 0.

because the coefficient aij are positive, this only occurs when v1 = . . . , v2l+1 = 0,
namely v = 0.

We now use our hypothesis that (g′k)−1.o→ p−. By Lemma 4.5, this happens exactly

when s′k → +∞ and t′k → 0. The vector v is stable under as
′
knt
′
k only when v belongs

to V − = Vect(el+1, . . . , e2l+1). Together with the conclusions of the three possible cases
above, we end up with v ∈ R.el+1.

We write v = λel+1, and finally use our third assumption: (g′′k )−1.o→ p′′, with p′′ 6= p+,
p′′ 6= p−. This assumption is equivalent to s′′k → +∞ and t′′k → t∞. Observe that t∞ 6= 0

since p′′ 6= p−. Again, v can be stable under as
′′
knt

′′
k only when the coordinates of nt∞ .v

along the vectors e1, . . . , el are zero. But the coordinate of nt∞ .el+1 along e1 is a1,l+1t
l
∞,

which is nonzero since a1,l+1 > 0 and t∞ 6= 0. This third stability condition thus forces
λ = 0, namely v = 0.
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To conclude te proof, we now write the respresentation ρ as a direct sum of irreducible
representations. By what we showed above, a stable vector v has only nonzero components
on irreducible factors of dimension 1. Dimension 1 representations of SOo(1, 2) being
trivial, we infer that v is SOo(1, 2)-invariant, and Lemma 4.6 is proved. �

Lemma 4.6 has the following algebraic consequence:

Corollary 4.7. Let ρ : O(1, 2)→ GL(V ) be a finite dimensional representation. Let V − ⊂
V be the stable subspace of {as}s≥0. Let n1 = nt1 , n2 = nt2 and n3 = nt3 be three elements
of N , that we assume to be pairwise distinct. Then any vector v ∈ n1.V

−∩n2.V
−∩n3.V

−

is fixed by SOo(1, 2).

Proof. Let us consider the three sequences gk := akn−1
1 , g′k := akn−1

2 and g′′k = akn−1
3 .

Any vector v belonging to n1.V
− ∩n2.V

− ∩n3.V
− is stable under (gk), (g′k) and (g′′k ). On

the other hand g−1
k .o = n1a

−k.o hence g−1
k .o→ n1.p

−. In the same way, (g′k)−1.o→ n2.p
−

and (g′′k )−1.o → n3.p
−. Because n1, n2, n3 are pairwise distinct, the points n1.p

−, n2.p
−

and n3.p
− are pairwise distinct too. Lemma 4.6 ensures that v is fixed by SOo(1, 2). �

4.4.3. Proof of Proposition 4.4 in any dimension. Let n ≥ 2, and let ρ : O(1, n)→ GL(V )
be a finite dimensional representation. We consider G ⊂ O(1, n). The simplifications
mentioned in Section 4.4.1 are still in force. In particular we still assume that G ⊂ AN .
Let us recall that we identify ∂Hn with the set of lightlike directions in R1,n. The linear
hull of a set S ⊂ ∂Hn is then the linear span of S in R1,n. If E is this linear hull, then
E has Lorentz signature as soon as S contains at least two points. We then denote by
SOo(E) the subgroup of SOo(1, n) which leaves E invariant and acts trivially on E⊥.

Lemma 4.8. Let p, q and r be three pairwise distinct points in ΛG , and let E ⊂ R1,n be
their linear hull. Then any vector v ∈ V which is stable for G is fixed by SOo(E).

Proof. As already seen, we may conjugate G into O(1, n) to prove the lemma. Hence,
we may assume that ∆ = ∆0 and p, q, r different from p+. Our assumptions imply the
existence of (gk), (g′k) and (g′′k ) such that g−1

k .o→ p, (g′k)−1.o→ q, (g′′k )−1.o→ r. We write

gk = asknk, g′k = as
′
kn′k and g′′k = as

′′
kn′′k . We must be in case 3 of Lemma 4.5, namely the

three sequences sk, s
′
k, s
′′
k tend to +∞ and nk, n

′
k, n
′′
k tend to ν, ν′, ν′′ respectively, with

p = ν.p−, q = ν′.p− and r = ν′′.p−. Actually, because we assume that p, q, r belong to
S∆0 , we get that ν, ν′ and ν′′ belong to N ∩ S∆0 . Stability of v under (gk), (g′k) and (g′′k )
implies that v belongs to ν−1.V − ∩ (ν′)−1.V − ∩ (ν′′)−1.V −. By Corollary 4.7, v must be
fixed by SOo(E). �

We are now in position to prove Proposition 4.4 by induction on the integer dG . Lemma
4.8 settles the case dG = 3. We assume that we proved Proposition 4.4 for all subsets
G ′ ⊂ O(1, n) satisfying 3 ≤ dG ′ ≤ dG − 1. We pick p1, . . . , pdG +1 pairwise distinct points

in ΛG . For each index 1 ≤ i ≤ dG + 1, there exists by assumption a sequence (g
(i)
k ) in

G , such that given o ∈ Hn, we have (g
(i)
k )−1.o → pi. The linear hull of {p1, . . . , pdG } is

a subspace E ⊂ EΛG , and the linear hull of {pdG−1, pdG , pdG +1} is a subspace F ⊂ EΛG .

We can apply our induction hypothesis to the subset G ′ comprising all elements g
(i)
k for

1 ≤ i ≤ dG and k ∈ N, thus obtaining that the vector v, which is obviously stable by G ′

is fixed by SOo(E). We also apply the induction hypothesis to the set G ′′ comprising the

elements g
(dG−1)
k , g

(dG )
k , g

(dG +1)
k , k ∈ N, and we get that v is fixed by SOo(F ). Since it is

readily checked that SOo(F ) and SOo(E) generate SOo(EΛG ), we have finally proved that
v is fixed by SOo(EΛG ), which is indeed isomorphic to SOo(1, dG − 1).

5. Invariant locally homogeneous Lorentz submanifolds

We say that a Lorentz manifold (Mn+1, g) is locally homogeneous, when M consists
in a single killloc-orbit (see Section 5.1.1 below for the definition). It is plain that for
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such manifolds, M int = M . Also, if x and y are two points of M , the isotropy algebras
ix and iy are conjugated in o(1, n), because there exists a local isometry f : U → V
such that f(x) = y. We say that a locally homogeneous Lorentz manifold (Mn+1, g) has
semisimple isotropy, if for some (hence any) x ∈ M , the isotropy algebra ix contains a
subalgebra isomorphic to o(1, d), for d ≥ 2. It actually follows from Theorem 4.1, that if
(Mn+1, g) is a compact locally homogenous Lorentz manifold, and if Iso(M, g) contains a
compactly generated, closed subgroup with exponential growth, then (Mn+1, g) must have
semisimple isotropy. The aim of this section is to explain that when proving Theorem A,
we may actually make this hypothesis of local homogeneity without losing any generality.
This is the content of the following theorem.

Theorem 5.1. Let (M, g) be a compact Lorentz manifold. Assume that Iso(M, g) contains
a closed, compactly generated subgroup G having exponential growth. Then there exists a
finite index subgroup Iso′(M, g) ⊂ Iso(M, g) and a compact Lorentz submanifold Σ ⊂ M ,
which is locally homogeneous with semisimple isotropy, preserved by Iso′(M, g), and such
that the restriction morphism Iso′(M, g)→ Iso(Σ, g|Σ) is one-to-one and proper.

5.1. Regular locus, and the structure of Isloc-orbits. We have seen in Section 4.2.1
the existence of a dense open subset M int ⊂ M , the integrability locus of M , where the
behavior of the Killing fields is aspecially nice (see also Section 4.2.3). We are now going
to see that there exists a “regular” subset Mreg ⊂ M int, which is still open and dense,
where the behavior of the killloc-orbit is also nice. This property was first observed by M.
Gromov in [Gr1].

5.1.1. killloc and Isloc-orbits. Let us recall that if x ∈M , the killloc-orbit of x is the set of
points y ∈M that can be reached from x by flowing along (finitely many) successive local
Killing fields. We will be also interested by the Isloc-orbit of x, namely the set of points
y ∈M for which there exists a local isometry f : U ⊂M → V ⊂M such that y = f(x).

We will also, for x̂ ∈ M̂ , define the killloc-orbit of x̂ as the set of points ŷ ∈ M̂ that can
be reached by flowing along (finitely many) successive local ω-Killing fields. It is pretty
clear from the discution at the begining of Section 4.2.2 that killloc-orbits in M are exactly

the projections of killloc-orbits on M̂ .

5.1.2. Structure of Isloc-orbits in the regular locus. Theorem 4.2, together with the nice
structure for orbits of algebraic group actions, ensures that if we restrict our attention to
a smaller (but still dense) open subset of M int, that will be called the regular locus of
M , killloc-orbits define a simple foliation. By a simple foliation, we mean a foliation, such
that each point is contained in a transversal meeting each leaf at most once. Those nice
properties of killloc-orbits were first proved in Gromov’s paper [Gr1].

Theorem 5.2 (Structure of Isloc-orbits, see [Gr1]). Let (M, g) be a Lorentz manifold.
There exists a dense open set Mreg called the regular locus of M , satisfying Mreg ⊂
M int ⊂M , and having the following properties:

(1) The set Mreg is Iso(M, g)-invariant and saturated in killloc-orbits.
(2) There exists a smooth manifold Y , as well as a smooth map κg : Mreg → Y with

locally constant rank, such that killloc-orbits of Mreg coincide with the connected
components of the fibers of κg.

(3) The killloc-orbits and Isloc-orbits of Mreg are closed in Mreg, and killloc-orbits
define a simple foliation on any connected component of Mreg.

Proof. For the reader’s convenience, we recall the proof of the theorem. The main ingre-
dient is a classical result of M. Rosenlicht, about orbits of algebraic group actions (see
[R1]).

Theorem 5.3. Let H be an R-algebraic group, acting on a real algebraic variety X. Then
there exists a stratification into H-invariant Zariski closed sets F0 ( F1 ( . . . ( Fm = X,
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and for each 0 ≤ i ≤ m, a variety Yi and a regular map ψi : Fi \ Fi−1 → Yi, such that the
fibers of ψi coincide with the H-orbits on Fi \ Fi−1.

In the statement we put F−1 = ∅. The field R(X)H of H-invariant rationnal functions
is generated by a finite number of function f1, . . . , fr. The theorem follows from the
fact that outside a Zariski closed set F (the set Fm−1 in the statement above), f1, . . . , fr
separate the orbits, so that we can put Y = Ym−1 = Rr, and ψ = ψm−1 = (f1, . . . , fr).
One then applies the same result to Fm−1 and so on.

For every 0 ≤ i ≤ m, we call Ω̂i the interior of the set (κg)−1(Fi \ Fi−1). One checks

that
⋃m
i=0 Ω̂i is open and dense in M̂ , and thus so is Ω̂ := M̂ int ∩

(⋃m
i=0 Ω̂i

)
. Let us

call Y =
⊔m
i=0 Yi, and define κ̂g : Ω̂ → Y , by κ̂g = ψi ◦ κg on Ω̂i ∩M int. Since κ̂g is

O(1, n)-invariant, it induces a smooth map κg : Ω→ Y , where Ω is the projection of Ω̂ on
M . We consider the open set Mreg ⊂ Ω ⊂M int where the rank of κg is locally constant.
We thus obtain a dense open set called the regular locus of M .

The theorem is now a direct consequence of Theorems 4.2 and 5.3. Invariance of κg

by local isometries show that Mreg is Isloc-invariant and saturated by killloc-orbits. From

Theorem 4.2, we infer that if x̂ ∈ M̂ int, the killloc-orbit of x̂ coincides with the connected

component of (κg)−1(w) ∩ M̂ int containing x̂. It follows that if x ∈Mreg, the killloc-orbit
of x coincides with the connected component of the fiber (κg)−1(κg(x)) containing x.

Because κg has locally constant rank on Mreg, the fibers of κg are submanifolds of
Mreg, and are closed in Mreg. The same property holds for killloc-orbits (resp. the Isloc-
orbits) which are connected components (resp. unions of connected components) of those
submanifolds.

�

5.2. Exponential growth and existence of compact killloc-orbits. We have seen in
Corollary 3.9 that the presence of a subgroup of exponential growth in Iso(M, g) forces
the limit set Λ(x) to be infinite for every x ∈ M . We are now going to see that such a
property forces the existence of compact killloc-orbits.

Proposition 5.4. Let (Mn+1, g) be a compact Lorentz manifold. Assume that the limit
set Λ(x) is infinite at each x ∈ M . Then there exists a compact, Lorentz killloc-orbit Σ
contained in Mreg.

The proof will show that there are actually infinitely such Lorentz compact killloc-orbits.

Proof. Because of our asumption cardΛ(x) = ∞, Theorem 4.1 shows that for every x ∈
M int, the isotropy algebra ix contains a subalgebra isomorphic to o(1, k), for some k ≥ 2.
We thus infer:

Lemma 5.5. Under the asumption that cardΛ(x) = ∞ for all x ∈ M , then every kiloc-
orbit Σ contained in M int has Lorentz signature.

Proof. Let x ∈M int, and let Σ be the killloc-orbit of x. Since ix contains a copy of the Lie
algebra o(1, k), for k ≥ 2, there is a local Killing field X around x, vanishing at x, and
such that the flow {DxφtX} ⊂ O(TxM) is a hyperbolic 1-parameter group. Linearizing X
around x thanks to the exponential map, we see there are two distinct lightlike directions
u and v in TxM such that the two geodesics γu : s 7→ exp(x, su) and γv : s 7→ exp(x, sv)
are left invariant by φtX . In particular, for s 6= 0 close to 0, γ̇u(s) and γ̇v(s) are colinear to
X, hence tangent to the killloc-orbits O(γu(s)) and O(γv(s)) respectively. By continuity,
this property must still hold for s = 0. We infer that Tx(Σ) contains the two distinct
lightlike directions u and v, hence has Lorentz signature. This holds on all of Σ by local
homogeneity of the killloc-orbit. �
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We now consider M a connected component of Mreg where the rank of the map κg is

the maximal value rmax that the rank of κg does achieve on M̂ . We consider the pullback

M̂ ⊂ M̂ .
We pick x ∈M , and we choose x̂ ∈ M̂ in the fiber of x. If U ⊂ M̂ is a small open set

around x̂, κg(U) is a rmax-dimensional submanifold of Wκg . Let us now call Λ̂ the closed

subset of M̂ where the rank of κg is ≤ rmax−1. By Sard’s theorem, the rmax-dimensional

Hausdorff measure of κg(Λ̂) is zero. We infer the existence of w ∈ κg(U) \ κg(Λ̂). Moving
x̂ inside U , we assume that w = κg(x̂), and we denote by O(w) the O(1, n)-orbit of w in

W . By O(1, n)-equivariance of κg, the inverse image (κg)−1(O(w)) avoids Λ̂, hence the
rank of κg is constant equal to rmax on (κg)−1(O(w)). Let us observe that because the

rank can not drop locally, any point of M̂ where the rank of κg is rmax must belong to

M̂ int, hence the inclusion (κg)−1(O(w)) ⊂ M̂ int. From the discussion following Theorem

5.2, the connected components of (κg)−1(w) are killloc-orbits. Because M̂reg is saturated

in killloc-orbits, and is O(1, n)-invariant, we infer that (κg)−1(O(w)) ⊂ M̂reg. By Theorem
5.2, the projection of (κg)−1(O(w)) on M is a submanifold, whose connected components
are killloc-orbits. Hence proposition 5.4 will be proved if we show that (κg)−1(O(w)) is

closed in M̂ (because O(1, n)-invariant closed sets of M̂ project on compact subsets of
M). This is a direct consequence of:

Lemma 5.6. Under the hypothesis cardΛ(x) = ∞, the orbit O(w) is a closed subset of
Wκg .

Proof. As already observed the isotropy algebra ix contains a subalgebra isomorphic to
o(1, k), for some k ≥ 2. Recall that ix is identified with the Lie algebra of the stabilizer of
w in O(1, n) (see Corollary 4.3). Since it contains a copy of o(1, k), ix contains a conjugate
of the Cartan algebra a ⊂ o(1, n). Hence the Stabilizer of w in O(1, n) contains a conjugate
of the Cartan group A (the exponentiation of a), that we may assume to be A itself, after
moving x̂ in its fiber if necessary. Let now gk.w be a sequence in O(w) that converges to
some point w′ ∈ Wκg . We write O(1, n) = KAN (Iwasawa decomposition), and decompose
gk accordingly: gk = mkakuk, with mk ∈ K, ak ∈ A, and uk ∈ N . We may assume that
mk → m∞. Because w is fixed by ak, we observe that gk.w = mkakuka

−1
k .w = mku

′
k.w, for

some sequence u′k ∈ N (the group N is normalized by A). It follows that u′k.w converges to
m−1
∞ .w′. But the orbit N.w is closed in Wκg , because in a linear representation, the orbits

of unipotent groups are closed (this is a general property for algebraic actions of unipotent
groups, see [R2, Theorem 2]). We finally get m−1

∞ .w′ ∈ O(w), hence w′ ∈ O(w). �

�

5.3. An embedding theorem in presence of compact killloc-orbits. We now use the
nice structure of killloc-orbits on Mreg, to prove the following embedding property:

Theorem 5.7. Let (Mn+1, g) be a compact Lorentz manifold of dimension n+ 1, and let
Mreg be its regular locus. Assume that Σ ⊂ Mreg is a compact killloc-orbit, of Lorentz
signature. Then there exists a finite index subgroup Iso′(M, g) ⊂ Iso(M, g), such that
Σ is left invariant by Iso′(M, g), and such that the restriction morphism Iso′(M, g) →
Iso(Σ, g|Σ) is one-to-one and proper.

The proof will be made in several steps. The first one is to exhibit distinguished
neighborhoods for compact Lorentz killloc-orbits.

5.3.1. Regular neighborhoods for compact killloc-orbits. When there exists a compact killloc-
orbit in Mreg having Lorentz signature, the nice structure described in Theorem 5.2 can
be strengthen in the following way.

Lemma 5.8 (Existence of standard foliated neighborhoods). Let Σ ⊂Mreg be a compact
killloc-orbit. Then Σ admits a connected open neighborhood U ⊂ Mreg satisfying the
following properties:
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(1) The closure U is saturated in killloc-orbits, all of which are compact Lorentz sub-
manifolds.

(2) There exists a total transversal B to the killloc-orbits of U , which is a submanifold
with boundary diffeomorphic to a closed d-ball.

(3) Every Isloc-orbit of M intersects B at most once. In particular, every killloc-orbits

of U intersects B exactly once.

Proof. Let Σ ⊂ M ⊂ Mreg be a compact killloc-orbit having Lorentz signature. We fix
x0 ∈ Σ a reference point. We introduce, for x ∈ Σ the following notations:

TxΣ⊥ := {u ∈ TxM | u ⊥ TxΣ},

T 1
xΣ⊥ := {u ∈ TxΣ⊥ | g(u, u) = 1},

and for ε > 0 small enough:

Bε := {exp(x0, su) | s ∈ [0, ε), u ∈ T 1
x0Σ⊥},

Bε := {exp(x0, su) | s ∈ [0, ε], u ∈ T 1
x0Σ⊥}.

We recall that on M , the smooth map κg : M → Y has constant rank, hence defines a
foliation F on M . Each leaf of this foliation is a killloc-orbit (see Section 5.1.2). Moreover
the Isloc-orbits, intersected with M , are contained in the fibers of κg

|M .
For ε0 > 0 small enough, Bε0 is a transversal to F . Observe that (taking ε0 >

0 even smaller) the metric g restricts to a Riemannian metric on Bε0 . Indeed, Σ is
Lorentzian by assumption, hence the spaces TxΣ⊥ are spacelike. A direct application of
the inverse mapping theorem shows that if ε0 is chosen small enough, κg realizes a smooth
diffeomorphism from Bε0 onto a submanifold Y ′ ⊂ Y . It follows that the fibers of κg

intersect Bε0 at most once. We call V the saturation of Bε0 by leaves of F . We then have
a natural smooth surjective submersion π : V → Bε0 .

For 0 < ε1 < ε0 small enough, we define V ε1 := {exp(x, su) | x ∈ Σ, u ∈ T 1
xΣ⊥, s ∈

[0, ε1]}. If ε1 is small enough, V ε1 is a compact neighborhood of Σ contained in V . We
finally call U the saturation of Bε1 by killloc-orbits. We claim that U satisfies the properties
of Lemma 5.8. Actually the only point which is still unclear and that we must prove is
that U is compact in V , and saturated by killloc-orbits. The compactness of all killloc-orbits

in U will follow because killloc-orbits are closed in V . Let us call U
′

the closure of U in V ,
which is nothing but the saturation of Bε1 by killloc-orbits.

Let us pick x ∈ U
′ ∩ V ε1 , and let X be a Killing field defined in a neighborhood

of x. Because x ∈ V ε1 , there exists z ∈ Σ, u ∈ T 1
z Σ⊥ and a ∈ [0, ε1] such that x =

exp(z, au). Let us call, for every s ∈ [0, 1], γ(s) = exp(z, asu). This is a geodesic segment,
homeomorphic to the closed unit interval (this is so if ε1 is small enough). We can consider
a 1-connected open neighborhood W ⊂ V containing γ, and extend X to a Killing field
on W (see Section 4.2.3). For t ∈ (−δ, δ) with δ > 0 small, ϕtX(γ) is well defined. It
is a geodesic segment joining z(t) := ϕtX(z) to x(t) := ϕtX(x), orthogonal to Σ at z(t)),
and of positive Lorentz length a. Hence one can write x(t) = exp(z(t), au(t)), where

u(t) ∈ T 1
x(t)Σ

⊥. This means x(t) ∈ U ′ ∩ V ε1 for all t ∈ (−δ, δ). What we have proved

is that in any killloc-orbit of U
′
, the set of points belonging to V ε1 is open. Since it is

obviously closed, and because Bε1 ⊂ V ε1 , we infer that all killloc-orbits of U
′

are included
in V ε1 .

We thus have the inclusion U
′ ⊂ V ε1 . The compactness of U

′
follows because U

′
=

π−1(Bε1) is closed in V , and V ε1 is compact in V . We conclude that U = U
′
, and the

lemma is proved. �
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5.3.2. Proof of Theorem 5.7. We consider U a standard foliated neighborhood of Σ, as
given in Lemma 5.8, and π : U → B the projection, whose fibers are exactly the killloc-
orbits in U . For f ∈ Iso(M, g), we denote by Λf the set of points x ∈ U such that the
killloc-orbit O(x) satisfies f(O(x)) = O(x). Observe that because of property (3) of Lemma
5.8, if f(U) ∩ U 6= ∅, then Λf 6= ∅.

Lemma 5.9. The set Λf is open and closed in U .

Proof. We first prove that Λf is closed. For this, let us consider (xk) a sequence of

Λf converging to x∞ ∈ U . Then f(xk) converges to f(x∞), and f(x∞) ∈ U . Now
π(f(xk)) = π(xk) for all k, so π(f(x∞)) = π(x∞). It follows that x∞ and f(x∞) belong
to the same killloc-orbit, hence x∞ ∈ Λf .

To check that Λf is open, let us pick x ∈ Λf . By assumption, f(x) ∈ U . Because U is
open, there exists a small open set V ⊂ U containing x such that f(V ) ⊂ U . Then, by
the third property of Lemma 5.8, V ⊂ Λf .

�

Lemma 5.10. The stabilizer of U in Iso(M, g) has finite index in Iso(M, g).

Proof. Let S denote the stabilizer of U in Iso(M, g), and let (fi)i∈I be a family of elements
in Iso(M, g), such that fiS 6= fjS whenever i 6= j. We oberve that fi(U) ∩ fj(U) = ∅.
Indeed, if fi(U) ∩ fj(U) 6= ∅, then by the remark before Lemma 5.9, we would have
Λ
f−1
j fi

6= ∅. By connectedness of U and Lemma 5.9, this would imply Λ
f−1
j fi

= U , or

in other words f−1
j fi ∈ S: Contradiction. Because all sets fi(U) have a same positive

Lorentz volume, there can be only finitely many (fi) such that fi(U) are pairwise disjoint,
and we are done. �

We call in the following Iso′(M, g) the stabilizer of U in Iso(M, g). The killloc-orbit Σ
is left invariant by Iso′(M, g), because of point (3) in Lemma 5.8.

Lemma 5.11. The restriction morphism ρ : Iso′(M, g) → Iso(Σ, g|Σ) is one-to-one and
proper.

Proof. Properness comes from the fact that Iso(M, g) acts properly on the bundle of
orthonormal frames on M . Thus, because Σ has Lorentz signature, if the 1-jet of ρ(fk)
remains bounded along a sequence (xk) of Σ, then the 1-jet of (fk) along (xk) remains
bounded. In particular if (ρ(fk)) has compact closure in Iso(Σ, g), then (fk) has compact
closure in Iso′(M, g).

The fact that ρ is one-to-one comes from the properties of the neighborhood U . Assume
indeed that some f ∈ Iso′(M, g) acts trivially on Σ. We pick x ∈ Σ and look at the
transformation Dxf . The tangent space TxM splits as an orthogonal sum TxM = TxΣ⊕
TxΣ⊥. The linear transformation Dxf acts trivially on TxΣ. If the action of Dxf on TxΣ⊥

is nontrivial, then because the exponential map conjugates the action of Dxf around 0x
and that of f around x, we would get, for a small disc D ⊂ TxΣ⊥, two points y and
y′ of exp(x,D) in the same Iso′(M, g) orbit, hence in the same killloc-orbit because of
Lemma 5.8. This is absurd since exp(x,D) must be transverse to killloc-orbits if D is
small enough. As a conclusion, the map Dxf is trivial, hence f is the identity map on
M (Lorentz isometries having a trivial 1-jet at one point are trivial). This concludes the
proof of Theorem 5.7. �

5.4. The proof of Theorem 5.1. Theorem 5.1 readily follows from what we have done so
far. By Corollary 3.9 and Proposition 5.4, the presence of G ⊂ Iso(M, g) with exponential
growth yields a compact killloc-orbit Σ ⊂ Mreg having Lorentz signature. We can then
apply Theorem 5.7, which yields a finite index subgroup Iso′(M, g) leaving Σ invariant, and
such that the inclusion Iso′(M, g) → Iso(Σ, g|Σ) is one-to-one and proper. In particular,
the group Iso(Σ, g|Σ) contains a compactly generated subgroup of exponential growth.
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Theorem 4.1 then ensures that the locally homogeneous manifold (Σ, g|Σ) has semisimple
isotropy.

6. Geometry of locally homogeneous Lorentz manifolds with semisimple
isotropy

Under the assumptions of Theorem A, we showed in Theorem 5.1 the existence of a one-
to-one and proper homomorphism ρ : Iso′(M, g)→ Iso(Σ, h), where Iso(M, g)′ ⊂ Iso(M, g)
is a finite index subgroup, and (Σ, h) is a compact, locally homogeneous Lorentz manifold,
with semisimple isotropy. This section is thus devoted to the general description of this
class of Lorentz manifolds, which, beside being a crucial step in the proof of Theorem A,
is a topic of independent interest.

Precisely, the situation we are investigating is that of a compact, connected, locally
homogeneous, Lorentz manifold (M, g). The isotropy algebra at x, denoted ix, is the
algebra of vector fields in g vanishing at x. By local homogeneity, all the algebras ix
are pairwise isomorphic, so that we will speak about the isotropy algebra i of (M, g).
Our standing assumption is that (M, g) has semisimple isotropy, which means that i is
isomorphic to o(1, k) ⊕ o(m), k ≥ 2. The following proposition will be one of the crucial
steps needed to prove Theorem A. The reader may take it for granted on a first reading,
and go directly to Section 7.

Proposition 6.1. Let (M, g) be a compact Lorentz manifold. Assume that M is locally
homogeneous, and that its isotropy algebra i is isomorphic to o(1, k) ⊕ o(m), with k ≥ 2.
Assume that Iso(M, g) contains a closed, compactly generated subgroup with exponential
growth. Then:

(1) There exists a simply connected complete homogeneous Riemannian manifold (N, gN ),

and a smooth function w : N → R∗+, such that the universal cover (M̃, g̃) is iso-
metric to the warped product N ×w X, where (X, gX) is isometric to either the

3-dimensional anti-de Sitter space ÃDS
1,2

(in which case k = 2) or Minkowski
space R1,k.

(2) The isometry group Iso(M̃, g̃) is included in Iso(N) × Homot(X). In particular,
the manifold (M, g) is the quotient of N ×X by a discrete subgroup Γ ⊂ Iso(N)×
Homot(X).

In the proposition Homot(X) stands for the group of homothetic transformations of
X, namely those ϕ : X → X such that ϕ∗gX = λgX , for some nonzero scalar λ. When

X = ÃDS
1,2

, this group coincides with the isometry group. The proof of Proposition 6.1
will be done in two steps. The first one is a geometric description of the universal cover
(M̃, g̃) (see Proposition 6.2). It will be the aim of Section 6.1, which is pretty close to [Z2,
Sec. 2 and 3 ].

The second step is more difficult, and establishes completeness results, under the as-
sumption that the limit set of Iso(M, g) is infinite at each point. Those problems will be
tackled in Sections 6.3 and 6.4 (see Theorem 6.7).

6.1. Geometry of the universal cover M̃ . Our first aim is to prove

Proposition 6.2. Let (M, g) be a compact, locally homogeneous, Lorentz manifold with

semisimple isotropy. Then the universal cover (M̃, g̃) is isometric to a warped product
N ×w X, where (N, gN ) is a simply connected, homogeneous, Riemannian manifold, and

(X, gX) is Lorentzian of constant curvature and dimension ≥ 3. Moreover Iso(M̃, g̃) ⊂
Iso(N)×Homot(X), so that the manifold (M, g) is obtained as a quotient of N ×w X by
a discrete subgroup Γ ⊂ Iso(N)×Homot(X).
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6.1.1. Bifoliation on the universal cover M̃ . We begin with an important remark abiut
Killing fields on (M̃, g̃). The manifold M̃ is locally homogeneous, hence the integrability

locus M̃ int coincides with M̃ . The process of extending analytically Killing fields along
pathes in M̃ int (see Section 4.2.3), and the simple connectedness of M̃ shows that any

local Killing field in M̃ extends to a global one. Thus in the following, all Killing fields on
M̃ will be globally defined (this does of course not mean that those fields are complete).

For any x ∈ M̃ , the isotropy representation ix → o(TxM̃) defined by X 7→ ∇X(x) is
faithful. We thus identify ix with a subalgebra of o(1, n). Our assumption says that ix
contains a subalgebra isomorphic to o(1, k), k ≥ 2 (with k maximal for this property).
Thus ix splits, in a unique way, as a sum ix = sx ⊕ mx, where sx is isomorphic to o(1, k)
and mx is isomorphic to a subalgebra of o(n − k). This provides a ix-invariant splitting

TxM̃ = Fx⊕F⊥x , where Fx has Lorentz signature and dimension k+ 1, and F⊥x is n− k
dimensional, orthogonal to Fx (and hence of Riemannian signature). The Lie algebra sx
(resp. mx) acts on Fx (resp. on F⊥x ) by the standard (k+ 1)-dimensional representation
of o(1, k) (resp. through the standard (n− k)-dimensional representation of o(n− k)) and
trivially on F⊥x (resp. on Fx).

We thus inherits two (mutually orthogonal) distributions F and F⊥ on M̃ . Observe
that any local isometry sending x to y will map ix to iy. This implies that the distributions

F and F⊥ are invariant by any local isometry of M̃ . In particular, those distributions
are smooth.

Lemma 6.3. The two distributions F and F⊥ are integrable. Moreover, the leaves of F⊥

are totally geodesic, and those of F are totally umbilic, with constant sectional curvature.

Proof. Let x ∈ M̃ . Denote by Zx the subset of M̃ , where all elements of sx vanish. It is a
classical fact that Zx is a totally geodesic submanifold of M̃ (it is easily checked using the
fact that exponential map linearizes local flows of isometries). If y ∈ Zx, then sy = sx,
because we clearly have sx ⊂ sy, and those two algebras have same dimension (namely
the dimension of o(1, k)). It follows that Zx is actually a leaf of F⊥, and it proves the
assertions about F⊥.

Let us now check that F is integrable as well. Let us consider Y,Z two local vector
fields tangent to F , and let us call [Y,Z]⊥ (resp. II(Y,Z)) the component of [Y,Z] (resp.
of ∇Y Z) on F⊥. One readily checks that those maps are tensorial, namely for any pair
of functions f and g, then [fY, gZ]⊥ = fg[Y,Z]⊥, and II(fY, gZ) = fgII(Y,Z). Let us

consider x ∈ M̃ , and a bilinear map bx : Fx ×Fx → R. We can write bx( , ) = gx(A , )
for some endomorphism A : Fx → Fx. Let us denote by Ix the isotropy group at x. If
bx is Ix-invariant, then A must commute with Ix, and because the action of Ix on Fx is
irreducible, it means that A is an homothetic transformation. We have shown that any
bilinear form on Fx which is Ix-invariant is a scalar multiple of gx (restricted to Fx). In
particular [ , ]⊥x must be zero, what shows that F is an involutive distribution, hence is
integrable. We also get that IIx( , ) = gx( , )νx, for some vector νx ∈ F⊥x , what means
precisely that the leaves of F are totally umbilic.

Let us conclude the proof of Lemma 6.3 by showing that the leaves of F have constant
sectional curvature. Let x ∈ M̃ , and F (x) the leaf of F containing x. For any Z ∈ ix, the
local flow Dxϕ

t
Z acts on the manifold of non degenerate 2-planes of TxM . If P is such a

2-plane, then K(P ) = K(Dxϕ
t
Z(P )), where K(P ) stands for the sectional curvature of P

(relatively to the curvature tensor of g). Because ix contains a subalgebra isomorphic to
o(1, k), one easily gets that K(P ) is the same for every nondegenerate 2 plane P ⊂ TxM .

Now let K(P ) be the sectional curvature of P , computed with respect to the metric
induced by g on F (x). Because F (x) is totally umbilic, we have that

(6) K(P ) = K(P ) + gx(νx, νx)

To check this, let us consider two local vector fields X and Y , tangent to F (x), such that

g(X,Y ) = 0 and g(X,X) = ε = ±1 and g(Y, Y ) = 1. Let ∇ be the Levi-Civita connection
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of the restriction g|F (x). Using the property that F (x) is totally umbilic, we compute

∇X∇YX = ∇X∇YX+g(X,∇YX)ν = ∇X∇YX. But Y.g(X,X) = 0 = 2g(∇YX,X). We

get ∇X∇YX = ∇X∇YX.
Writting g(X,X) = ε, we also have

∇Y∇XX = ∇Y (∇XX + εν) = ∇Y∇XX + ε∇Y ν.
This yields

∇Y∇XX = ∇Y∇XX + g(Y,∇XX) + ε∇Y ν = ∇Y∇XX + ε∇Y ν.
We thus obtain R(X,Y,X, Y ) = R(X,Y,X, Y )− εg(∇Y ν, Y ). But

Y.g(ν, Y ) = 0 = g(∇Y ν, Y ) + g(ν,∇Y Y ).

It follows that

g(∇Y ν, Y ) = −g(ν,∇Y Y + g(Y, Y )ν) = −g(ν,∇Y Y )− g(ν, ν) = −g(ν, ν).

Finally, R(X,Y,X, Y ) = R(X,Y,X, Y ) + g(ν, ν), which is precisely (6).
Because K(P ) is the same for every nondegenerate 2-plane P ⊂ TxM , equation (6)

ensures that the same property holds for K(P ). This remark, together with Schur’s
lemma, implies that the leaves of F have constant sectional curvature.

Actually, under the assumption that (M, g) is locally homogeneous, the sectional cur-
vature κ(x) of the leaf F (x) does not depend on x, because we already noticed that local

isometries of M̃ preserve the distributions F and F⊥.
�

6.1.2. Warped product structure for M̃ . The arguments until Lemma 6.4 below already
appear in [Z2, Section 4.3]. We already noticed that F and F⊥ are invariant by local
isometries. In particular, those two foliations are π1(M)-invariant, and thus induce two

mutually orthogonal foliations F and F
⊥

on M . One can then choose a Riemannian

metric on TF , and still put the restriction of g on TF
⊥

in order to build a Riemannian

metric h on M , for which F and F
⊥

are still orthogonal. We observe that F
⊥

remains

totally geodesic for h. Indeed, the property for F
⊥

to be totally geodesic is equivalent to
F being transversally Riemannian, namely the holonomy local diffeomorphisms, between

small open sets of leaves of F
⊥

are isometries (see [JW, Prop 1.4]). It was the case for
the metric g and it is still the case for h since those two metrics coincide in restriction to

leaves of F
⊥

. One can then use [BH1, Theorem A] to infer that the two foliations F and

F⊥ define a product structure on M̃ . More precisely, if we pick z0 ∈ M̃ , and call X and
N the leaves of F and F⊥ containing z0, then there is a diffeomorphism ψ : N ×X such
that each factor N × {x} (resp. {n} × X) is sent to a leaf of F⊥ (resp. of of F ), with
moreover ψ(N × {x0}) = F0 and ψ({n0} ×X) = F⊥0 .

Let us now discuss the form of the metric g̃ on N × X. The metric g̃ restricts to a
Riemannian metric gN on the leaf N , and to a Lorentzian metric gX of constant curvature

κ on the leaf X. Observe that (N, gN ) is complete, because leaves of F
⊥

are complete
for the Riemannian metric h constructed above, and h coincides with g on the leaves

of F
⊥

. As already mentioned, the maps (n, x) 7→ (n, x′) are isometries because leaves
N × {x} are totally geodesic. Moreover, because leaves {p} × X are umbilic, the maps
(n, x) 7→ (n′, x) are conformal (see [BH2, lemma 5.1]). It follows that there exists a
Riemannian metric gN on N , a Lorentz metric gX on X with constant curvature κ, and
a function w : N ×X → R∗+ such that g̃ = gN ⊕ wgX .

Lemma 6.4. The function w : (n, x) 7→ w(n, x) does not depend on x.

Proof. Let us fix n ∈ N , and let us pick x0 ∈ X. We will denote wn : X → R the function
defined by wn(x) = w(n, x). Let z = (n, x0), and Z be a vector field in sz. Recall that Z
is globally defined. Because the local flow of sz must preserve F and F⊥, there exist Z1 a
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Killing field on (N, gN ) and Z2 a vector field on X, such that Z(p, x) = (Z1(p), Z2(x)) for
every p ∈ N and x ∈ X. We already observed that because Z belongs to sz, it vanishes on
N ×{x0}. It follows that Z1 = 0. Thus, Because Z is a Killing field on (M̃, g̃), the vector
field Z2 is a Killing field for all the metrics wpgX , p ∈ N . In particular, it is Killing for
both metrics gX and wngX , hence wn is left invariant by Z2. Now, because the Lie algebra
sz acts on Tx0X by the standard (k + 1)-dimensional representation of o(1, k) the local
punctured lightcone of X at x0 is a local pseudo-orbit of sz. It follows that Dx0wn(u) = 0
for every u in the lightcone of Tx0X. This lightcone spans Tx0X as a vector space, hence
Dx0wn = 0. Because x0 was chosen arbitrarily in X, the lemma follows. �

6.1.3. Isometries of N×wX. We have established the warped-product structure of (M̃, g̃)
announced in Proposition 6.2. It remains to show that (N, gN ) is homogeneous, and that
(M, g) is obtained as a quotient of N×wX by a discrete subgroup Γ ⊂ Iso(N)×Homot(X).
This will be obtained thanks to points (2) and (3) of Lemma 6.5 below.

We will call in the following Ĩso(M, g) the subgroup of Iso(M̃, g̃) obtained as all possible
lifts of isometries in Iso(M, g). In particular, if Γ ' π1(M) denotes the group of deck

transformations of the covering M̃ →M , then Γ ⊂ Ĩso(M, g).
Let us consider the group Iso(N, gN ), acting on C∞(N) in the following way: For every

f ∈ Iso(N, gN ),
(f.v)(n) := v(f(n)),

for every v ∈ C∞(N) and n ∈ N . We denote by G the stabilizer of the line Rw under
this representation. We observe that G is a closed subgroup of Iso(N, gN ), hence a Lie
subgroup. We call g its Lie algebra (that may be trivial at this stage). The group G
admits a continuous homomorphism λ : G→ R∗+, satisfying w(g.n) = λ(g)w(n) for every
g ∈ G and n ∈ N .

We call Homot(X) the group of homothetic transformations of X, namely diffeo-
morphisms ϕ ∈ Diff(X) for which there exists some real number λ ∈ R∗+ such that
ϕ∗gX = λgX . We can now describe more precisely the isometries of the manifold N×wX.
The assumptions are still those of Proposition 6.2.

Lemma 6.5. (1) A transformation ϕ = (f, h) ∈ Diff(N)×Diff(X) acts isometrically
on N ×w X if and only if f ∈ G and h∗gX = λ(f)−1gX .

(2) The group G×Homot(X) contains Ĩso(M, g), and in particular Γ ' π1(M).
(3) The group G acts transitively on N . In particular (N, gN ) is a homogeneous

Riemannian manifold.

Proof. Let us consider ϕ = (f, h) ∈ Diff(N)×Diff(X), and let ξ = (u, v) ∈ TnN×TxX. We
compute that |ξ|2 = |u|2gN + w(n)|v|2gX while |Dϕ(ξ)|2 = |Df(u)|2gN + w(f(n))|Dh(v)|2gX .

We get that ϕ will be an isometry if and only if f ∈ Iso(N, gN ) and |Dh(v)|2gX =
w(n)

w(f(n))
|v|2gX for every v ∈ TX. In particular w(n)

w(f(n))
does not depend on n ∈ N , what

proves f ∈ G, and |Dh(v)|2gX = λ(f)−1|v|2gX as claimed in the lemma.
Point (2) is a direct consequence of point (1).
Let us prove point (3).
Let us consider X = (Y,Z) a Killing field on N×wX. Recall that X is defined globally.

The same computations as in point (1), for Killing fields, imply that Y must be a (global)

Killing field of (N, gN ), satisfying moreover that n 7→ Dnw(Y (n))
w(n)

is a constant function.

We already observed in Section 6.1.2 that (N, gN ) is complete. As a consequence, every
Killing field on N must be complete as well. This is a classical property, which follows
from the obvious fact that Killing fields have constant norm along their integral curves.
Thus incomplete integral curves would yield curves of finite Riemannian length, leaving
every compact subset of N . This is not possible on a complete manifold.

Constancy of the map n 7→ Dnw(Y (n))
w(n)

implies that the 1-parameter group ϕtY integrat-

ing Y belongs to the group G. In other words, Y ∈ g. By local homogeneity of M̃ , the
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evaluation map kill(M̃) → TM̃ is onto at each point, what implies that the evaluation
map g 7→ TN is also onto at each point. Transitivity of the action of G on N follows. �

Remark 6.6. Observe that the first point of Lemma 6.5 holds for general warped products
N ×w X, not necessarily the universal cover of a compact locally homogeneous Lorentz
manifold with semisimple isotropy.

6.2. Completeness issues. A weakness in the description made in Proposition 6.2 is
that the factor (X, gX) might not be a complete, simply connected manifold of constant

curvature. This is a serious limitation in the full understanding of (M̃, g̃), thus of the
manifold (M, g). Those completeness issues are quite subtle. When the factor N in
Proposition 6.2 is reduced to a point, then (X, gX) is complete by a deep theorem of Y.
Carrière and B. Klingler (see Theorem 6.8 below). For arbitrary factors (N, gN ) (even
homogeneous ones), it is not clear how to prove that (X, gX) is complete, eventhough it
is likely to be true (this problem is evocated in [Z2, Sec. 4.3]. As the following sections
show, some serious difficulties were overlooked there). When proving the completeness of
(X, gX), we will actually need an extra assumption about the group Iso(M, g). To explain
this, let us consider the situation of a compact Lorentz manifold (M, g), obtained as a
quotient of a warped product N ×w X by a discrete subgroup Γ ⊂ Iso(N) × Homot(X).
The manifold M is endowed with two foliations F and F⊥, whose leaves are respectively
the projections of the sets {n} ×X ans N × {x}. The subgroup of Iso(M, g) preserving
the bifoliation (F ,F⊥) is denoted by Iso×(M, g). Let us remark that whenever (M, g) is
locally homogeneous with semisimple isotropy, and N×wX is the natural warped product
structure on (M̃, g̃) exhibited in Section 6.1.2, then Iso×(M, g) = Iso(M, g).

We can now state the completeness theorem we will need:

Theorem 6.7. Let (M, g) be a compact Lorentz manifold, such that the universal cover

(M̃, g̃) is isometric to a warped product N×wX where (N, gN ) is Riemannian and (X, gX)
is Lorentzian of dimension ≥ 3 and constant sectional curvature. Assume that M is
obtained as a quotient of N ×X by a discrete subgroup Γ ⊂ Iso(N)×Homot(X). Assume
moreover that Iso×(M, g) has an infinite limit set at every point of M .

Then the factor (X, gX) is complete and isometric to either the 3-dimensional anti-de

Sitter space ÃDS
1,2

or Minkowski space R1,k, k ≥ 2.

Observe that there is no local homogeneity assumption in the previous statement.
In the case of a locally homogeneous Lorentz manifold with semisimple isotropy, Theo-

rem 6.7 implies directly Proposition 6.1. Indeed, the growth assumption and Corollary 3.9
imply that Iso(M, g) has an infinite limit set at each point, and we noticed the equality
Iso×(M, g) = Iso(M, g) for those manifolds.

We will prove the completeness of (X, gX) in two quite different ways, according to the
nature of the group Γ (see Sections 6.3 and 6.4 below).

6.2.1. Complete Lorentz spaces of constant curvature. In the following, we will call Xκ

the complete, simply connected, Lorentz manifold of constant curvature κ. To under-
stand what follows, we must recall a few fundamental facts about those spaces, and their
geometry.

First of all, the model for X0 is Minkowski space R1,k, namely the space Rk+1 endowed
with the flat Lorentz metric defined by the quadratic form q1,k(x) = −x2

1 +x2
2 + . . .+x2

k+1.

Next, to describe Xκ when κ > 0, we consider the space R1,k+1, and the quadric Xκ
defined by the equation q1,k+1 = 1√

κ
. Inducing q1,k+1 on Xκ, one gets a Lorentz metric

of constant sectional curvature κ. This yields the model space Xκ. When κ = +1, the
usual name for Xκ is de Sitter space, denoted DS1,k.

When κ < 0, we consider R2,k, namely the space Rk+2 endowed with the quadratic
form q2,k. The quadric Xκ is then defined by the equation q2,k = −1√

−κ . The restriction of

q2,k to Xκ is a complete Lorentz metric of constant sectional curvature κ. However, Xκ
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is not simply connected. To get the model space Xκ, one has to consider the universal
cover X̃κ endowed with the lifted metric. We will call π : Xκ → Xκ the covering map
(this is an infinite cyclic covering). For κ = −1, the usual name of Xκ is anti-de Sitter

space, denoted ÃDS
1,k

.
One thing we will have to know about the geometry of Xκ, for any κ, is the notion of

lightlike hyperplane. For Minkowski space, this is the usual notion of an affine hyperplane,
on which the Minkowski metric is degenerate.

When κ > 0 (resp. κ < 0), we define a lightlike hyperplane of Xκ as a connected
component of the intersection u⊥∩Xκ, where u ⊂ R1,k+1 (resp. u ⊂ R2,k) is any isotropic
vector.

When κ > 0, Xκ = Xκ and we have thus defined the notion of a lightlike hyperplane
of Xκ.

When κ < 0, we define a lightlike hyperplane of Xκ as a connected component of the lift
π−1(H) ⊂ Xκ of any lightlike hyperplane H ⊂ Xκ. Let us just mention one peculiarity
of the case κ < 0, that will be used later on (this is detailed in [Kl, p. 368], where
the terminology “semi-coisotropic hyperplane” is used). Let us consider H a lightlike
hyperplane of Xκ (here κ < 0). Then by definition its projection H ′ on Xκ is a lightlike
hyperplane of Xκ. But the preimage π−1(H ′) has infinitely many connected component,
naturally indexed by Z, and H is just one of them. The second point is that Xκ \π−1(H ′)
also has infinitely many components. It turns out that only two of thosecomponents
contain H in their closure, and we will denote them by U+

H and U−H . Details about this
can be found in [Kl, p. 369].

6.3. Completeness of the factor (X, gX) when Γ is a subgroup of Iso(N)× Iso(X).
Mutiplying if necessary the metric g by a constant, we don’t loose any generality if we
take the curvature κ of X equal to 0,+1 or −1, what we will do from now on.

The Lorentz manifold (X, gX) has constant curvature κ, thus there exists an isometric
immersion δ : X → Xκ, as well as a holonomy morphism ρ : Iso(X, gX) → Iso(Xκ),
such that δ ◦ f = ρ(f) ◦ δ, for every f ∈ Iso(X, gX). Our aim is to show that under
the hypotheses of Theorem 6.7, the map δ is an isometry between (X, gX) and Xκ. The
situation is reminiscent of the following celebrated theorem of Y. Carrière (in the flat case
κ = 0), completed by B. Klingler (for any constant curvature κ).

Theorem 6.8. [Ca], [Kl] Let (X, gX) be a simply connected Lorentz manifold of constant
sectional curvature κ. Assume that there exists ΓX ⊂ Iso(X, gX) a discrete subgroup acting
properly discontinuously on X with compact quotient, then the developping map δ is an
isometry between (X, gX) and Xκ.

In our situation, the projection ΓX of Γ on Iso(X, gX) does act cocompactly on (X, gX),
since Γ acts cocompactly on N × X. However the group ΓX is not necessarily discrete.
Reading carefully the proof of B. Klingler in [Kl], one realizes that part of the arguments
actually do not use the discreteness of ΓX , but only the cocompactness assumption. In
particular, the begining of the proof carries over to the case where ΓX is only assumed to
be cocompact, until [Kl, Proposition 3]. Actually, this proposition uses the discreteness of
ΓX only at the very end, in order to use cohomological dimension arguments. If we just
assume cocompactness of ΓX , Klingler’s proof yields the slightly weaker version:

Proposition 6.9. [Kl, Proposition 3] Under the asumption that there exists ΓX ⊂ Iso(X, gX)
which acts cocompactly, then the developping map δ is injective. If δ is not onto, the bound-
ary of Ω := δ(X) in Xκ is a disjoint union H ∪P , where H is a lightlike hyperplane, and
P is either empty, or a lightlike hyperplane.

To conclude the proof of the completeness of (X, gX), we have to show that the con-
clusions of Proposition 6.9 contradict the hypotheses of Theorem 6.7, so that δ will be
a diffeomorphism. In [Kl], arguments of cohomological dimension, and results about flat
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affine manifolds are used, that don’t clearly carry over to our situation. We thus adapt
them to conclude.

6.3.1. The case of curvature κ = ±1. We refer to Section 6.2.1 for the notion of lightlike
hyperplane of Xκ, and the notations therein.

Lemma 6.10. [Kl, Sec 4, p. 370] Let H be a lightlike hyperplane in Xκ. Let U+
H and

U−H the associated components. Let GH the stabilizer of U+
H and U−H in Iso(Xκ). Then

there exists a complete vector field Y on U+
H (resp. on U−H ), which is preserved by GH ,

and which have constant nonzero divergence λ ∈ R∗ with respect to the restriction of gXκ
to U+

H (resp. U−H ).

Corollary 6.11. Let H be a lightlike hyperplane in Xκ, and assume that ρ(ΓX) ⊂ GH .
Then the image δ(X) can not contain, nor be contained, in a connected component U±H .

Proof. Let us call Ω = δ(X). We thus have that N × X is identified with N × Ω. We

consider the vector field Y given by Lemma 6.10 and we construct the vector field Ỹ on
N × U+

H by the formula Ỹ = (0, Y ) ∈ TN × TXκ. If Ω ⊂ U+
H , then Ỹ induces a vector

field on (M, g) with constant nonzero constant divergence. This is impossible. If U+
H ⊂ Ω.

Then the quotient Γ\(N × U+
H ) is an open subset of (M, g) (hence has finite Lorentzian

volume) and Y induces on it a complete vector field with nonzero constant divergence.
This is again impossible. �

Corollary 6.11 allows to settle easily the case κ = +1 (actually as in [Kl]). Two lightlike
hyperplanes must intersect in de Sitter space, so that P = ∅ in Proposition 6.9. Then
δ(X) = UH and Corollary 6.11 yields a contradiction.

In the case κ = −1 we see if that P = ∅ in Proposition 6.9, then δ(X) contains U+
H or

U−H , and we get a contradiction by Corollary 6.11. If P 6= ∅, we also get a contradiction
as follows.

First, assume that P is parallel to H. It means that if H ′ and P ′ denote the projections
of H and P on Xκ, then H ′ and P ′ are connected components of the intersections u⊥∩Xκ
and v⊥ ∩Xκ with u and v isotropic and orthogonal for the form q2,k.

Then either P meets U+
H (resp. U−H ) and then δ(X) ⊂ U+

H (resp. δ(X) ⊂ U−H ). Or

δ(X) does not meet U+
H and U−H , in which case it contains U+

H or U−H . Whatever the case,
we get a contradiction by Corollary 6.11.

If P is not parallel to H, then we call GH,P the subgroup of Õ(2, k) leaving the pair
(H,P ) invariant. The holonomy group ρ(ΓX) is a subgroup of GH,P . The hyperplanes H
and P project onto two hyperplanes H ′ and P ′ in Xκ. The open set Ω = δ(X), which is
bounded by H and P , projects onto a connected component Ω′ of Xκ \ {H ′ ∪ P ′}. By
definition of lightlike hyperplanes, there are two lightlike directions u and v in R2,k such
that H ′ = Xκ∩u⊥ and P ′ = Xκ∩v⊥. Since P and H are not parallel, u is not orthogonal
to v, and calling E the span of u and v, we get a decomposition R2,k = E⊕E⊥. If we split
any x ∈ R2,k as x = xE + xE⊥ , the function λ : x 7→ |xE |2 is continuous and unbounded

on Ω′. But then, recalling the projection π : Xκ → Xκ, we can define λ̃ : Ω → R by the
formula λ̃(x) = λ(π(x)). This is a continuous function, unbounded on Ω, and moreover
GH,P -invariant. This contradicts the fact that ρ(ΓX) ⊂ GH,P acts cocompactly on Ω.

6.3.2. The case of curvature 0. It remains to show that when the developping map is not
onto, Proposition 6.9 leads to a contradiction when (X, gX) is flat. The arguments used in
Carrière’s work are based on former results of W. Goldman and M. Hirsh about flat affine
manifolds (see [GH]), that we can not use straigthforwardly in our product situation. This
is here that we will use for the first time our asumption that Iso×(M, g) has an infinite
limit set at every point (actually here, an infinite limit set at some point would be enough).

To this aim, it seems to be useful to isolate the following incompleteness property for
Lorentzian (actually affine) manifold.
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Let (M, g) such a manifold. Let u ∈ TM . We denote by γu the parametrized geodesic
t 7→ exp(tu). This geodesic has a maximal open interval of definition (T−(u), T+(u)),
with T−(u) < 0 < T+(u) (and maybe T−(u) = −∞ or T+(u) = +∞). We say that the
direction u is uniformly incomplete in the future (resp. in the past) whenever there exist
a constant C > 0 (resp. C < 0), and a neighborhood V of u in TM , such that for every
v ∈ V , T+(v) ≤ C (resp. T−(v) ≥ C).

We make the following remark:

Lemma 6.12. Let (M, g) be a compact Lorentz manifold, let x ∈ M , and let Λ(x) ⊂
P(TxM) be the limit set of Iso(M, g) at x. If [u] ∈ Λ(x), then u is neither uniformly
incomplete in the future, nor in the past.

Proof. If [u] ∈ Λ(x), then u ∈ TxM is a lightlike vector which is asymptotically stable for
some sequence (fi) in Iso(M, g). Namely there exists (xi) a sequence in M converging to
x, and vi ∈ TxiM converging to u such that Dxifi(vi) remains bounded. After considering
a subsequence, we may assume that yi = fi(xi) converges to y. There are also sequences

of orthogonal frames (e
(i)
1 , . . . , e

(i)
n ) at xi, and (ε

(i)
1 , . . . , ε

(i)
n ) at yi, converging in the bundle

of frames, so that the differential Dxifi has the following matrix in those frames:

Dxifi =

 λi 0 0
0 Ik−1 0
0 0 1

λi


with limi→∞ λi = +∞. In particular the stability property of u shows that e

(i)
n tends to αu,

for some α ∈ R∗. Let us call vi = Dxifi(e
(i)
n ). This is a sequence of vectors in TyiM which

tends to 0. As a consequence, T+(±vi)→ +∞. Now, because α−1e
(i)
n = α−1Dyif

−1
i (vi),

we get T+(±α−1e
(i)
n ) to +∞. Since ±α−1e

(i)
n tends to ±u, this shows that u is neither

uniformly incomplete in the future, nor in the past. �

Now, for open subsets of Minkowski space, one has the obvious lemma:

Lemma 6.13. Let Ω ⊂ R1,k be an open subset, such that ∂Ω contains a lightlike hyper-
plane H = u⊥. Then all directions of TΩ different of u, are uniformly incomplete either
in the future, or in the past.

Now our standing assumption is that Iso×(M, g) has an infinite limit set at every point

x. Lifting everything to (M̃, g̃), we get a point x̃ = (n, z) ∈ M̃ and, by Lemma 6.12,

infinitely many lightlike directions in Tx̃M̃ which are neither uniformly incomplete in the
future, nor in the past. On the other hand, assuming for a contradiction that δ : X → R1,k

is not a diffeomorphism, Proposition 6.9 says that (X, gX) is isometric to an open subset
Ω ⊂ R1,k satisfying the hypotheses of Lemma 6.13. In particular, this lemma says that
the only directions in Tx̃M̃ which are neither uniformly incomplete in the future, nor in
the past, are of the form v + u0, where v ∈ TnN is any direction and u0 ∈ TzX is a
specific lightlike direction. Among them, only one, namely 0 + u0, is lightlike, and we get
a contradiction.

6.3.3. The factor (X, gX) is ÃDS
1,2

or Minkowski space. Having established the complete-
ness of the factor (X, gX) under the assumption Γ ⊂ Iso(N)× Iso(X), it remains to check
that not all spaces Xκ are possible for (X, gX), as announced in Theorem 6.7.

Proposition 6.14. Let (M, g) be a compact Lorentzian manifold. Assume that M is a
quotient of N × Xκ by a discrete subgroup of Iso(N) × Iso(Xκ), with the dimension of
Xκ ≥ 3. If Iso×(M, g) has an infinite limit set at every point of M , then Xκ is either the

3-dimensional anti-de Sitter space ÃDS
1,2

, or Minkowski space R1,k.
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Proof. Let x ∈ M . If the limit set of Iso×(M, g) is infinite at x, then (M, g) admits
infinitely many codimension one, totally geodesic, lightlike foliations which are transverse
at x (see Theorem 3.1). The proposition is then the content of points (1) and (2) of [Z1,
Theorem 15.1]. The proof can be found in [Z1, Sec. 15.1 and 15.2] �

6.4. Completeness of the factor (X, gX) in the general case where Γ ⊂ Iso(N)×
Homot(X). We assume here that Γ is not included in Iso(N)×Iso(X), since this situation
was already handled in Section 6.3. The first observation is that a Lorentz manifold of
constant sectional curvature κ 6= 0 does not admit homothetic transformations which are
not isometric. It follows that the factor (X, gX) is flat, and there exists an isometric
immersion δ : X → R1,k. It is easily checked that any diffeomorphism between connected
open subsets of R1,k which is homothetic with respect to the Minkowski metric is the
restriction of a global homothetic transformation of R1,k. It thus follows that we have a
morphism

ρ : Homot(X)→ Homot(R1,k),

such that the following equivariance relation holds:

δ(h.x) = ρ(h).δ(x),

for every h ∈ Homot(X), and x ∈ X. Our aim is, as in the previous section, to show that
δ : X → R1,k is an isometry.

Before doing this, let us make a few reductions. Theorem 5.1 yields a compact Lorentz
submanifold Σ ⊂ M , which is locally homogeneous with semisimple isotropy, and which
is preserved by a finite index subgroup of Iso(M, g). This last property ensures that the
limit set of Iso(Σ) is infinite at each point of Σ. Moreover, the submanifold Σ is actually

obtained as a killloc-orbit (see Section 5.3). In particular, if Σ̃ denotes the lift of Σ to

M̃ , then Σ̃ is a union of leaves {n} ×X. Thus Σ̃ = N ′ ×X, where N ′ is a submanifold
(maybe not connected) of N . As a consequence, the universal cover of Σ is also of the form
N0 ×w X, for some simply connected Riemannian manifold N0. It follows that replacing
if necessary M by Σ, we may assume in the following that M is locally homogeneous with
semisimple isotropy.

To make our second reduction, recall the group G that we introduced in Section 6.1.3.
The group G acts transitively and isometrically on the Riemannian manifold (N, gN )
(Lemma 6.5). The same is true for its identity component Go. We observe that Go has
finite index in G. Indeed, if K is the stabilizer, in G, of a point n ∈ N , then the isotropy
representation identifies K as a compact subgroup of O(n − k). In particular K has
finitely many connected components, and because G/K = N is connected, the group G
has finitely many connected components too.

Let us denote in the following Ĩso
×

(M, g) the subgroup of Iso(M̃, g̃) comprising all

lifts to M̃ of isometries in Iso×(M, g). Since G has finitely many connected components,

there exist finite index subgroups Γ′ ⊂ Γ, and Ĩso
×

(M, g)′ ⊂ Ĩso
×

(M, g) which are both
contained in Go × Homot(X) (see Lemma 6.5). Let gG be any left-invariant Riemannian
metric on Go. Let us denote by π : Go → N = Go/Ko the natural projection and

let w̃ : Go → R∗+ be the function defined by w̃(g) = w(π(g)). Then Ĩso
×

(M, g)′ acts
isometrically on the warped-product Go ×w̃ X (see Lemma 6.5 point (1)). Let us call M ′

the quotient of Go × X by Γ′. This manifold is compact because it fibers over M with

compact fibers. The group Ĩso
×

(M, g)′ surjects on a finite index subgroup Iso×(M, g)′ ⊂
Iso×(M, g). The limit set of Iso×(M, g)′ is thus infinite at every point, and because the

fibers of the fibration M ′ → M are Riemannian, the limit set of Ĩso
×

(M, g)′/Γ′ on M ′ is

infinite. Since Ĩso
×

(M, g)′/Γ′ is a subgroup of Iso×(M ′, g′), we conclude that the limit set
of Iso×(M ′, g′) is also infinite at each point.
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All those remarks show that we don’t loose any generality if we assume that M̃ =

N ×w X is actually the space Go ×w̃ X, and moreover Ĩso
×

(M, g) ⊂ Go ×Homot(X). We
will make those asumptions from now on.

Recall (see Section 6.1.3) that the group Go admits a continuous homomorphism λ :
Go → R∗+, satisfying w̃(g1g2) = λ(g1)w̃(g2) for every g1, g2 in Go. This homomorphism
is nontrivial. Indeed triviality of λ would mean that w̃ is constant. Sticking to the
notations of Lemma 6.5, w̃ constant implies that the group G coincides with Iso(N, gN ),
and λ(f) = 1 for every f ∈ Iso(N, gN ). It follows from Lemma 6.5 and Remark 6.6 that

Iso×(M̃, g̃) coincides with the product Iso(N, gN ) × Iso(X, gX), and we are then in the
realm of Section 6.3. A nontrivial λ yields a decomposition Go = AH, where H = Kerλ,
and A is a 1-parameter group {as} satisfying for every g ∈ Go w̃(asg) = eαtw̃(g), with
α > 0. Let us denote by w̃0 the value taken by w̃ on the subgroup H. Let g ∈ Go

that we write g = ath, for some h ∈ H. We get w̃(g) = eαtw̃0. We also compute

w̃(gas) = w̃(at+sa−shas) = eα(t+s)w̃0, the last equality holding because H is normalized
by A. We end up with the relation

(7) w̃(gas) = eαsw̃(g).

The 1-parameter group of transformations ψ̃s : (g, x) ∈ Go × X 7→ (gas, x) com-
mutes with the action of Go × Homot(X). In particular, it commutes with the action of

Ĩso(M, g) (see point (2) of Lemma 6.5), hence induces a flow ψs on M which commutes
with Iso(M, g). Let us consider z0 ∈ M a recurrent point (in the future) for the flow
ψs. Such a point exists since M is compact. Let (g0, x0) ∈ Go × X projecting on z0.
Saying that z0 is recurrent in the future means that there exist a sequence si → ∞, and
a sequence (αi, βi) in Γ ⊂ Go × Homot(X) such that gi = αi.g0.a

si tends to g0, and
xi = βi.x0 tends to x0. By equation (7), we see that w̃(αig0a

si) = eαsiλ(αi)w̃(g0). Since
this quantity must converge to w̃(g0) we get that λ(αi) ∼

+∞
e−αsi . By point (1) of Lemma

6.5, βi is an homothetic transformation of X, with dilatation λi = λ(αi)
−1. In particular,

λi ∼
+∞

eαsi .

Then the holonomy ρ(βi) satisfies ρ(βi).δ(x0)→ δ(x0), and ρ(βi) = λiAi +Ti, for (Ai)
a sequence in O(1, k), and (Ti) a sequence in Rk+1.

Lemma 6.15. The sequence (Ai) is bounded.

Proof. We consider the foliation F̃ on Go × X, whose leaves are the sets {g} × X. It
induces a foliation F on M , the leaves of which are Lorentzian. For each x ∈ M , we
denote by Λ×(x) the limit set of the group Iso×(M, g). We observe that if x ∈ M , and
[u] ∈ Λ×(x), then u is tangent to F . Now the flow ψs maps each leaf of F conformally to
another leaf. In particular, Dψs preserves the set of lightlike vectors tangent to F . We
now use our asumption that Λ×(x) is infinite for every x ∈ M . In particular there are
three distinct directions [u1], [u2], [u3] belonging to Λ(z0). Associated to those directions

are three sequences (f
(1)
i ), (f

(2)
i ), (f

(3)
i ) going to infinity in Iso(M, g), such that u⊥1 , u⊥2 and

u⊥3 coincide with the asymptotically stable distributions (see Section 3.2) AS(f
(1)
i )(z0),

AS(f
(2)
i )(z0) and AS(f

(3)
i )(z0). Theorem 3.1 yields three Lipschitz fields of lightlike direc-

tions x 7→ ξj(x), j = 1, 2, 3, such that ξj(x)⊥ = AS(f
(j)
i )(x) for every x ∈ M , j = 1, 2, 3.

Now, we already observed that ψs commutes with Iso(M, g). In particular, Dψs maps

AS(f
(j)
i ) to itself, for j = 1, 2, 3. Because ψs maps lightlike directions tangent to F to

lightlike directions tangent to F , we moreover infer that Dψs(ξj) = ξj . We lift the fields

of directions ξj to Lipschitz fields of directions ξ̃j on Go × X. They are tangent to the

leaves {g} × X, are Γ-invariant, and also invariant by ψ̃s. Projecting ξj(g0, x0) on the
factor {0}× Tx0X ⊂ T(g0,x0)M , and taking the images by D(g0,x0)δ, we get three distinct

lightlike directions ξ1, ξ2 and ξ3 at δ(x0), such that Ai.ξj → ξj , for j = 1, 2, 3. Because
Ai is a sequence in O(1, k), this forces Ai to stay in a compact subset. �



ISOMETRY GROUP OF LORENTZ MANIFOLDS 37

Lemma 6.16. Let U and V be open subsets of X on which δ is injective. Assume that

U ∩ V 6= ∅, and that δ(U) ( δ(V ). Then U ( V .

We pick U an open subset containing x0 such that δ restricted to U is injective. We
know that for every i large enough βi(U) ∩ U 6= ∅, and δ is injective on βi(U) as well,
because of the equivariance relation δ ◦ βi = ρ(βi) ◦ δ. Now ρ(βni)(U) is an increasing

sequence of open subsets exhausting R1,k, for a suitable subsequence ni. It follows from
Lemma 6.16 that βni(U) is an increasing sequence of open subsets in X. The union⋃
k∈N βni(U) is an open subset Ω ⊂ X, which is mapped diffeomorphically by δ onto R1,k.

We then must have Ω = X, because otherwise, looking at point on ∂Ω, we would check
that δ could not be injective on Ω. This finishes the proof of the completeness of (X, gX),
and that of Theorem 6.7.

7. Proof of Theorem A and conclusion

This section is devoted to the proof of Theorem A. The proof will be done in two
steps. First, we will deal with two particular cases, namely the manifolds (M, g) which

are quotients of N × ÃDS
1,2

, and those which are locally homogeneous with semisimple
isotropy (see Sections 7.1 and 7.2 below). Thanks to all the work done so far, and a
last important extension result (see Theorem 7.7) we will be able to derive the general
statement from those two particular cases.

7.1. Theorem A for quotients of N × ÃDS
1,2

. We recall the notation Iso× introduced
in Section 6.2. We are going to prove:

Proposition 7.1. Let (M, g) be a compact Lorentz manifold. Assume that there exists N

a Riemannian manifold, such that M is a quotient of a warped product N ×w ÃDS
1,2

by

a discrete subgroup Γ ⊂ Iso(N)× Iso(ÃDS
1,2

). Assume that the limit set of Iso×(M, g) is
infinite at each point. Then Iso(M, g) is virtually an extension of PSL(2,R) by a compact
Lie group.

Observe that the hypothesis involves Iso×(M, g), but the conclusion is about the full
isometry group Iso(M, g).

The proof is discussed in [Z1, Section 15.2]. The model for 3-dimensional anti-de

Sitter space ÃDS
1,2

is the Lie group ˜PSL(2,R) endowed with the left Lorentzian metric
obtained from the Killing form on sl(2,R). This metric gAdS turns out to be bi-invariant,

and we get an isometric action of the product ˜PSL(2,R) × ˜PSL(2,R) (by left and right

translations). The action is not faithful because ˜PSL(2,R) has a nontrivial center Z,

so that the isometry group of ÃDS
1,2

is up to finite index ( ˜PSL(2,R) × ˜PSL(2,R))/Z.

As already mentioned, conformal transformations of ÃDS
1,2

are isometric. It follows

from Proposition 6.1 that (M, g) is the quotient of N × ÃDS
1,2

by a discrete subgroup

Γ ⊂ Iso(N)× ˜PSL(2,R)× ˜PSL(2,R). The projection of this group on each factor is denoted
by ΓN , ΓL (left) and ΓR (right).

The splitting N × ÃDS
1,2

induces two transverse foliations F⊥ and F on M , which
are preserved by Iso×(M, g). In particular, each direction [u] belonging to the limit set
of Iso×(M, g) must be tangent to F . This remark, together with the hypothesis that the
limit set of Iso×(M, g) is infinite yields, by Theorem 3.1, infinitely distinct codimension 1
lightlike geodesic foliations on M , whose lightlike direction is tangent to F . As explained
in [Z1, Section 15.2], this forces ΓL or ΓR to be trivial. Let say that ΓR is trivial. Then

the action of ˜PSL(2,R) by right-multiplication on N ×w ˜PSL(2,R) induces a nontrivial

isometric action of ˜PSL(2,R) on (M, g). Under these circomstances, the action is not

faithfull, but one gets that Isoo(M, g) is finitely covered by PSL(2,R)(m) × K, for K a



38 CHARLES FRANCES

connected compact Lie group (see [Gr1], [AS1], [Z4]). Here PSL(2,R)(m) denotes the
m-fold cover of PSL(2,R). In particular, Isoo(M, g) is a compact extension of PSL(2,R).

The action of PSL(2,R)(m) on (M, g) is locally free (see [Gr1, Th 5.4.A]), and its orbits
have Lorentz signature. As observed in [ZP, Corollary 6.2], this implies that Iso(M, g)
has finitely many connected components. Proposition 7.1 follows. We observe that we are
precisely in the first case of Theorem A.

7.2. Theorem A when (M, g) is locally homogeneous with semisimple isotropy.

Proposition 7.2. Let (M, g) be a compact, locally homogeneous, Lorentz manifold. As-
sume that the isotropy algebra i is isomorphic to o(1, k)⊕ o(m), with k ≥ 2. Assume that
the limit set of Iso(M, g) is infinite at each point. Then the conclusions of Theorem A
hold.

By Proposition 6.1, the universal cover (M̃, g̃) is isometric to a warped product N ×w
ÃDS

1,2
, or N ×w R1,k, where N is a homogeneous Riemannian manifold. Moreover, it

follows from point (2) of Proposition 6.1 that Iso(M̃, g̃) ⊂ Iso(N) × Iso(ÃDS
1,2

) (resp.

Iso(M̃, g̃) ⊂ Iso(N)×Homot(R1,k)), and Iso×(M, g) = Iso(M, g).

When (M̃, g̃) is isometric to N ×w ÃDS
1,2

, we can directly apply Proposition 7.1. The
group Iso(M, g) is then virtually a compact extension of PSL(2,R), and we are in the first
case of Theorem A.

We now prove Proposition 7.2 when (M̃, g̃) is isometric to N ×w R1,k.

7.2.1. Getting a proper homomorphism ρ : Iso(M, g) → PO(1, d). The arguments until
Section 7.2.3 are essentially discussed in [Z1, Section 15.3]. The manifold M is a quotient
of N × R1,k by a discrete subgroup Γ ⊂ Iso(N) × Homot(R1,k). We call ΓN and ΓX
the projections of Γ on each factor. As explained above, since the limit set is infinite at
each point, M admits infinitely many codimension one, totally geodesic lightlike foliations.
The lift of each of those foliations to M̃ is preserved by Γ. Now, codimension one, totally
geodesic, lightlike foliations of N ×w R1,k are easy to describe (see [Z1, Section 15.3]).
They are parametrized by lightlike directions [u] in R1,k. The leaves of Fu determined by
such a direction, are products N ×Hu, where Hu is an affine hyperplane of R1,k, parallel
to u⊥. Let us call E the span of all lightlike directions u which give rise to a foliation
Fu, coming from the asymptotically stable foliation of a sequence (fk) in Iso(M, g) (see
Theorem 3.1). Because the limit set Λ(x) has more than 3 elements at each x ∈ M ,
the space E ⊂ R1,k is Lorentz of dimension d+ 1, with d ≥ 2. This yields an orthogonal

splitting R1,k = E⊕F , with F Riemannian. Let us call Ĩso(M, g) the group comprising all

lifts to M̃ of elements of Iso(M, g). Then Ĩso(M, g) preserves the splitting M̃ = N×E×F ,

and Ĩso(M, g) ⊂ Iso(N) × Homot(E) × Homot(F ). The projection on the second factor

yields a morphism πE : Ĩso(M, g)→ Homot(E) ' (R+
∗ ×O(1, d)) n Rd+1. Postcomposing

with the natural morphism (R+
∗ × O(1, d)) n Rd+1 → PO(1, d), we get a homomorphism

ρ̃ : Ĩso(M, g) → PO(1, d). The projection of the group Γ on each factors will be denoted
ΓN , ΓE and ΓF . Because each lightlike direction in Λ(x) corresponds to a ΓE-invariant
direction in E, we see that elements of ΓE have a linear part acting by similarities:

x 7→ λx,

for λ ∈ R∗.
In other words, Γ ⊂ Ker ρ̃, and we finally get a well-defined morphism

ρ : Iso(M, g) = Ĩso(M, g)/Γ→ PO(1, d).

Lemma 7.3. The homomorphism ρ : Iso(M, g)→ PO(1, d) is a proper map.

Proof. We want to show that the map ρ is proper, namely the preimage of every bounded
sequence is a bounded sequence. The splitting M̃ = N × E × F is preserved by Γ, hence
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induces an orthogonal splitting TM = TMN ⊕TME⊕TMF . For each x, the space TxME

is Lorentz, while TxMN ⊕ TMF is Riemannian. Let (fk) be a sequence of Iso(M, g). The
condition ρ(fk) bounded is easily seen to imply that Dfk|TME is bounded. But since TME

has Lorentz signature, it shows that the 1-jet of fk is bounded. Because Iso(M, g) acts

properly on the orthonormal bundle M̂ (see Section 2.2.1), this implies (fk) bounded in
Iso(M, g). �

7.2.2. Conclusion under the assumption that Isoo(M, g) is compact. Sticking to the pre-
vious notations, we consider the homomorphism ρ : Iso(M, g) → PO(1, d), and we have
shown that it is a proper map. It means that ρ(Iso(M, g)) = H is a closed subgroup of
PO(1, d), and Ho = ρ(Iso(M, g)o) is a compact, normal subgroup of H. In particular, the
set of fixed point of the action of Ho on Hd is nonempty. This set of fixed points Fix(Ho)

is a totally geodesic submanifold of Hd, isometric to some Hd
′
. Because H normalizes Ho,

it acts on Fix(Ho), yielding a morphism ρ′ : H → Iso(Hd
′
) ' PO(1, d′), which is proper.

The image of ρ′ is discrete since Ho does not act on Fix(Ho). We are then in the second
case of Theorem A.

7.2.3. Compactness of the identity component Isoo(M, g). It remains to prove the com-
pactness of Isoo(M, g). Let us introduce a bit of notations. We call Z the centralizer of
ΓE in Homot(E). This is an algebraic group, with Lie algebra z. We will denote by ZL
the projection of Z ⊂ Homot(E) on PO(1, d), and ZO the projection of Z ∩ O(1, d) on
PO(1, d).

Lemma 7.4. (1) There is an action of Z on M , and elements of Z ∩ Iso(E) act
isometrically for g.

(2) One has the inclusions

ZO ⊂ Iso(M, g),

ρ(Iso0(M, g)) ⊂ ZL,
and

ρ(Iso(M, g)) ⊂ NorO(1,d)(ZL).

In the statement, NorO(1,d)(ZL) denotes the normalizer of ZL in O(1, d).

Proof. For every h ∈ Z, one defines h̃ ∈ Iso(N)×Homot(E)×Homot(F ) by the formula

h̃(n, x, y) = (n, h(x), y) for every (n, x, y) ∈ N ×E × F . Obviously, h̃ centralizes Γ, hence

induces a diffeomorphism on M . If moreover h ∈ Z ∩ Iso(E), then h̃ acts isometrically on

(M̃, g̃), and the induced action on M is isometric. This proves point 1).
As for point 2), ZO ⊂ Iso(M, g) is a direct consequence of point 1). Every flow f t

in Isoo(M, g) lifts to f̃ t ∈ Iso(M̃, g̃) centralizing Γ. The component f̃ tE on Homot(E, g)
belongs to Z, and the definition of ρ yields ρ(f t) ∈ ZL.

Finally, every element f̃ of ˜Iso(M, g) normalizes Γ. It follows that the component f̃E
on Homot(E) normalizes Z, hence the last inclusion ρ(Iso(M, g)) ⊂ NorO(1,d)(ZL).

�

We observed in the proof that for every f̃ ∈ ˜Iso(M, g), the component f̃E normalizes Z,
hence induces an automorphism of z. Since Z centralizes Γ, this automorphism is trivial
when f̃ ∈ Γ. We thus inherits a well-defined representation:

ζ : Iso(M, g)→ Aut(z).

The first point of Lemma 7.4 shows that each ξ ∈ z yields a vector field Xξ on M . The
very definition of the representation ζ lead to the tautological but useful relation:

(8) f∗Xξ = Xζ(f)ξ

We are now in position to prove:
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Lemma 7.5. If the group ΓE ⊂ Homot(E) does not contain only translations, then
Isoo(M, g) is compact.

Proof. We already observed that elements γ ∈ ΓE are of the form x 7→ λγx + Tγ , for
some λ ∈ R∗. We assume, for a contradiction, that some element γ satisfies λγ 6= 1.

Conjugating everything in Iso(M̃), we may assume Tγ = 0. Then, it is clear that Z ⊂
R × O(1, d) ⊂ Homot(E). Let us recall the group ZO, and its Lie algebra zO. The
inclusion Z ⊂ R × O(1, d) forces zO to be ζ(Iso(M, g))-invariant. By the very definitions
of the representations ζ and ρ, we infer that if ξ ∈ zO,

ζ(f).ξ = Ad(ρ(f)).ξ.

Here Ad is the adjoint representation of PO(1, d) on its Lie algebra.
The group Z ⊂ R×O(1, d) is real algebraic, hence can be decomposed as a semi-direct

product (S.T ) n U , where S is semisimple, T is a torus, and U a unipotent subgroup.
We observe that S and U are included in O(1, d). We first claim that S is compact. If

not, it would contain a subgroup S1 isomorphic to SO(1, 2), and by Lemma 7.4, S1 would
act isometrically on M . But looking carefully at the action of S1 on E, we see that its
orbits have dimension 0 or 2. The same property should hold for the isometric action of
S1 on M , but we already mentioned (see [Gr1, Thm. 5.4.A]) that isometric actions of
SO(1, 2) on compact Lorentz manifolds must be locally free, yielding a contradiction.

We now prove that U is trivial. First, observe that U is the unipotent radical of the
algebraic group Z ∩ O(1, d). Because we already observed that ρ(Iso(M, g)) normalized
zO, it must normalize the Lie algebra u.

Assume, for the sake of contradiction, that U is nontrivial. The normalizer of u in
PO(1, d) is a group of the form (R∗+×K)nUmax, where K is compact, Umax is a maximal

unipotent of PO(1, d) (isomorphic to Rd−1), and R∗+ acts on Umax ' Rd−1 by homo-
thetic transformations u 7→ αu, α > 0. The group ρ(Iso(M, g)) normalizes u, hence
ρ(Iso(M, g)) ⊂ (R∗+ ×K) n Umax.

If actually ρ(Iso(M, g)) ⊂ K n Umax, then every compactly generated subgroup of
Iso(M, g) must have polynomial growth (because ρ is proper), contradicting our hypothe-
sis. If ρ(Iso(M, g)) 6⊂ KnUmax, we get f ∈ Iso(M, g), and ξ ∈ u, such that Ad(ρ(fk))ξ → 0
as k → +∞. On the lightcone through the origin of E, the orbits of the flow {etξ} are
spacelike, except on a lightlike line through the origin. It means that the vector field
Xξ (see the discussion after Lemma 7.4) is spacelike on an open subset Ω of M . But
Dyf

k(Xξ(y))→ 0 as k → +∞ by the relation (8). When y ∈ Ω, this contradicts the fact
that fk are isometries.

The previous discussion shows that U is trivial and S is compact. We now look at the
torus T . It may be written as a product Ts × Te, where elements of Ts are R-split and
those of Te are diagonalisable over C, with eigenvalues of modulus 1. The projection ZL
of Z on PO(1, d) is then a product T ′s × K, where K is compact and T ′s is trivial, or a
1-dimensional R-split torus in PO(1, d). The normalizer of ZL in PO(1, d) must normalize
T ′s. Now if T ′s is nontrivial, its normalizer in PO(1, d) is a group of the form T ′s×K′, where
K′ is compact. The inclusion ρ(Iso(M, g)) ⊂ Nor(ZL) proved in Lemma 7.4 would imply
ρ(Iso(M, g)) ⊂ T ′s ×K′. Again, this forces every closed compactly generated subgroup of
Iso(M, g) to have polynomial (actually linear) growth: Contradiction. We conclude that
T ′s is trivial, hence ZL is compact. But by Lemma 7.4, ρ(Isoo(M, g)) ⊂ ZL. Because ρ is
proper, we conclude that Isoo(M, g) is compact.

�

The compactness of Isoo(M, g) will follow from Lemma 7.5 and the following

Lemma 7.6. If the group ΓE ⊂ Homot(E) contains only translations, then Isoo(M, g) is
compact.
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Proof. If ΓE comprises only translations in Homot(E). Then, all translations of Homot(E)
commute with ΓE , hence are contained in Z. By Lemma 7.4 this induces an isometric
action of Rd+1 on M , which is locally free. Obviously, elements of this action stay in
Ker ρ, which is a compact Lie group. Let us consider k the Lie algebra of Ker ρ. It splits
as a sum a ⊕ m, where a is abelian and m is the Lie algebra of a compact semisimple
group. The previous remark shows that a contains Rd+1. It thus integrates into a torus
T ⊂ Isoo(M, g), which is normalized by Iso(M, g). It is thus centralized by Isoo(M, g).
There are timelike translations in Homot(E), thus there exists a Killing field Y in a which
is everywhere timelike on M , and commutes with Isoo(M, g). The vector field Y yields

a reduction of the bundle M̂ to a subbundle M̂ ′ with compact structure group. Hence

Isoo(M, g) preserves the compact subset M̂ ′ ⊂ M̂ . Since its action on M̂ is proper,
Isoo(M, g) is compact. �

7.3. Proof of Theorem A in full generality. We are now ready to prove Theorem
A. By hypothesis, (M, g) is a (n + 1)-dimensional compact Lorentz manifold, n ≥ 2.
The group Iso(M, g) is assumed to have a closed, compactly generated subgroup with
exponential growth. By Theorem 5.1, there exists a compact, locally homogeneous Lorentz
submanifold Σ ⊂M , a finite index subgroup Iso′(M, g) leaving Σ invariant, and a proper
homomorphism ρ : Iso′(M, g) → Iso(Σ, g). Moreover, still by Theorem 5.1, (Σ, g) has
semisimple isotropy, and Iso(Σ, g) contains a closed, compactly generated subgroup of
exponential growth.

We apply Proposition 7.2 to (Σ, g). Two cases may then occur. In the first case
(which corresponds to the second case in Theorem A for the group Iso(Σ, g)), Iso(Σ, g) is
virtually a compact extension of a discrete subgroup Λ ⊂ O(1, d), 2 ≤ d ≤ n. The proper
homomorphism ρ : Iso′(M, g) → Iso(Σ, g) thus shows that Iso(M, g) is also virtually a
compact extension of some subgroup of Λ. We are thus in the second case of Theorem A
for the group Iso(M, g).

In the second case, there exists an epimorphism ρ′ : Iso(Σ, g) → PSL(2,R), with
compact kernel, yielding a proper homomorphism ρ′ ◦ ρ : Iso′(M, g) → PSL(2,R). We
are not done, because we don’t know if this homomorphism is onto, and this is the last
difficulty we have to overcome. At this stage, we just get that Iso(M, g) is virtually a
compact extension of a closed subgroup H of PSL(2,R). Moreover, this closed subgroup
must have exponential growth. Considering a finite index subgroup if necessary, there are
only four possibilities.

(i) The group H is PSL(2,R).
(ii) The group H is a nonelementary discrete subgroup of PSL(2,R).

(iii) The group H is conjugated in PSL(2,R) to

Aff(R) =

{(
λ t
0 λ−1

)
| λ ∈ R∗, t ∈ R

}
.

(iv) There exists λ ∈ R∗+ \ {1}, such that he group H is conjugated in PSL(2,R) to

Z nλ R =

{(
λ
m
2 t

0 λ−
m
2

)
| m ∈ Z, t ∈ R

}
.

Observe that those four cases are mutually exclusive.
Cases (i) and (ii) in the list above lead to respectively the first, and the second case of

Theorem A. Theorem A will thus be proved if we show that cases (iii) and (iv) actually
do not occur. This is basically known for case (iii). Indeed, it was shown in [AS2] and
[Z4, Th. 1.1] that if the group Aff(R) acts isometrically (and faithfully) on a compact
Lorentz manifold, then it yields an isometric action of a finite cover of PSL(2,R). Hence if
H = Aff(R) in the list above, it actually implies H = PSL(2,R). Our last task is to extend
this result to the smaller group Z nλ R, and this is the content of our last statement:
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Theorem 7.7 (Compare [AS2], [Z4]). Let (M, g) be a compact Lorentz manifold. Assume
that Iso(M, g) contains a closed subgroup G which is a compact extension of Z nλ R,
λ ∈ R∗+ \ {1}. Then Iso(M, g) contains a finite cover of PSL(2,R).

Proof. We consider the following subgroup of PSL(2,R):

H =

{(
λ
m
2 t

0 λ−
m
2

)
| m ∈ Z, t ∈ R

}
.

We will call a :=

(
λ

1
2 0

0 λ−
1
2

)
, {ut}t∈R :=

(
1 t
0 1

)
, and F :=

(
0 1
0 0

)
. Ob-

serve that aFa−1 = λF . Our assumption is the existence of an epimorphism between Lie
groups ρ : G→ H.

Let us consider ϕ ∈ G such that ρ(ϕ) = a. Let us call U ⊂ G the inverse image
ρ−1({ut}t∈R). The group U is a closed Lie subgroup of G, and its Lie algebra is a sum
u = R ⊕ k, where k integrates into a compact Lie subgroup of G. The R-factor in this
decomposition is mapped onto RF by ρ∗. The algebra u is normalized by ϕ, and with
respect to the splitting u = R⊕ k, the action reads like:

ad(ϕ) =

(
λ 0
B C

)
.

We infer the existence of Y ∈ u satisfying Ad(ϕ)(Y ) = λY , and such that ρ∗(Y ) = F .
In what follows, we will see Y as a Killing vector field on M , and denote by {Y t}t∈R the

1-parameter group it generates. We observe that {Y t}t∈R is closed and noncompact in G.
It is clearly noncompact because it is mapped onto {ut}t∈R by ρ. Would it not be closed, its
closure in G would be a torus, which would be mapped onto {ut}t∈R by ρ: Contradiction.
From all this discussion, one infers easily that the group < ϕ, {Y t} >, generated by ϕ
and the 1-parameter group {Y t}, is closed in G, hence in Iso(M, g). This group is clearly
a compact extension of H. Thus, in the following we will assume G =< ϕ, {Y t} >.
Moreover, we will also assume, without loss of generality, that 0 < λ < 1.

The begining of the proof follows [AS2] and [Z4]. The relation ϕ∗(Y ) = λY implies
that Y is a lightlike vector field, and it is a classical fact that nonzero lightlike Lorentzian
Killing fields are nowhere vanishing. Moreover, one sees that log λ is a negative Lyapunov
exponent for ϕ. One infers that there is a measurable Oseledec splitting for ϕ of the form:

TM = E+ ⊕ Eo ⊕ E−.

The bundles E+, Eo and E− are respectively associated to Lyapunov exponents − log λ, 0
and log λ. The bundles E+ and E− are 1-dimensional and lightlike. Moreover E− = RY ,
and there exists a unique measurable vector field Z such that g(Z, Y ) = 1 and E+ = RZ.
One also checks Eo = (E− ⊕ E+)⊥. It is shown in [AS2, Lemma 5.1] that the Oseledec
splitting extends to an everywhere defined, continuous splitting. Precisely, Z extends to a
continuous vector field, and ϕ∗Z = λ−1Z everywhere. It follows from Zeghib’s theorem 3.1
that Z is actually Lipschitz. By Rademacher’s theorem there exists Ω ⊂M a subset of full
measure, on which Z is differentiable. Hence T := [Y,Z] makes sense on Ω, and defines
there a measurable vector field. Moreover, from the relation DxϕZ(x) = λ−1Z(ϕ(x)),
available for every x ∈ M , we see that Ω is ϕ-invariant and ϕ∗T = T . For every s ∈ R∗,
and every x ∈M , we define F s

x = span{Z(x), (Y s)∗Z(x), Y (x)}.

Lemma 7.8. [Z4, Fact 3.4] For every x ∈M , the space F s
x is 3-dimensional, Lorentzian,

and does not depend on s ∈ R∗.

Proof. Let us fix s ∈ R∗. We first observe that for every x ∈ M , F s
x is 3-dimensional. If

this is not the case, there is a closed subset F where (Y s)∗Z belongs to span{Z, Y }, hence
is colinear to Z. The relation < Z, Y >= 1 =< (Y s)∗Z, (Y

s)∗Y > then shows that for
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every y ∈ F , we have (Y s)∗Z(y) = Z(y). Since (Y s)∗Y = Y , we get that in the splitting
TM = E+ ⊕ Eo ⊕ E− above F , the differentials DY ms have the form

DY ms =

 1 0 0
0 Km 0
0 0 1

 ,

where Km is a compact subset of O(n − 1). We would get that {Y ms}m∈Z has compact
closure in Iso(M, g), but we already checked at the begining of the proof, that this is
not the case. We conclude that F s

x is 3-dimensional for every x ∈ M , and this space
is Lorentzian because it contains two linearly independent lightlike directions Z(x) and

Y (x). Actually, the previous arguments show that (Y s)∗Z(x), (Y s
′
)∗Z(x) and Y (x) are

linearly independent for every s 6= s′ in R∗, and x ∈M .
The vector field T = [Z, Y ] is well-defined, and measurable on the subset of full measure

Ω. We next show that for x ∈M , the space F s
x does not depend on s ∈ R∗. To check this,

one considers, for a given s ∈ R∗, V = (Y s)∗Z −Z + sT . The vector field V is defined on
Ω. For x ∈ Ω the definition of the Lie bracket yields

(9) (Y t)∗Z(x) = Z(x)− t[Y,Z](x) + tε(t),

with limt→0 ε(t) = 0. One gets for m ∈ Z, and x ∈ Ω, (ϕm)∗V (x) = λ−m((Y λ
ms)∗Z(x)−

Z(x)) + sT (x). By (11), we obtain limm→+∞(ϕm)∗V (x) = 0, or in other words

(10) lim
m→+∞

Dxϕ
mV (ϕ−mx) = 0.

Let us denote by µ the measure defined by our Lorentzian metric g, renormalized to
ensure µ(M) = 1. For every k ∈ N∗, Lusin’s theorem yields a compact set Kk ∈ M of
measure at least 1 − 1

k
, such that T is continuous on Ωk = Ω ∩Kk. Poincaré recurrence

implies that there exists Ek ⊂ Ωk a conull set in Ωk such that if x ∈ Ek, one can find
a sequence (mi) going to infinity in N, with ϕ−mi(x) belonging to Ek for every i, and
limi→+∞ ϕ

−mi(x) = x. Because V is continuous on Ωk, the sequence V (ϕ−mix) tends to
V (x) = (Y s)∗Z(x)−Z(x)+sT (x). By (10) and Osseledec splitting properties, we get that
V (x) is colinear to Y (x). It follows that F s

x = Span{Z(x), T (x), Y (x)} for every x ∈ Ek,

and every s 6= 0. In particular, if s, s′ are in R∗, then F s
x = F s′

x for every x ∈
⋃
k∈N∗ Ek.

Since
⋃
k∈N∗ Ek has full measure, hence is dense in M , and because the distributions F s

and F s′ are Lipschitz (each one is spanned by 3 Lipschitz vector fields), we conclude that

F s = F s′ everywhere on M .
�

In the sequel, we will write F instead of F s, since there is no dependence in s. This
is a 3-dimensional distribution, which is Lipschitz and Lorentzian. Lemma 7.8 shows that
it is invariant by ϕ and {Y t}t∈R, hence G-invariant.

We denote by F⊥ the distribution orthogonal to F . This distribution is Riemannian.
An important remark is that F⊥ is tangent to a Riemannian, totally geodesic, transver-
sally Lipschitz foliation. To see this, we observe that the distribution Y ⊥ is the asymptoti-
cally stable distribution of {ϕm}m∈N (see Section 3.2 for the definition). Zeghib’s theorem
3.1 ensures that Y ⊥ is everywhere tangent to a codimension one, totally geodesic lightlike
foliation F1 (which is transversally Lipschitz). For the same reasons, given s ∈ R∗, the
distributions Z⊥ and ((Y s)∗Z)⊥ are tangent to codimension one, totally geodesic light-
like foliation F2 and F3. Thus F⊥ is tangent to F1 ∩ F2 ∩ F3, which is Riemannian
and totally geodesic. At this stage, we know that the leaves of F⊥ are smooth, but the
foliation is only transversally Lipschitz.

We are going to show that F is integrable as well. Since this distribution is only
Lipschitz, we will have to use a Frobenius-type theorem for Lipschitz distributions. Such
a result was proved in [Ra]. Before quoting it, we recall the following definition (see [Ra,
Def. 4.7]). Given a Lipschitz disctribution D , let us consider a Lipschitz local frame field
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(X1, . . . , Xk) of D . Each Lipschitz field Xi is differentiable on some set Ωi. One says that
D is involutive almost everywhere when for each (i, j) ∈ {1, . . . , k}2, [Xi, Xj ] belongs to
D almost everywhere on Ωi ∩ Ωj .

Theorem 7.9. [Ra, Th. 4.11] Any Lipschitz distribution which is involutive almost ev-
erywhere, is everywhere tangent to a transversally Lipschitz foliation, with C1,1 leaves.

To prove that F is integrable we are thus going to show:

Lemma 7.10. The distribution F is involutive almost everywhere. Moreover, it is of
class C1.

Proof. To show that the distribution F is involutive almost everywhere, we consider
U ⊂ M an open subset. If U is small enough, the distribution F|U is spanned by Y , Z,
and a third Lipschitz vector field X satisfying g(X,X) = 1 and g(X,Y ) = g(X,Z) = 0.
Observe that this property almost characterizesX, in the sense that onlyX and−X satisfy
those relations. We denote by U ′ the subset of U where X,Y and Z are differentiable.
This is a subset of full measure in U , and is contained in Ω.

If x ∈ U ′, then [Y,Z] = T and we saw that Z(x), T (x), Y (x) span Fx. Hence [Y,Z](x) ∈
Fx if x ∈ U ′.

Let us now show that [X,Y ] ∈ F almost everywhere on U ′. The vector field [X,Y ] is
measurable on U ′, hence Lusin’s theorem yields for every k >> 1 a compact subsetKk ⊂ U
such that µ(Kk) ≥ µ(U) − 1

k
, and [X,Y ] is continuous on U ′ ∩Kk. Poincaré recurrence

theorem yields E+
k ⊂ Kk a subset of full measure in Kk such that for every y ∈ E+

k ,
there exists a sequence (mi) satisfying ϕmi(y) ∈ Kk for all i, and limi→+∞ ϕ

mi(y) = y.
Let us now consider x ∈ E+

k ∩ U
′. Let (mi) be a sequence as above, witnessing that

x ∈ E+
k . The vector fields (ϕmi)∗X and (ϕmi)∗Y are defined in a small neighborhood

of ϕmi(x) contained in U . Here they satisfy (ϕmi)∗X = εmiX, where εmi = ±1, and
(ϕmi)∗Y = λmiY , what proves that ϕmi(x) ∈ U ′. Moreover, for every i ∈ N:

(11) Dxϕ
mi([X,Y ](x)) = [(ϕmi)∗X, (ϕ

mi)∗Y ](ϕmi(x)),

Equation (11) reads:

Dxϕ
mi([X,Y ](x)) = εmiλ

mi [X,Y ](ϕmi(x)).

Since x ∈ E+
k ∩ U

′, we have that [X,Y ](ϕmi(x)) tends to [X,Y ](x) as i → +∞. We
conclude that Dxϕ

mi([X,Y ](x)) tends to 0, so that [X,Y ](x) is colinear to Y (x). We
finally get that [X,Y ](x) ∈ Fx for every x ∈

⋃
k∈N(Ek ∩ U ′), hence [X,Y ] ∈ F almost

everywhere on U .
We proceed in the same way to prove that [X,Z] ∈ F almost everywhere on U ,

what yields involutivity almost everywhere of the distribution F . We conclude, applying
Theorem 7.9, that F is tangent to a foliation, whose leaves are of class C1,1.

In particular, F is (tautologically) C1 in the direction of its leaves. Recall that F⊥

is integrable as well, with totally geodesic, hence C1, leaves. It follows that F is C1 in
the direction of the leaves of F⊥. Since TM = F ⊕F⊥, we conclude that F is C1. Of
course, the same is true for F⊥. �

Lemma 7.11. The leaves of F are totally umbilic, and have constant sectional curvature.

Proof. For every x ∈ M , we call sF
x the Lie algebra of local Killing fields X around

x, satisfying X(x) = 0, and such that the 1-parameter group {DxXt}t∈R preserves F⊥x
and acts trivially on it. Observe that if X ∈ sF

x , then DxX
t preserves the splitting

TxM = Fx⊕F⊥x . One expects that generally, sF
x = {0}, but we claim that this is not the

case. To check this, let us fix a bounded orthonormal frame field (X1, . . . , Xn) on M , such
that X1, X2, X3 (resp. X4, . . . , Xn) span F (resp. F⊥). This yields a bounded section

σ : M → M̂ , defining a coarse embedding Dx : Iso(M, g) → O(1, d) (see Section 2.2.2).
Actually, because G preserves the splitting F⊕F⊥, the restriction of Dx to G takes values
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in a subgroup O(1, 2) × O(n − 1) ⊂ O(1, n). Projecting to the first factor, one gets for
every x ∈ M a coarse embedding D ′x : G → O(1, 2). Following the notations of Sections
3.3 and 4.3, we define Gx := Dx(G), and denote by ΛG (x) ⊂ ∂H2 the limit set of Gx. We
already observed that for every s ∈ R∗, Y (x), Z(x) and (Y s)∗Z(x) are asymptotically
stable directions associated to the sequences (ϕm)m∈N, (ϕ−m)m∈N and (Y sϕ−mY −s)m∈N.
The interpretation of the limit set as asymptotically stable lightlike directions (see Lemma
3.4) shows that ΛG (x) is infinite for every x ∈ M and dΛG (x) = 3 for every x ∈ M . Let

us now choose x in the integrability locus M int, and consider the generalized curvature
map κg (see Sections 4.1 and 4.2.1). The vector κg(σ(x)) is stable under Gx. Proposition
4.4 then ensures that the stabilizer of κg(σ(x)) inside O(1, 2) × O(n − 1) contains the

factor SOo(1, 2). Corollary 4.3 then shows that sF
x contains a subalgebra isomorphic to

o(1, 2), hence sF
x = o(1, 2). Indeed the isotropy representation being faithfull, sF

x is at
most 3-dimensional.

Since we showed that the distribution F is of class C1, it makes sense to consider, for
every x ∈ M , the second fundamental form IIx of the leaf F (x). Every Z ∈ sF

x defines
a 1-parameter group {DxZt}t∈R ⊂ O(TxM), which preserves the splitting Fx ⊕F⊥x and

preserves IIx. When x ∈ M int, the irreducibility of the action of sF
x on Fx forces, as in

Lemma 6.3, the equality IIx( , ) = gx( , )νx, for some vector νx ∈ F⊥x . Because M int is
dense in M , such an equality must hold everywhere. This shows that the leaves of F are
totally umbilic.

�

Lemma 7.12. The distributions F and F⊥ are C∞. The leaves of F have constant
sectional curvature. The universal cover (M̃, g̃) is isometric to a warped product N ×w
ÃDS

1,2
or N ×w R1,2, where N is a 1-connected complete Riemannian manifold.

Proof. The key point is to show the smoothness of F . For that, we are going to show
that for every x ∈ M , the leaf F (x) of F containing x is a C∞ (injectively) immersed
submanifold of M . It will show that F is C∞ of its leaves. But the leaves of F⊥ are
totally geodesic, hence C∞. We will conclude that F is also C∞ in the direction of the
leaves of F⊥, yielding smoothness of F on M .

Let us consider F a leaf of F , and let x ∈ F . Let us first remark that Zt-orbits are
lightlike geodesics (the parametrization might not be affine). Indeed, Z⊥ is at every point
the asymptotically stable distribution of {ϕ−m}m∈N, and Theorem 3.1 ensures that Z⊥ is
tangent to a totally geodesic, lightlike foliation. In particular, the Zt-orbit of x, t ∈ (−ε, ε)
is a piece of lightlike geodesic contained in F . Let y = Z−ε/2.x, and assume ε << 1. Let
us choose U ⊂ TyM a small neighborhood of 0y such that expy is injective on U , and
expy(U) contains x. A second important remark is that because F is totally umbilic, any
lightlike geodesic of M which is somewhere tangent to F must be contained in F . Thus,
if Cy ⊂ TyM denotes the lightcone of gy, then expy(U ∩Fy ∩ Cy) is included in F , and

there exists x′ ∈ U ∩Fy ∩ Cy with expy(x′) = x. Now choose V ⊂ U a small open subset

containing x′, and call Σ := expy(V ∩Fy ∩Cy). This is a piece of C∞ lightlike surface in
F , containing x, and that we call Σ. Observe that Z(x) ∈ TxΣ. Because Y (x) is transverse
to Z(x) and lightlike, then Y (x) must be transverse to TxΣ. As a consequence, for δ > 0
very small, the map ψ : (−δ, δ) × (V ∩Fy ∩ Cy) → M defined by ψ(t, z) := Y t. expy(z)
is a C∞ immersion, whose image is an open neighborhood of x in F . Smoothness of F
follows.

We now consider a leaf F of F . Considering a small piece of it, it is an embedded,
smooth, submanifold F ′ of M . The restriction of g to F ′ is called g, and its sectional
curvature denoted by K. We already observed that for x ∈ M int, the Lie algebra sF

x is
isomorphic to o(1, 2). The same computations as those made at the end of Lemma 6.3

show that K(x) is constant (on the Grassmannian of non-degenerate 2-planes) for every
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x ∈ M int. Again, density of M int in M show that this is true for every x ∈ M . Schur’s
lemma then say that all leaves F have constant curvature.

We then follow the same arguments as at the begining of Section 6.1.2 (before Lemma

6.4), and get that the universal cover M̃ is a product N ×X, where X is a 3-dimensional
Lorentz manifold of constant sectional curvature, and N is a complete Riemannian man-
ifold. The sets {n} ×X (resp. N × {x}) project on the leaves of F (resp. the leaves of
F⊥). The metric g̃ has the form gN ⊕wgX for some function w : N ×X → R∗+. To check
that we have a warped product structure, namely that w(n, x) does not depend on x, we
recall that given t 6= 0, for all x ∈ M , the directions Z(x), (Y t)∗Z(x) and Y (x) span F .
Moreover, the distributions Z⊥, ((Y t)∗Z)⊥ and Y ⊥ are the asymptotically stable distibu-
tions of (ϕ−m)m∈N, (Y tϕmY −1)m∈N and (varphim)m∈N hence are tangent to three totally
geodesic, lightlike, codimension one foliations F1,F2,F3, such that F⊥ = F1 ∩F2 ∩F3.
Thus leaves of F⊥ are included in leaves of Fi for i = 1, 2, 3. We can then apply [Z2,

Prop. 2.4] and conclude that (M̃, g̃) is a warped product N ×w X. The manifold (M, g)
is obtained as a quotient of N ×w X by a discrete subgroup Γ ⊂ Iso(N) × Homot(X)
(see point (1) of Lemma 6.5 and Remark 6.6). Theorem 6.7 ensures that X is actually

isometric to ÃDS
1,2

or R1,2.
�

We are now ready to conclude the proof of Theorem 7.7. If in the previous Lemma, the
factor X is isometric to R1,2, Proposition 7.2 ensures that Iso(M, g) is virtually a compact
extension of a discrete subgroup Λ ⊂ PO(1, 2). This is in contradiction with our standing
assumption that H is the group Z nλ R.

It follows that X is isometric to ÃDS
1,2

. Then Proposition 7.1 says that Iso(M, g) is
virtually an extension of PSL(2,R) by a compact Lie group, which is precisely what we
wanted to show.

�

Remark 7.13. The assumption that G is closed in Theorem 7.7 is crucial. Indeed, there

are flat Lorentz tori T2, with an isometric action of A =

(
2 1
1 1

)
. The isometry group

of such a T2 clearly contains a (non closed) subgroup isomorphic to ZnλR, but no subgroup
locally isomorphic to PSL(2,R).

7.4. Isometric actions of lattices. Proof of Corollary C. We finish this section
with the proof of Corollary C. Our assumption is that (Mn+1, g) is a (n+ 1)-dimensional,
compact, Lorentz manifold, and that Iso(M, g) contains a discrete subgroup Λ isomorphic
to a lattice in a noncompact simple Lie group G.

By Theorem A, there exists a finite index subgroup Λ′ ⊂ Λ, and a morphism ρ : Λ′ →
PO(1, d) with discrete image and finite kernel. Since Λ′ is a lattice too, we will assume
Λ′ = Λ in what follows.

If G is not locally isomorphic to PO(1,m) or PU(1,m), then Λ has Kazhdan’s property
(T). The morphism ρ : Λ → PO(1, d) provides an action of Λ on Hd, and it is known
that such an action should have a fixed point, [BHV, prop 2.6.5], namely ρ(Λ) should be
relatively compact. But ρ(Λ) is infinite discrete since ρ is proper: Contradiction.

Assume now that G is isomorphic to SU(1,m), for m ≥ 2. We first rule out the case
when Λ is not uniform. In this case, the thick-thin decomposition ensures that Λ contains a
subgroup virtually isomorphic to a lattice in Heisenberg group Heis(2m−1). The image by
ρ of this subgroup would yield a discrete, nilpotent subgroup of PO(1, d). Such subgroups
are virtually abelian, hence can not be virtually isomorphic to lattices in Heis(2m− 1).

Now, if Λ is a uniform lattice in SU(1,m), we may assume that it is torsion-free (again
by replacing Λ by a finite index subgroup). We can then conclude by an argument involving
harmonic maps. I thank Pierre Py for pointing this out to me. First, observe that the
Zariski closure of ρ(Λ) in PO(1, d) is reductive, because if not ρ(Λ), which is a discrete
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group, would be virtually abelian, contradicting that it is virtually isomorphic to Λ. Then
it follows from [CT, Corollary 3.7] that ρ(Λ) is virtually contained in a surface group. The
reader may also look at [CDP, Section 3] regarding this point. This forces ρ(Λ) to have
asymptotic dimension ≤ 2. This is a contradiction since the asymptotic dimension of Λ is
2m, m ≥ 2, and ρ : Λ→ ρ(Λ) is proper, hence a coarse embedding (see Lemma 2.7).

We have thus proved the first part of the corollary, namely G is locally isomorphic to
PO(1,m). By Proposition 2.9, we must have m ≤ n.

It remains to understand what happens when equality m = n holds. We then go back
to Theorem 5.1. There exists a compact Lorentz submanifold Σ ⊂ M which is preserved
by a finite index subgroup Λ′ ⊂ Λ. Moreover Σ is locally homogeneous, and its isotropy
algebra contains a subalgebra o(1, k) (with n ≥ k ≥ 2 maximal for this property). Again,
we will assume Λ′ = Λ in the following. The frame bundle of Σ admits a reduction to
O(1, k) × L, for some compact group L. Now Corollary 2.5 says that Λ coarsely embeds
into O(1, k)×L, hence into O(1, k). By the same arguments as in the proof of proposition
2.9, we have k ≥ n, hence k = n. It follows that Σ = M , hence M is locally homogeneous,
with isotropy algebra o(1, n). As a consequence, M has constant sectional curvature. Since
Λ has exponential growth, Proposition 6.1 applies and says that M is either 3-dimensional
and of curvature −1, or flat (of any dimension ≥ 3). In the first case, the study made in

Section 7.1 yields the structure of the manifold M . It is a quotient PSL(2,R)(m)/Γ, for
some uniform lattice Γ.

In the flat case, M is the quotient of R1,n by a discrete subgroup Γ of O(1, n) n
Rn+1. It was shown in Section 7.2 that Rn+1 splits as a sum E ⊕ F , with E a lorentzian
subspace of dimension d+ 1, with Γ acting by ±Id on E. Lemma 7.3 says that there is a
proper homomorphism from Λ to PO(1, d). Again, the same arguments as in the proof of
Proposition 2.9 show that d < n is impossible, hence d = n. As a consequence, the linear
part of Γ is contained in ±Id. This shows that M is a Lorentzian flat torus, or a two-fold
cover of such a torus. Corollary C is proved.

Aknowledgment: I warmly thank Pierre Py, Romain Tessera and Abdelghani Zeghib
for enlightning conversations.
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