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Abstract. Let ./ be ageometricaly finite hyperbolic surface with infinite volume, having
at least one cusp. We obtain the limit law under the Patterson-Sullivan measure on 7.4 of
thewindings of the geodesics of .# around the cusps. Thislimit law is stable with parameter
25 — 1, where § is the Hausdorff dimension of the limit set of the subgroup I of Mobius
isometries associated with .. The normalizationis:~Y/®-9 for geodesics of length z. Our
method relies on a precise comparison between geodesics and diffusion paths, for which
we need to approach the Patterson-Sullivan measure mentioned above by measures that are
regular along the stable leaves.

1. Introduction

The study of the geodesic flow in constant negative curvature and finite volume
started with the proof of its chaotic behavior by Hadamard. Later Hopf proved its
ergodicity, starting along line of results on the stochastic properties of hyperbolic
dynamical systems: acentral limit theorem was proved by [Rat] and [Si] inthe com-
pact case, was then extended in particular in [D-P], and alarge deviation extension
of the central limit theorem was also obtained more recently in [W].

A first result on geodesic windings was established in [G-LJ], by means of a
coding method. Such coding method is also applied to counting closed geodesics
in homology classes, for example by [K-S], [La], [P-P], and recently by [B-P] in
the case of Schottky groups. See also [A-D] for related results.

A seriesof works ([LJ1], [LJ2], [L€], [E], [E-LJ], [F2]) uses another approach,
based on comparison between geodesics and Brownian paths. These works mostly
deal with a hyperbolic manifold .# of finite volume, that can be represented by
the quotient of the hyperbolic space H under the action of a geometrically finite
discrete subgroup I' of isometries.

When T is not cofinite, an important role is played by the Hausdorff dimen-
sion § of the limit set (see [P], [Sul] or [Su2]). When the manifold is a surface
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admitting at least one cusp (this will be our fundamental assumption), § is known
to be larger than 1/2 and § (8 — 1) isthe highest eigenvalue of the Laplacian. The
associated eigenstate ® admits a representation by a measure . on the boundary
which can be used to construct a probability measure on T1.# (see [P], [Sul] or
[Su2]). This probability measure, called Patterson-Sullivan measure (or sometimes
Bowen-Margulismeasure), iscarried by the geodesi csthat do not end inthefunnels,
and isinvariant under the geodesic flow.

Our god in this article is to extend the methods and the results of the series
of articles mentioned above to the infinite volume situation, where it is natural to
substitute the Patterson-Sullivan measure for the Liouville measure.

We obtain the limit law under the Patterson-Sullivan measure on T1.# of the
normalized integral aong the geodesics of .# of any differentia 1-form, closed
near the cusps. Thislimit law is stable with parameter 26 — 1, and with arate that

we compute explicitly. The normalization ist = , for geodesics of length ¢.

The basic idea of the method is to transfer the problem from the geodesics to
the paths of some diffusion. This diffusion can be obtained by lifting the diffusion
associated with the fundamental state of ./ to the stablefoliation. We then estimate
the windings of the diffusion paths, continuing thereby along series of works on
stochastic windings (see in particular [Sp], [P-Y], [F1], [E]). This method also re-
quiresanew approximation procedurefor the Patterson-Sullivan measureon 71/,
as a limit of measures which are absolutely continuous and quasi-invariant along
the stable leaves.

Thisstrategy globally resembles the one which was already employedin [LJ1],
[LJ32], [L], [E], [E-LJ], and [F2] for dealing with the finite volume case, but itsim-
plementation is here much more complicated. For example, the Brownian motion
has to be replaced by the ground state diffusion, and, even after that, the geodesic
flow and the diffusion lifted to the stable foliation do not have the same invariant
measure anymore. Also, we need to look at excursions in each cusp relative to an
approximating diffusion for which the calculations are possible, and that above a
level which increases ultimately to infinity, in order to use the asymptotic form of
the generator. Moreover, the different excursions do not contribute any longer in-
dependently. These difficulties|ead to alot of estimations, for which the half-plane
model is convenient.

L et us describe in some extent how we proceed.

Firstly, since the Patterson-Sullivan measure m istoo singular to be related to
any good diffusion, we smoothen it, by some convolution along he stable horo-
cycles, into a less singular probability measure v, we prove to be quasi-invari-
ant with respect to the geodesic and the stable horocycle flows. Moreover, we
can recover the measure m as limit of the images of v by the positive geodesic
flow.

Thenweintroduce Z?, aBrownian motion with aconstant drift on the Poincaré
half-plane, whichisamode! for the generic stableleaf. Z° inducesadiffusion£° on
thetangent bundle 7., which admits v asaninvariant measure, and projects onto
the ®-diffusion Z®, associated with the fundamental eigenstate ® of the Laplacian
A on ./, and aso caled theinfinite Brownian loop on .# (see[A-B-J)).
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Then we have to perform the substitution of the geodesics by the paths of the
diffusion Z%. This we do by means of a contour deformation, for which we have
to use afirst passage time t; for Z%, and to control two residual terms. In order to
allow thiscontour deformation, we need to lift the given 1-form w on .4 to aclosed
1-form on each stable leaf.

So far, the problem relative to the geodesics is reduced to the problem relative
to the ®-diffusion. And this amounts to calculate the asymptotic law of windings
of Z% in the cusps of .. In order to estimate those windings, we compute an
asymptotic of & in each cusp, which depends only on the height in this cusp. We
then replace the ®-diffusion Z® by a modified diffusion Z, which behaves in the
cusps according to the computed asymptotic of .

In the cusps, the modified diffusion Z is a skew-product, hence we are able to
compute the winding law of its excursions. However, to get independence between
those excursions, we must show that the conditioning by the endpoints can be ne-
glected. It remains mainly to estimate the frequency of excursions of Z? in the
cusps, and to show we can replace the numbers of achieved excursions at time ,
by their deterministic equivalents.

The results of the present article have been partially announced in [E-F-LJ-1]
and [E-F-LJ-2].

2. Notations, basic data, and main result

Let H denotethe hyperbolic plane, with boundary dH, unitary tangent bundle 71 H,
Riemannian aread V', and (hyperbolic) Laplacian A.

Given(z, 7/, u) inHx H x dH, denoteby log [ B, (z, z')] theBusemannfunction,
that is to say the algebraic hyperbolic distance, on any geodesic ending at u«, from
thestablehorocycle H (z, u) determined by z tothestablehorocycle H (7', u). Inthe
Poincaré half-plane model, wehave B, (z, z') = p(z, u)/p(z, u), p(z, u) dencting
thePoissonkernel: p(z, u) = Im(z) x |z—u|~2if u # oo and p(z, 00) = Im(2).
We have the cocycle property:

B,(z, ZN) = By,(z, Z/) X Bu(Z/y ZN)- (21)

Let I' be a discrete torsion-free (non-elementary) group of Mobius isometries of
H, that we suppose geometrically finite. Let A = A(T") denote its limit set, with
Hausdorff dimension say 8. Recall that § is also the critical convergence exponent
of the Poincaré seriesrelativeto I'; (seefor example ([Su2], theorem 1)). Obviously
s <1

Let{u, | z € H} denotethefamily of Patterson (finite) measureson A associat-
edwith T, It can be defined, up to amultiplicative constant (that we definitively fix),
asthe only family of measureson A satisfying the foll owing geometric “ conformal
density” property:

dus(u) = BX(z, 7)) du,(u) foranyz,z/ inH (2.2)

together with the invariance property by the group I', in the sense that:
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Yu; =mpy, foranyyinTandzinH, (2.3

with the convention y*u := 1 o y 1. See for example ([P], lecture 2), [Su2], or
([Ni], sections 3.4 and 4.7).
We shall be concerned with the hyperbolic quotient manifold .# := '\ H, for
which we make the additional hypothesis. .# possesses at least one cusp.
Itisknown, dueto Beardon, seefor example ([Su2], page 265), that thisimplies:
§>1/2.
In particular

c(®) == / A+v)0dv=B(@G—1/2,1/2)/2 isfinite (2.4)
R

We shall identify the functions on .# (respectively on T1.#) with the I'-invariant
functions on H (respectively on T1H).
Set

D(7) = /d,uz = 1 (OH) = 2 (A), and A, = 8(5 — 1)/2. (2.5)

This is a function on H which satisfies A® = 2x,®. See ([P], theorem 1
page 301).
Note that for every y inT" we have

D(yz) = y*u:OH) = p(y HOH) = ®(2), (2.6)

which shows that @ is aso afunction on .#. Moreover, it is the fundamental ei-
genstate on .Z. See ([P], theorem 1 page 301), or ([P-S], page 177). Note that an
obvious corollary isthat the volume of .# isfiniteif and only if § = 1.

Let v denotethe canonical projection from 71H onto H aswell asfrom 71.# onto
I . We shall use on the unitary tangent bundle T1H the two following systems of
coordinates:

— firstly, (z, u) € Hx aH, thegeodesic running from z to u determining the unitary
tangent vector at the base point z; thisidentifies 71H with H x dH;
— secondly, given areference point zg € H, the point (z, u) of T1H (just defined
above) can be represented by thetriple (u, v, s) € 9H x dH x R, where
— v isthe starting point of the geodesic ending at « and running through z;
— s isthe algebraic hyperbolic distance from z to the orthogonal projection z1
of zg onto the geodesic vi.

Denote by dist (¢, uv) the hyperbolic distance from ¢ € H to the geodesic vii.
The following well-known identity isvalid for any ¢ in H, any distinct u, vin aH,
and any z on the geodesic v running from v to u.

cosh?(dist (¢, uv)) = By (¢, 2) By(Z, 2). 27
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(I ndeed, since thisis an intrinsic formula, we may consider the half-plane model
with u = oo and v = 0. Denoting then by (X, Y) the Euclidean coordinates of
¢ in this model, and by (0, y) those of z, it is elementary that B, (¢,z) = y/Y,
By(¢,2) = (X% +Y?)/(yY), and, using the classical formulafor the distance (see
[P]), that cosh?(dist (¢, uv)) = cosh?dist (¢, (0,1¢])) = (X2 + Y?)?/(Y[¢)? =
1+ X%/Y? = Bu(¢, 2) Bu(¢, 2).)

Define the normalized Patterson-Sullivan measure iz on T1H by

dm(u,v,s) = ||®||£Zc(8) x cosh? (dist(zg, uv)) dpzo(u)dpz(v)ds. (2.8)

Note that by the geometric property (2.2) for (u;) and by the identity (2.7) above,
m does not depend on the choice of the reference point zg. Henceit isintrinsic (it
depends only on the subgroup I"), and then it is T'-invariant. Moreover itis plainly
invariant with respect to the geodesic flow. It is sometimes also called (normalized)
Bowen-Margulis measure.

The Liouville measure A on T1H can be expressed in a similar way, for any
reference point zo, by:

di(u, v, s) = cosh? (dist(zg, uv)) du?o(u) dui‘o(v) ds, (2.9

where u!* denotes the harmonic measure at z. Recall that we have in the half-plane
model: du;’ (u) = p(z, u) du. Notethat the above geometric property for harmonic
measures holds, by changing § into 1: d,ui’,(u) = Bu(z,7) duf(u) forany z,z'in
H. As can be verified by a direct elementary computation, the expression of 4 in
the (z, u) coordinatesis: di(z, u) = du! (u)dV (z).

Recall that any I'-invariant measure 7 on T1H induces ameasuren on T1./.
In particular, denote by A the Liouville measure induced by X, and by m the Patt-
erson-Sullivan measure induced by m. Similarly, denote by dV = n*A the area
measure on ./ .

Recall that the Liouville measures are invariant by the horocycle and geodesic
flows. But 2 isfinite only when § = 1, whereasm isawaysfinite (see for example
([P], th.1 p. 309); see also corollary 1 below).

Observefromthetwo expressionsabovefor the Liouvillemeasurethefollowing
formula

/Fd\? =/Fon(u,v,s) By(z0. m(u, v, 5)) dpl (v) ds, (2.10)

valid for any u € aH, any zo € H, and any test function F on H.
Let6, and6;" denoterespectively the geodesic and the positive horocyclic flows,
on T1H and T1.# aswell. Moreover for any z = (x, y) € R x R*, set

T =07 OLogy- (2.11)
Observe the following important classical relation:

T(X»)’) T, = T(x,0)+yz’~ (2.12)



218 N. Enriquez et al.

This means in particular that the set {T; |z € R x R} congtitutes a group,
isomorphic to the orientation preserving affine group of R.

Let us introduce the Lie derivatives: for any smooth function F on T1.#, any
EinTLa, weset:

do d,
PLoF (&) = EF(g 6;), ZL1F (&)= d—tF(é 6,"). (2.13)

jt means and will mean the derivative at r = 0 with respect to ¢. We immediately

see that:

[Zo, 1] = 21, (2.14)

and

d d
LoF(ET(x,y) =y @F((?T(x,y)), L1F(ETx,y) =y aF(ET(x,y)l (2.15)

Sincethe flows act on theright hand side, while the quotient by I" takes place on the
left hand side, these two operations commute. Thus the flows indeed make sense
on 71./, and the translated measures 7/ and T;* induce respectively 7,*m and
T¥»onTY. In particular, to prove someformularelanve to T 4/, m, x, V and
to the rows it will be sufficient to establish it (for any test-function) at the level of
TYH, m, &, V.

We are now able to state our main result:

Theorem. For any 1-formw on .#, closed in some neighborhood ./ of the cusps
of ./ and m-integrablein .Z \ /", having residue r (%;, w) at the cusp #;, and for
any real «, we have:

lim exp [«/_10”25_11/
H

1=oo JTi g

w] m(dg) = ep 1ol C'(Nw)|.
[0.]

N
where C'(T, w) = || @], x ¢(8)? x ;ggg_zl;g; < Y 11 (2, ) /2P Y u2)2.

i=1
Equivalently: the law under the probability measure m of the normalized

integral tﬁ / w of w along the geodesics of length ¢ converges towards the
£[0,1]
two-sided stable law with exponent (25 — 1) and rate C' (T, w).

Here 24, ..., 2y are the cusps of .4, and the intrinsic parameter A(%;) is
defined in definition 2 of section 7.1.

Observe that the expression of the rate C/(T", ) of our limit stable law shows
that the form takes place only through its residues, and that the different cusps
asymptotically contribute independently.
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3. A new intrinsic measure onT!.#

We introduce a new intrinsic measure v on T1./. Itsfirst interest is to be smooth
along the stable leaves and quasi-invariant under the geodesic and positive horo-
cyclic flows, and to have its pullback measures 65 * v regularized from m by some
convolution along the stable horocycles of T1.#, and then converging towards m
as S increases to infinity.

Definition 1. Let § be the measure on 71H defined by:
dv(z, u) = | @152 (@) dpe(w) AV (2). (31)

The L2-normisrelativeto (.#, dV). Let v bethe corresponding measureon 7.7,
and denote also

dv®(z) = |02 ®2(2) dV (2). (3.2)

Remark 1. Observethat thedefinition of v isconsistent, sincethe I'-invariance of
®, V and the geometric property (2.2) of (u1.) imply the -invariance of 7. Observe
also that by definition of ® we have 7*v = V®, and then that v is a probability
measure on T1./ .

Remark 2. In the finite volume case, we have § = 1, ® constant, du(u) is pro-
portional to the uniform measure du, and then our measure v is proportional to the
measure m and to the Liouville measure A.

Proposition 1. The measure v is quasi-invariant under the geodesic and positive
horocycle flows:
-1
d(T,*v) &) = y9 Qom(ET; )
dv Dom(§)
z=(x,y)InNRx RY.

for any & in 1./ and

Note that this quasi-invariance property is what remains from the invariance of
the Liouville measure . under the flows, in the finite volume case.

Proof . As observed at the end of section 2, it is enough to prove the identity for v.
Let us use the invariance of the Liouville measure and of the coordinate u under
the flows, and the expression of the Liouville measure in the coordinates system
£ =&(z,u) € T'H. Wegetforany ¢ € R x R?* and any test functions H on H
and G on T1H:

/ G (& (e ) Ty) H(w) dpt () dV (2) = / GE (. ) Hw) dudl () dV (2).

Thus we obtain for any u € 9H, zo € H, and any test function G on T1H:

/G(E(Z,M)T;)Bu(zo, z)dV(z)sz(é(z,u)) Bu(z0,2)dV(z).  (33)
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Whenceusing thedefinition 1 of v, areferencepoint zg € H, the geometric property
(2.2) of (i), and the (z, u)-coordinates on T1H, we get:

fG(sT;)dﬁ@) = ||<I>||2‘2/G(s<z,u>n><b(z) Bl (20, 2) d itz (u) dV (2)

= ||<I>||52/G(é(z,u>)<1>on(s(z,u)T;1>
x BY (20, w(E(z, T ) Bu(z0, 2) ditzg ) dV (2)
(we used here the identity (3.3))

Pon(ET, Y By Mz wET )
=/G(§ X X =
Pom () By (z0, 7 (§))

dv(§)

Dom(ET )
= f G(&) x (D—ﬂ(;) x Bl M (&), wET, ) dv(®).

Theresult follows, sincewriting ¢ = (x, y), weclearly have by the very definition
of B,:

By t(m(§), mET; ) = Bz, (m(E0_10g ), (&) = y'°. o
Theorem 1. The measure v can be expressed by a convolution of m along the
stable horocycles of .# . Precisely, we have:

v=rc()t /R OH*m@+x?) 0 dx. (3.4)

Proof. As observed at the end of section 2, it is enough to prove the identity for
7 and 7. Fix atest function F on T1H and a reference point zg € H. Recall the
notation z = m(z, u) = 7 (u, v, s) in the (u, v, s) coordinates on T1H. We have
by definition (2.5) of @, (3.1) in definition 1, the geometric property (2.2) of (1),
and formula (2.10):

@3 f Fdp
- / F(z, u) dpz (w) dpaz () dV (2)
_ / F(z, 1) B (20, 2) BY) (20, 2) djicg () d g (w) dV (2)
= [ Fv5) B0, B o, 2 Buzo. 2) iy (0) ds diaco) ey ().

Consider now the intersection z’ of the stable horocycle H (z, u) with the geo-
desic wit. So we have, using both coordinate systems on T1H: &' := £(z/, u) =
E(z,u)0", = (u, w, s") for somerea x and s’. Let us perform the change of vari-
able: s — ', keeping the other variables u, v, w, fixed. Observe that the map
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& = &(z, u) —> &' commutes with the geodesic flow, and therefore that ds = ds’.
Thususing (2.1), (2.7) and (2.8) we have:

[ Fas

11152 / F(€'67) B3 (20, 2) B, (20, 2) Bu(z0. 2) dpt" (v)
X dﬂzg (u) d:“«zg(w) ds’'
c(®)~t / F(£'67) B (20.2) B (z0.2) BY (2. 20) BS (Z'. 20)

x dpl (v) di(u, w, s")

et f F(E'05) B2, 2) BY (2, 2) dul (v) diin(u, w, s')

c@®t / FE'67) By, (&, ) dpl (v) din(§)
=c@®* f F(E07) By  (T(£),2) By( (&), 2) ditls o) (v) diia (),

wherez = w(£6;) and v = £0.F60_«.

Itremainstoshowthat By, (7 (£), 2) By((§), 2) dil ) (v) = (14+x%) dx.
Now, thisisan intrinsic formula (x is adistance along the horocycle H (¢)), thusit
isenough to proveit in aparticular model for H. Let us take the half-plane model,
Withé6 =u =occand&6_, = w = 0.

Then we easily see that v = yx, Bo(z, 7(€)) = By((£),z) = 1+ x2, and that
duj;(s)(v) = p(@(),v)dv = (y(1 + x?)"Lydx, where y = Fm(n(£)). The
result follows. O

Taking F = 1 and using the definition (2.4) of ¢(8) and remark 1, we immedi-
ately deduce

Corollary 1. m isa probability measureon T1./4.

Remark 3. In particular we recover for § > 1/2 that m is finite on 71.#, then
that 1, ® u, does not charge the diagonal, and then the classical result that ., is
atomless.

We also deduce the following approximation result on the measure m:

Corollary 2. The measure 65v convergesas S — +o0, in the sense of the eval-
uation on each bounded continuous function on T1.#, towards the normalized
Patter son-Sullivan measure m.

Proof . Thisis a straightforward consequence of the following formula, valid for
any rea S:

(95)*v:c(5)*1/R(e;Sx)*m 1+ x9)%dx. (3.5)

Indeed, using theorem 1, the commutation formula (2.12), and the geodesic invari-
ance of m, we get:
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c®) [ Fawesy = o) [ Feonave
= [ Feetos e @+ dx
=/F($959;5x)dm(§) (L+x?)Pdx

= / FEOFs )dm(E) 1+ x%)7 dx. O

4. Diffusions onH, on.#, and onT.#

Let us from now on identify H with its Poincaré haf-plane model R x R*, and

denote by z = (x, y) the current point. Recall that A = y? (%22 + aax_zz)

4.1. Thediffusions z¢

Let w; and W, denote two independent standard real Brownian motions, defined
on(Q, 7, P). Set

t t
V= e)(p[wl—l-(a—%)[], Y[ ::'/0 yszds, Xt :ZA Vs dWS! Z;S = (xlt yt) € H.
(4.12)
For all 6, Zf isthediffusion on H starting frome, = (0, 1), with invariant measure
y?=24dxdy, and generator
1o lais,? (o N 92
27 T2 Y dy 2 \dy2  y oy oax2)’
Similarly, denote by Z¢ the analogous process with § replaced by d < [0, 1]. In
particular, Z2 is the Brownian motion on 1.
We gather in the following lemma the facts we shall need, relating to these
diffusions.

4.2)

Lemma 1. (i) Denoting by P; the Brownian semi-group on .#, we have for any
£ e T1.4, test-function fandr > 0: E(f orn (STZ[o)) = P, f(m(&)).

(ii) Tya isaright diffusion on the orientation preserving affine group of R.

(iii) ay := (x+x;)/y; isasymmetrical ergodic diffusion processon R, starting
from x, and with invariant measure having density x —> (1 + x2)~%.

(iv) For eacht > 0, Tz‘l1 has the same law as T yo.

Proof. (i) Recall the classical identification between T1H and the set of Mdbius
isometries of H, and that in this identification we have for any ¢ € T1.# and
any z € H: £(z) = m(£T,), which remains valid with & € TY.# andz € .. In
particular, we see that n(gTZf)) = g(Z,O) isaBrownian motion on ./#, started from
7 (§).

(ii) We have indeed for any d € [0, 1]: TZ*f}TZ;JH =Ty =Tz 00y, which
is independent of the sub-o-field &, generated by the coordinates until time ¢.
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A d _.d
Here z¢, standsfor (Xy—dx' y;“) ©, denotes the standard shift on time, and we

t

naturally write Z¢ = (xZ, y).

(iii) It®'s formula shows that do; = ,/1+a,2dzi)t + (1 — 8)a, dt, for some
Brownian motion wy, and thus that «, is a diffusion process with generator
G = (1+"‘ ) L+ (1-8)a 2% 4 Then we have for any test-functions f and g:

[ Gre@s@aradtia=-3 [ f@g@atradt-de
R R

Therefore G and the semi-group of «; are selfadjoint with respect to the finite
measure (1 + x2) % dx.

t
(iv) Since Z} = (x1, yb) with y! = exp(w, +¢/2) and x} = / yrdwg, we
0
have: 1/y} = exp[—w, —t/2] and

t
—x}/yt= —/0 explw, — w; + (s — 1)/2] dW,

t
_/ exp[wt—s — Wy — 5/2] dW,;_s,
0

s0 that for each fixed ¢:
51 . _xtl / / (law)
Z[ = y exp[w _S/z] dW_yveXp[w[ _t/z] - ( [7 )s
t t
/. /. 1_ (law)
where wy = w;—y — w; and W, := W; — W,_,. This shows that T = TA1 =
T(x o, =T0, foreechflxedt>0 O
1)1 ) Z;

4.2. The stopping time t;

Our contour deformation in section 6 will use the following stopping time: set
fort >0
=inf {s > 0| y; = y,e'}. 4.3

Itisclear from the formula(4.1) defining y, that 7, ismerely the first passage time
of some real Brownian motion with constant drift.
We collect in the following technical lemma all we shall need to handle ;.

Lemma 2. (i) Let I, bethe usual modified Bessel function. Thejoint law of ¢, and
x, isgiven by: for anyreal w andanya > —(8 — 1/2)2/2

E [eXp(«/—_lw Xy, —at) ]
./2a+(3—1/2)2(|w|)/1m(|w|et)-

— =121 g
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(ii) Thelaw of e~"x,, convergesast — oo.

(iii) WehaveE (e=7) = exp [_ (1/2 8+ -1/22+ 2a) t],for any
a>—(8-1/2%/2,andE(r;) = t/(8—1/2), E(t?) = (§—1/2) 212 +(5—1/2) "3t

(iv) Foranyq €]1/2, 1 1, —t/(8§ — 1/2) = o(t1), almost surely ast — +oo0.
Proof. Set U, := y(Y~1(1)), A, := YY) and o; := inf{s > O|U; = €' }.
We have then (x,) = Y5, y; = U(Y), 05 = Y (1)), Ay = [y U %dr, Ao, = 1,.
Moreover the generator of Uy is %% + 24 whencedUy = dB; + (8/Uy) ds: Uy
is the Bessel process with index (28 + 1). Let us look for a C? function g on R
such that M; := exp(—a Ay — 0 5)g(Uy) be amartingale, for fixed positive a and
o. We have

M, = (D) + /0 “exp(—aA, — or)g'(Uy) dp, + b /0 " exp(—aA, — or)

x[8"(Wp) + 2—5 W) —2(0+ =

= UE) g ]ar.

We must then have g” (1) + 28g'(u)/u — 2(au=2 + 0) g(u) = 0. Set h(u) =
ub=Y2 g(u); thisis a C? function on R which satisfies:
') + h' () Ju — (29 +Qa+6— 1/2)2)u_2) h(u) = 0.

Therefore we have h(u) = Iy (u+/20) and g(u) = u/?>? I, (u+/20), where
2%

ba) =G -1/22 t2aand,(x) =" x 3 <
k>0

22D (r +2k+1)°
Finally we have by the optional sampling theorem

lw|?

Flew(Vlwx, —an)] = [E[exp<_ d

= O 1y () [ Iy (wle).

or — Aa,)j| =g(1)/g(e")

Thisproves (i) fora > 0.
For getting (ii), it isenough to change a into 0 and w into we™". Indeed, this gives

[E[EXP(V—lweftxr,)] = G121 1(5—1/2)(leeft)/1<5—1/2)(|w|)

—1
100 '+ 1/2) w? 5
- (]; 4kk!r(3+2k+1/2)) € L°®).

Sincet; =inf{s > 0| w; + (§ — 1/2)s > ¢}, (iii) follows easily from the Camer-
on-Martin formula. And this allows to compl ete the proof of (i) for negative a, by
analytic continuation. Finally, (iv) is straightforward from the following observa-
tion:

t=logy, =0 -1/ +w, =6—1/2) 1 +o(r)). O
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4.3. Thediffusion £ and itsinvariant measure v

Forany & € TY./, set

g =& Ty, and (4.4)

D’ = L5+ 45+ (25— 1) Lo =D +25 Zo. (45)

Remark 4. We have on T1H:
DY(Fom)(T)=A[Fon(§T)] = A(Fo&) = (AF) o0& = (AF) o (£ T),

whence DO(F o ) = (AF) o r, which remainsvalid on T1.#. But if § 0 then
DY(Fom)# (A°F)om.

Lemma 3. The process &/ is the diffusion on T1.# starting from £ and having
generator % D?. Moreover it admits v as an invariant measure.

Proof. The diffusion property is straightforward from lemma (1, ii). Let usfix a
test-function F on T1.#, and a positive r. From (2.15) we get A’[F(£T.)] =
(D’ F)(£ T). Finally using theorem 1, the commutation formula (2.12), the geo-
desic invariance of m, and lemma (1, iii), we have:

/[E(F(gf))dv(g)=||q>|| // 9+Tza )dm(s)(1+x2)*5dx
= ||, f/ setﬂ )dm(g)(1+x2)—“dx

=@l f/ F ge; (1+x2)—5dxdm(g)=/de.
R

O
4.4. (g)) isthe @-diffusion

We construct here, by projection of the stationary diffusion &°, a stationary dif-
fusion on ./, related to the fundamenta function @, that we call “ ®-diffusion”
and denote by Z®, and that we shall study in section 8 and use in section 9 to
perform the probabilistic approach of the geodesic behavior. This role is played
by the Brownian motion in the finite volume case. Note that the lift to H of this
®-diffusion happens to be the diffusion considered in [Sul], where the path mea-
sure is constructed from the semi-group via Kolmogorov extension theorem. The
major reason of the relevance of this ®-diffusion in our problem is that it is a
Brownian motion conditioned to converge to the limit set A(I"), according to the
Patterson measure 1, when started from z. (See [E-F-LJ-3]. We shall however not
need this fact here).
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Proposition 2. Under the probability law v ® P, the projection x (£9) of the sta-
tionary diffusion £ on T1.# is Z?, the stationary ®-diffusionon .. Itissymmet-
rical with invariant measure V'®, and generator % A® = % O 1A — 1, =
% A+ (Vlog @) - V. (Weidentify the function @ with the corresponding multipli-
cation operator, and recall that A, := §(§ — 1)/2, see (2.5)).

Proof. A straightforward computation shows that y=1A% o y173 = A1 — 23,
Hence we have for each test-function ¢ and each ¢: [E(y,k6 o(T

-1
[E(‘p(TZ} )
Thus using lemma (1, iv) we get: E(ytl_‘s go(Tstl)) =Ml E(¢(T29)).
In particular, using lemma (1, i), we have for any test-function fon.,anytand
any & e T

E(yi? fon@ETyh) = e E(fonET,0) = e B S, (46)

Consider now 0 =19 < 11 < --- < t, and test-functions fo, ..., f, on .. \We
have, using proposition 1:

/ [ ]i([)ﬁon(étf)dv(é)dﬂ”
_ //foon(éTZ}ll) x Ef on(éTZ’?llTZ;si)d«Tzfl)*v) &) dP
= [ [ow= x @fon(e7,7) x (/@) 0 mee)
9 H i 0751y 0 ©0 )a6) P
-/ E[(yq)l—a x (@) o (67,1) ] x (/@) o 7@
xE []‘[ fio n(sf,i_,l)>} dv(§),

i=2

since the increments of Tys are independent, as already noticed for lemma (1, ii).
Thus using (4.6) above, we get:

//Hﬁ- o w(&))dv(€) dP
i=0

= ¢t f (% x le(d)fo)) (&) x E (Hﬁ on(éé,._,l))> dv(§)
i=2
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— o holn /(% X P(;,l—t,,_l)(fn—l X X P(tz—tl)(fl X le(fbfo)) . )) (7 (§))
dv(§)
(by inductiononn € N)

— ¢ holn fo x P,

5 % (X Py (f2 X -+ X Pty (@F) -+ ))dV

(since*v = V® and by symmetry of A® with respect to V ®)

=E (]‘[ﬁ(fo)) : O
i=0

Remark 5. The preceding statements are sufficient for our purpose. However, it
is possible to show some more relation between the diffusions considered here.
Indeed, by using the infinitesimal version of the quasi-invariance of v and the ob-
servation that DO(® o 1) = (A®) o T = 24,P o 7, we can compute the adjoint
of D? with respect to its invariant measure v. We find that this adjoint equals
D® = (®on) D% (& om) — 224,. See [E-F-LJ3]. Moreover, we see that
D®(f om) = (A% f) o 7 for any test-function f on .#, athough D*(f o ) #
(ASfyom.

5. Lift of a 1-form to a closed 1-form on each leaf
5.1. Contribution of a 1-form

Fix a 1-form w on .#, closed in some neighborhood ./ of the cusps of .# and
m-integrablein .Z \ V.
We are interested in the asymptotic behavior of the following quantity:

Ji(w) :=f exp[\/—_lrt/ wi| dm(€)
0 £[0.1]

= exp |:\/__17t/() fw(EGAs)dS} dm(§), (CHY)

v

wheret is positive, r; 1= t%;—ll, and where the function f,, is defined on 71/ by:

fo®) = (0@).E), where &=(m(£).8), Tl /. (52

Recall that £[0, 1] means {m (£6,)|0 < s < t}, that isto say the geodesic of length
t starting from &£. Note that we haver, < 1/t.

Let usdecompose w inw = & + ' +d F, with F of classC* on ., & smooth
on ./ , harmonic in some neighborhood of each cusp and vanishing out of another
neighborhood of each cusp, and ' m-integrable, vanishing in some neighborhood
of the cusps. Note that @ is defined up to some smooth form null far from the cusps
and near the cusps.
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Lemma 4. |J;(w) — J;(®)| convergesto zero ast goes to infinity. Thus we have

lim Ji(w) = lim J,f, where
I—00 —>0o0

7= exp |:«/—_1t2611 /t f(é@s)dsi| dm@E), and f:=f;. (5.3)
0

T/

Proof. We have

t
(@) — J(@)] < / ’1—exp [d—_lr, /0 de@es)ds] m(de)

+/ ‘1—exp [«/—_h, /Ot fw,(ses)ds]

m(d§).

t

Now | fyr(E65)ds = F(£6,)—F(§),and F (£6,) isstationary by the geodesic

0
invariance of m. Thus the first term on the right hand side above goes to zero.

To deal with the second term, we observe that f,,, as «’, is m-integrable on
. Thus the ergodic theorem applies, to ensure the almost sure convergence of

t
t_1/ fur (E05)ds towards/fw/ dm.Now thislastintegral isnull by theinvariance
0

of m under the symmetry £ —> —& (which amounts to exchange the coordinates
u and v), while f,,(¢) becomes — f,,,(¢) under this same symmetry.
This concludes the proof, sincer, < 1/t. |

5.2. Coordinatesin the cusps

Denote by #4, ..., ?y thecuspsof .Z.
For each fixed cusp 2;, consider the half-plane model for H adapted to #;, that is
to say such that #; = oo and such that the maximal parabolic subgroup of I fixing
2; isprecisely Z, that isto say the isometry subgroup of horizontal tranglations of
integer lengths. Denote by (x', y') € R x R’ the canonical coordinatesin this par-
ticular model adapted to the cusp #;. Then consider the horocyclic neighborhood
of 2; a height a, that isto say ./"; (a) := I'\{y’ > a}, for positive a.

Let usfix a large enough, so that 4" (a) = Z\{y' > a}, and that the distinct
A'i(a) bedisjoint. Finally Set A (a) 1= UN_| Vi (a).
S0 Z; = {0 < x! < 1}N{y’ > a} isafundamental domain for ./";(a), and the
metricin Z; isgiven by

de? = ()72 (@x)? + @y?). (54)

L et us specify the @ we choose in the decomposition of w in section 5.1: wefix
b, > a and asmooth function 2 on R, suchthat » = 0on [0, b,] andh = 1 on
[b, + 1, oo[, and we take
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N
o= Z (hoy') rl dx'. (5.5)
i=1

The coefficients r! = r(2;, w) are the residues of @ and of w (near the cusps).
Notethat (dx') isabasis of the one-dimensional cohomology H (A (a)).
Notefurther that by definition of #gand f (see(2.13) and (5.3)) weget from (5.5):

N
f=> (hoy)r Zox'. (5.6)
i=1
Of course we may extend any function on H (respectively on .#) to afunction
on T1H (respectively on T1.#), by identifying for example x’ and x* o .
For any £ € T1./ et 7z denote the covering map from H = R x R% onto.#
defined by 7z (z) 1= w(¢T;). So ng‘cb is naturally a 1-form on H. Moreover using
(2.15) we get:

nfdx' = d(' omg) =y (L1x)ET) dx + yTH(Lox")(ET) dy,

and then

mid () =yt AGET)dx +y 7t f(ET) dy, (57)
with

N
=) (hoy)rl Z1x'. (5.8)
i=1

5.3. The conjugate function

We construct hereafunction g on T'1.# whichis conjugateto thewindingsfunction
f. That isto say: we complete the winding form f(¢§T;) dy/y into aclosed form
wg on the leaf through &, by adding aterm g(¢7;) dx/y. We also check that this
new form is close to the pull-back by 7z of the winding form & on .#. This will
be crucial in section 6 in order to replace geodesics by diffusion paths.
Lemma 5. Set ~

fi=(&o-1) fi— Z1f. (5.9
Then thisis a compactly supported smooth function on 71./.

Proof. We use the commutation relation (2.14) between %o and ¢4, (5.6) and
(5.8) to get:

N
flzz h/oyi x rl (goyiglxi—glyigoxi>,
i=1

which is smooth and vanisheswhere i’ o y* vanishes, namely outside the compact
7 (UL M\ <y < b}). o
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Lemma 6. Set
A
Wi (&) = — /0 ¢ $(50,) ds, (5.10)

for Ain [0, oo[, £ in T1.#, and ¢ a continuous function on 71.#. \e have
0]
g .= Alim Up L1f exists in m-probability. (5.11)
—00
(ig— fi= —Alim U 4 f1 is bounded, with bounded .o and %1 iterated deriv-
—00

atives.
(iii) g issmooth along the stable leaves, and decreases exponentially fast above the
funnels.

(V) (Lo—Dg=21f.

Proof. (i) UaL1f(€) = Ua(Lo— 1) f1(§) — Uaf1(§) (by Lemmab)

A d A ~
= —/ e_sd—fl(S@s)dS +/ e f1(665)ds — U a f1(§)
0 s 0
= 1) — e f1(E04) — U A f1(5)
convergesas A — oo towards f1(&) — U oo f1(€) in m-probability, by lemma5.
(ii) By the above we have ¢ — f1 = —% ~ f1, Which is bounded by lemma

5 again. Moreover since %o and % 4 commute, the #o-derivatives of g — f1 are
bounded as well. Finally we uniformly have:

L1 Uy = U) [15) = L1 /A ™ f1(565) ds
- /A 2 L1 fiE0) ds —> ., O,

whence Z1(f1 — 8) = L1Uoo f1 = I|m Lﬁl%Afl isbounded by || glfl I

The same argument works for higher order derivatives.

(iii) Firstly, the smoothnessis clear from (i) and the smoothness of f3.
Now for & inafunnel, denote by ¢ (&) thefirst timer at which £6, hits./"(a). Since
fisnull on &6jo s (¢)], We have

o0
e = / L €0 ds =0 g,
t
and thus we get

|g(&)| < exp[—dist ((§), N ()] x sup |g(x (@A (a))].

(iv) Thenononehand (%o — 1) and % 4, commute and we see asin (i) above:
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(Lo—DUsLLfE) = L1f(E) — e A L1f(EOR) —>uny L1f(E)

in m-probability, and on the other hand:

(Lo—DUAZL1f(E) = (Lo—1) f1E)—e M (Lo—1) f1(EOA) —(Lo— DU f1(£)

— s (Z0 = D(f1 — oo f1) (&) in m—probability. 0
Corollary 3. Set
wg(2) 1= g(ET) y tdx + f(ET) y Hdy. (5.12)
Thisis a smooth closed 1-formon H, for any & in T'1.#. Moreover
(mid — wg)(2) = (fi— g)(ET.) y tdx isabounded 1-formon H.

Proof. The relation of lemma (6, iv) exactly means that the coefficient of dewg
vanishes. The formula for 7 — w; is clear from (5.7), and the boundedness is
clear fromlemma (6, ii). ]

6. From geodesic flow to stochastic flow

We take here advantage of the closedness of the form we to change the integra-

tion path in J,f (introduced in (5.3), Lemma 4): we substitute the diffusion path
{£T,5 |0 <s < 1} for thegeodesic £[0, ¢]. In this contour deformation two resid-
ual terms appear, that we prove to be negligible. In the last part of this section, we
use the proximity between wg and @ to come back to the form & (introduced in
section 5.1, formula (5.5)) on .#.

6.1. From geodesics to diffusion paths

Using corallary 2, we get from (5.3): almost surely

_1 t+|0g ys
75 = lim /1 exp [«/—h%l/ f(é@s)ds:| dv(£)
T4 |

§—o00 g ys
] 1 (0,yse")

= lim / exp \/—1tm/ we | dv(§),
S—o0 Jrl y ©,ys)

where we recall from lemma 6 and corollary 3 that thereis afunction g on T1.#,
bounded in n‘l(,/% \ ./V(a)), such that

we(x, y) = g¢T(x y) d7x + f(ST(x,).))‘i—,y is aclosed smooth 1-form on H.
Denote by ®, the shift on (2, &, P).

Note that we have in particular (by definitions (4.1) and (4.3) of y; and 7;): 7; o

Os+S=inf{r> S|y =yse'}andy; o Og = yrc0.+s = yse'. Wewrite:
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(0.yse") VARICH (x5,Y5) VARICH
f wg = / wg +f Wg —f wg
(0,ys) z ©,ys) (0,yse")

)
N

z (x5.ys) z
= / wg | 0 Og + / wg — f wg | o BOg.
Z ©0.ys) ©0.y)

8
0

Then we have (using lemma 1):

(xs,y5)
Jo
(©,ys)

Fix now some strictly positive ¢.

Weknow from lemma 1 that thelawsof {«s | S € Ry} formatight family. Thus
thereexists A = A, > O such that for dl S € Ry we have: P(as € [—A, A]) >
1—-e.

We also know from corollary 2 that the family {65v | S € R} istight. Thus
thereexists 1 = h, > A suchthat for al S € Ry we have: 03v (7 ~1(A (h— A)))
<é€.

Herewe dlightly modify the definition (see section 5.2) of the horocyclic neigh-
borhood .4 (1): wefix it such that (for any positive #’) for a given reference point
z0 € M wehave: h' = dist (zg, N (1)).

Set B, 1= sup ‘g(n*l[,/%\t/!/(h)]> ‘ < 00. Wehavefor al B > B,:

< |xs/ysl x sup )g (6 Tq0.x51.3)) ‘

Xs
= ‘/C; g(éT(x,ys))dx /ys

= |as| x sup ‘g <§9|og )’s91[0,|w5|]> ‘

VR P [sup 'g (éelog )’SQI[O,IaSI]) ‘ = B]

<8+U®|P[Sup‘g(éemgyS@[tA’A]) ‘ >B]

< et v@P [ (Eblog s g ) NN () # 0]

<e+v@P [ (56l0gy5) € N (h—A)]

< e+ P(ys < 1)+ sup Ov (n’l(/t/(h - A)))
§>0

< 3¢ forS > So.

On the other hand, we know from lemma 1 that v is an invariant measure for
g = £T,», and thus we have:

z (e €") (g, €")
T l t
f’wg 0By = / e o@s(g)/ [T
0,y+,) (0,¢") (0"
Then
(Xr,vet)
Jow
(0"

= e_t

< |a,| x Sup ‘g (Setgi[o,mnl]) ‘

X
/(; g(éT(x,e’))dx
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Now lemma (2, (i7)) showsthat the laws of {«, |+ > 0} again form atight family.
Thusthe preceding argument applies again, and so we have just proved that thetwo
extratermsin our contour deformation (multiplied by ;) asymptotically vanish in
v ® [P-probability. Therefore we obtain that

th - (/Tl , exp |:«/—1t26_—11 /Za g } du(§)> o ®g goesto zero in probabil-
M [O.T[]

ity.
Since v isan invariant measure for 5,‘3 = gTzf, we see that the law of

/ exp «/—ltﬁ / we dv(§)> o ®g does not depend on S.
T/

[0 7]
Thus we deduce in particular the foilowing:

Proposition 3. J/ — [E( exp «/_1;%1/

T/

wg [dv(€) ] goes to zero
Z{o )
ast — oo.

6.2. Backtowindingson .#

We now take advantage of the proximity between wg and ng‘ @ to come back to the
form o of section 5 (see (5.5), (5.7) and (5.12)).

Lemma 7. tﬁll X / (we — ng‘d)) goesto zeroin L2(v @ P).
75[0,7,]

T
proof . We deduce from corollary 3 that / (wg — ngd)) = / (fi—28
79[0,7] 0

(%) dW/ is a square-integrable martingale, which using lemmas 2 and (6, ii) im-
plies

/// | f1— g2 ds dP dv (&)
L2(v®ﬂ3’)

<t 17 x E(r) x Il 1 — gll%
5-3/2
=0 <t51/2> — 0. O

re X / (wg — ng‘d))
79[0,7/]

We deduce from proposition 3, from lemma 7 above, and by definition of ¢
(in section 5.2):

Corollary 4. J/ — E (/ exp |:«/—1t25—11 / d)} dv(é)) goestozeroas
T/ 7083[0,7,]

t — o0.
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7. Asymptotics for @ near the cusps

We shall need estimateson ® and V& at two crucial steps. We establish them now.
In the estimate of ®, a new intrinsic parameter of each cusp Z appears, that we
denote by A(2). Weintroduce it in two ways, before performing the estimates.

7.1. Theintrinsic parameter A (%)

Let us introduce some intrinsic objects relating to some fixed cusp 2. We fix
first some horocyclic neighborhood ./ (#) of 2, small enough to be homeomor-
phicto T x Ry, and to each z € .4'(2), we associate the line element, say
£&(P,z) € Tzl,// , based at z, orthogonal to the 22-horocycle passing through z, say
H(?,z) = H((2, 2)), and pointing at 2. H(Z2, z) haslength

U(P.2) =inf{x > 0|&(2. )0 =&(2.2)). (7.1)

Then we observe that there exists a unique continuous map x — &.(x) from
[0, £(2, )] into T2/ = w=1({z}), such that &,(0)0r, = &(2, z)0r_ and such
that for each x the half-geodesics &, (x)0r, and £(2, 2)06r_ are asymptotic.
Observe aso that, due to the geometric property (2.2), the Patterson measure .,
Seen as ameasure on TzllH] by means of the coordinate system (z, u), makes sense
on Tzll// aswell. Thenwe set for any z € A4 (#) andany x € [0, £(Z, 2)]:

Mo (6. 065.) = €227 x . (600, xD)). (7.2

This defines a positive measure M»_, on the horocycle H (2, z).
By identifying £ (2, z) with the geodesic it generates, we may see M» , asamea-
sure on the set %5 of all geodesics pointing at 2.

Lemma 8. The measure M, depends only on the horocycle H(Z, z), and, as z
goesto #, My, convergesweakly, on the compact set % of all geodesics pointing
at 2, to someintrinsic positive measure M.

Proof. Let us consider asin section 5.2 the half-plane model for H adapted to 2,
that is to say such that 2 = oo and such that the maximal parabolic subgroup
of I fixing 2 is precisely Z (that is to say the isometry subgroup of horizontal
tranglations of integer lengths).

Consider also the measure u» on R, relative to this choice of model, defined by:

diy) = p~°(z, u) du, (). (7.3)

Note that it does not depend on the point z € H.
Let us use the following elementary identity on Mobius transforms:

p(gz, gu) x |g'(w)| = p(z, u), (7.4

foral zinH, u indH and g isometry of H.
The norm is the Euclidean one in our half-plane model. This identity is given by
([P], page 282), and can be obtained by a direct computation. As a consequence,
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we obtain the following translation of the geometric property (2.2) of (u,) interms
of uyp: wehaveforany y e I'

d(y*ur) = p2 .y 1) dy ) = p(rz, ) 1Y () d sy,
=" YO dus.

In particular we seethat 4 is 1-periodic.
Now in the model adapted to 2, we merely have, for0 < r < 1:

M?’Z(E(y’ Z)g[—g,rxf(s’f,z)]) =2, Z)_a X H’Z([x’ X+ r])
xX—+r
= U2, )% x / PPz ) dpy ()
X—+r ); 2
=y’ / YO+ ud) P dps )
X

X+r
= / L+ U2, D% dupu).
X
Thus we see that M, indeed depends only on H (2, z).
Moreover, seen as a subset of ¥», ¥," = £(2, z)O[Jg’,Xl(g,’z)] clearly does not
depend on y, and asz goesto 2, weseethat M (%,’) goesto ux([x, x+r]) =:
My(gf/;r) m|
We can thus define the following intrinsic parameter in two ways:

Definition 2. Set
AMP) = My (%) = us([0, 1]). (7.5)

7.2. Theestimatesrelating to ®

The following proposition gives the necessary estimates of ® and of V& in the
cusps. Thenotations A (2), L(2, z), £(2, z) wereintroduced in section 7.1 above.

Proposition 4. For each cusp Z of .# and for z € A" (£), we have:

() @) = c®) 1(2) €2, P+ 0 (62, 2)°);

(i) Z11l0g® o 7 (g(,@, Z)) _ @(ﬁ(?, z));

(i) Zolog® o 7 (5(97), z)) —1-5+ @(z(gf, z)).

Proof. Recall from section5.2that (x, y') € R x R* denote the canonical coor-
dinates in the particular model adapted to the cusp #;. Since we consider asingle

cusp, let usforget the index i of this cusp. We have by periodicity of i := s (see
section 7.1):

P(z) = Sz,u+n)d
@) /[o,l[z”(” n) dpu(u)

neZ

_ 8 -2 2\7?
=y /[.0’1[2(1+y (x—u—n?) " duw).

nez
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Now thefunction v — (14 y~?v?)~% ismonotoneon R_ and on R, and thusits
Riemannian sum in the last integral above cannot differ from its integral by more
than twice its maximum:

2,2\ —2.2\-5
Z<1+y (x—u n)) fR(1+y v3) 8 dy

neZ

<2

Whence
®(z) = y~? (o, 1[)[ 1+ y~%%) % dv 4+ 0(y~?), which gives (i), since
R

yl=1¢2,2).
In the same way

i _ —8—1/ o 20 N2 -1
yaxcb(z) =—-20y ol ;(x u—n) (1+y (x—u—n) ) du(u)

— 25 u([0, 1[) y*? f L+ Ludv + 06 = 0,
R

which with (i) gives (ii), and also

3
—P(z) =8P 25 y~d » vy i —u—n)?
y oy (2) (x)+28y /[ o y “(x—u—n)

nez
x (1 +y 2(x —u— n)2>7871 dp(u)
= —3®(2) +25 u([0, 1)) y°
x / A+ y 2?0y 22 dv 4+ 0(y~?)
R

= -8 D(2) + 25 ([0, 1)) y 70 (c(8) — (8 + 1)) + O(y ™)
= —8®(2) +c(®) n([0, 1) Y% + 0y ™),

which with (i) gives (iii). O
8. Windings of the ®-diffusion

In this section we shall calculate the limit law of 151 /¢ @, that isto say of
Z®[0,1]

the joint windings of the stationary ®-diffusion Z®, by using discrete excursions

in the cusps.

Theasymptoticsof & (in section 7 above) |ead to the study of an approximating
diffusion Z, on .#, whose generator is simpler in the cusps, thereby alowing the
precise calculation of itswindings in the cusps.

The passage from Z? to Z results from Girsanov's theorem, and is close to be
given by a Doob’s h-transform. This allows to deduce the law of the excursions of
Z® from the law of the excursions of Z, however necessarily conditioned by their
end-point.
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We must then show that this conditioning does not contribute asymptotically.
For that, we have to estimate its influence and ultimately let go to infinity the level
in the cusps above which we consider the excursions.

We perform then the passage from the number N; of excursions achieved at
time ¢ to adeterministic number by means of a precise estimation of N;.

A key argument isthat the ®-diffusion admitsaspectral gap. Indeed it isknown
that the spectrum of —A in .# is discrete up to the value 1/4, see for example
([P-S], theorem 2.4). Hence by the definition of A% (in section 4.4, proposition 2),
we seethat it admits a spectral gap and therefore that there exists A1 > 0 such that

for any positiver and any centered ¢ € L2(V®), where P® denotesthe semi-group
associated with Z2.

—A1t

@
P szfe

¢ Hz ®1

8.1. The modified diffusion Z

Since the value of Vlog @ in the cusps can be known only asymptotically (see
section 7), we are led to consider the winding contributions of the diffusion paths
above asufficiently high level b, and to modify the ®-diffusion Z;> abovethislevel
b, in order to get a simplified generator allowing the calculation of windings.

More precisely, proposition 4 leads to replace in the cusps the generator A® of
Z® by the simplified generator A% (notation (4.2)). Now we observe that

AT G0) = (A oyt = 2, ) 00 He) = 0,

which means that the above modification can be performed by a Doob’s h-trans-
form, by means of the harmonic function y*~1®. But this is the case only in the
cusps, and we have to take care of the necessary transition between the cusps and
the body of .#, and to use a Girsanov’s transform. Of course we shall verify that
this Girsanov’s transform is close to a h-transform.

Recall from section 5.2 that we set A (a) = {y' > a} and A '(a) =
Uf\’: 1Vi(a). These are horocyclic neighborhoods of the cusps of .#. Fix some
smooth increasing function 4° from R onto [0, 1], null on R_ and equal to 1 on
[1, ocf.

Let ustake b in]2, oo[, larger than b, used for the definition (5.5) of @.
Foreachi € {1,..., N}, seth; .= 1,y x h?o (yi —b).

Soh; € C°(M,[0,1]), h; =0in.#\ N;i(b),andh; = Lin N ;(b+ D).

x (¥ 1x o —1.

-1
Definition 3. Setin .A;(b): ; := (c(a)x(%))
IA® — (VIog H) -V = 3A +

Setthen H == 1+ YN h;®;, and G =
(Vlog(®/H)) - V.

Let Z, be the diffusion on .# with generator G and initial law V®, whose law is
given by the following Girsanov's transform: for each + > 0 and for any test-
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functional F:

t

[E[F(Z[O, t])] - [E[F(Zq’[o, 1) exp (—fo ViogH(z®) - dz°

t
-3 / |Vlog H|>(Z®) ds>:| .
0

Remark 6. (i) Proposition 4 shows that ®; = ¢(1/y’) and Vlog(l + ®;) =
O(1/y").
(i) G equals $A® in.#\ ./ (b) and equals A + (1 — a)yiaiy,. in A (b+1).
(i H=1in.#\ /(b), H— lateachcusp,and H > 0on .Z.
Asaconsequence, there are two constantsc¢; and ¢z suchthat0 < c1 < H < ¢2 <
oo on./. Moreover VIog H = Y 1 1 . O(1/y") = O(1/b).

Let us now apply the Girsanov’s theorem: we have for each ¢+ > 0 and for any
test-functional F':

[E[F(Zq’[o, t])] - [E[F(Z[o, 1]) x M,], 8.2)

where the martingale M, is defined (for some Brownian motion Z¢ on .#) by

t t
M, := exp U VIogH(Zs) -dZ° — %f |VlogH|2(ZS)ds] (8.3)
0 0

Observe that M, indeed is a martingale, since by remark (6, iii) above VIlog H is
bounded.

Lemma9. Sty ;= —GlogH — %|VlogH|2.Thengovanishesoutside
N () \ N (b+1),is0(1/b), and we have

~ ~ t ~
M, = H(Zo) ' x H(Z;) x exp [fo </>(Zs)dS]-

Proof . Using I1td’s formula we get

t

t
/VIogH(Z)-dZ;’=IogH<Z,>—IogH<Zo>—/ G(log H)(Zy) ds,
0 0

whence the alternative formulafor M;, from the above definitions of M, and of ¢.
Then we have

0= —%(AlogH +|VH?? x H—Z) - (Vlog(CD/H)) .VlogH

—%(div((VH)/H) L H2x |VH|2) n (V|og(H/q>)) VlegH

_ (v Iog(H/©)) -VlogH — (2H) *AH.
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As a conseguence, we deduce as expected that ¢ = 0 on .Z \ A" (b), and dso in
(b + 1), sincewe havein each A7; (b + 1):

¢ = Vlog(y")? 1. Vieg ()P 1@) — 20y to)~tA((y)P to)
= |Viog(»")* 712 — 20" " H Ay Y - eo)tad
=0 -1%>—0G-1G-2)/2-806-1)/2=0.

Finally remark 6 and proposition 4 show that we have equival ence between ¢ =
0(1/b)and AH = ((1/b), andthenthat itisenoughto verify that Ad; = O(1/y")
foreachi. Now we have by definition 3, up to a constant and by application of
proposition (4, iii, i):

AD; = ()P TIAD +2V(y)P L.V + dA(Y) T
— ()" 1o x (5(5 — 1) 426 — (L —8) + OL/y)) + (6 — 1)(6 — 2))
=)o x 01y = 0(1/yh).

8.2. Discrete excursions and uniform integrability of M,

Denote by [z, ¢,] the n-th time interval of excursion in the cusps, that is to say
precisely: ¢o := 0, 71 = t isthefirst hitting time of A (b + /b), ¢ isthefirst exit
timeof A" (b + 1), and for eachn € N*:

é’n = { o ®Tn + 1, and Tp+1 =T O @;‘n + ;n (84)

We shall need the Girsanov’s formulauntil the stopping time ¢,,. Thefollowing
lemma shows that this formulaisvalid, for any large enough fixed b.

Lemma 10. Themartingale M, isuniformly integrableon [0, ¢,], for eachn € N.

Proof. 1) Observefirst that by remark (6, iii) and lemma9
c2 En -
Sup{M; |0 <1 <} < — xexp [/ Iw(Zs)lds]
c1 0

& .
<cexp |:C”(1/b)/0 Loy o+ (Zs) ds} .

We have then
n—1

tn . T .
/o Lyonayprn(Zs)ds < Z ( /o Ly (Zs) dS) 0 O,
k=0

whence

[E(sup{M,IOStSCn}>

<c ( sup E. (exp [@(1/19) / ' 1V4f(b)(2x)ds:|)) .
z€dN(b) 0
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2) Let us consider for some & > —1 the function f; defined on [b, b + /b ]
suchthat f;(b) = 0and y2 £/ (y) — yf,(y) — Afa(y) = 0. Up to amultiplicative
constant, thisimplies

S =y x [VIF Dx (om0
(/o) = oV

Notethat f; ispositive decreasing for —1 < A < 0 and large enough b.

Fix now A = —2/3, and consider the following continuous function g on R: g is
congtant on ] — oo, b] and on [b + /b, oo[, and equals f—z/3/f-2/3(b + +/b) on
[bv b + '\/E]'

Observethat g decreases, hasderivative zero at b, and equals 1 on [b++/b, ool.
Extend g to acontinuous function g on .#, by taking g constant on .# \ A" (b)
and egual to g(y) on 3.4"(y), for y > b.
Now, by proposition 4 and remark (6, iii), we have in ./ (b), for large enough
fixed b:

o)
y 3 log(®/H) =1-8§+ O(1/b) > —1/2,
andthusforz € /' (b)\ N (b++/b): Gg(z) < 5 (v28" () —yg' (1)) = —3 g(»).
Thereforewehave  Gg+ 314 & <0on./\ V' (b+b).

As a conseguence, using I1t0’s formula (valid since g’(b) = 0) we get for any
z € N(b):

2 [g(zA) e (3 /0 REVENCS ds)} — ()
=F, [/OMT (G§ + % Ly §)(Zs) exp (% /Os 1./1/‘(1;)(Zu)du)ds:| <0,

whence by letting ¢ go to infinity:

sup [, [GXIO <% /OT 1(/ft"‘(b)(2s)ds):| = g(b) < oo.

zeN'(b)
With 1) above, this concludes the proof. O

Set

Yy, :=/ @, Y, :=/~ ®, and vy’ :=/~ @. (8.5
Zq)['fn,{n] Z[tn,¢n] Z[0,¢]

By lemmas 9 and 10 and the strong Markov property, we have for any real r and
n € N*;

(et ot
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.y (H(Zo)—l x exp[i\/—_l r I/I}:I

j=1

x exp[Z/.rj (p(ZS)ds] x H(Zgn))
j=1 Cj-1

j=1 {j-1

—E (H(Zo)l x ]’_l[exp[/fj (p(Zs)ds]
5 1—[ b, [/ V]2,] H(Zgn))
=1

— (M;n x ]‘[ Es, [eﬂrw" zq]) . (86)

j=1
8.3. Approximation of the excursion law

Let usconsider anexcursionpath Z[z,, £,]. It occursnear some cusp 2, andwemay
liftittoH, inamodel adapted to 2. So weget adiffusion path{gs = (X5, V) |t <
s < ¢y}, taking its valuesin R x [b + 1, oo[, and such that Z,, = (0, b + v/b)
and Z,, = (i, b + 1). Moreover Z; = (&, J;) has generator A%, and thus
there exist two independent standard real Brownian maotions w, and W; such that
¢

X, = W) withY := / (35)2ds and dj; = ¥ dwg + (1 — 8) ys ds.

0
Recall that by (5.5) and (8.5) ¥, = r(Z, ) x X¢,.

We compute the law of the variable Y in the following lemma.

Lemma 11. For any positive r we have
E(e*¥72) = Rs(w+Vor) [ Rs(0 + D7),

where K;(r) := r®=Y2 K s_1 5 (r) and K 5_1/2) denotes the usual modified Bes-
sel function of index (8 — 1/2). As a consequence, we have E(Y ~2) = 0(b=1/2).

t
Proof. 1) exp[ — é/o (ys)zds] x K (§) is equal to martingale + %fé exp[ -

5 5 Go%du (GO2R"Gy) +20 = 8) 5K/ Go) = r2 (3)2R G)) ds

and then is a bounded martingale for K bounded near +oc satisfying

K"(y) + 252 K/ (y) —r2K(y) =0.

Setting f(y) := y1/2-9 K (y), we get f null at +o0 satisfying

F O+ ' 0)/y= (2 +(6-1/2)?y7?) f(y) = O,whence f () = ¢ K(s-1/2 ().
Hence K (y) = ¢’ Ks(ry), and finally the optional sampling theorem gives the
result.
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2) We deduce from 1) above that

[E(Y 1/2) [/ e’ Y/2 dr
—b+1)" \/>/ < xr)/Kg(r)dr

Now there exist two positive constants ¢ and ¢z suchthat 0 < ¢1 < K5 < ¢ on
[0,2] and c1 78 Le™ < Ks(r) < cor®Le ™ on{l < r < oo}. Therefore

© _ (b+b NCRV IR
/0 K’S(b—f—l ><r)/l((g(r)dr<C—l><<1~|—/1 e dr

= o(b+np7?),

whence the result. |

We see from expression (8.6) in section 8.2 that we need to estimate the condi-
tioned winding law by means of the unconditioned one. Thiswe do in thefollowing
lemma, where our notations remain as above.

Lemma 12. Thereexistsareal measurablefunctiona ond. A" (b+/b ) x 3.4 (b+1)
suchthat ||a|lc = @(b~/?) and such that for any integer n > 2 and any real r we
have:

Ezrn (eﬂ r x§

) 1- (1+a(2,,,, Z;n)) x (1— [E[e_’zy/z] +@(|r|)).

Proof. 1) We have: E; (eﬂrfc Zgn) — [E(eﬂrwm ] W(Y) modulo 1).
Let usfix some real n and some positive . We have firstly

[E(eﬂrwm ‘ W) €ln, n + e[+z) ~1

E |:<e«/?1rW(Y) — 1) X Zl{n<w(y)_k<n+g}j|

— keZ
E |:Zl{n<W(Y)—k<n+s}:|
keZ

|:(27TY) 1/2/ Z VLrx ) /@) 1{n<x—k<n+e} dx:|

— keZ
|:(27rY) 1/2/ Ze—XZ/(ZY) Lyex—k<pte) dxi|
keZ
|:(27rY) 1/2/ Z ﬂr(x+k) _ 1) —(x+k)2/(27) dx]
" kez

n+e
E |:(27TY)_1/2/ Z e—(x+k)?/@2Y) dxi|

n kez
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2) Then
sup {|eﬁ k| x ¢ K/@D) ‘k e R}
< sup { min{2, |rk|} x e~*/@") ‘k e [R{}
— max { max {e X/ @) |k > 2/r); max {jrk| x e ¥/ 0 < k < 2/r}}
= max {e*2<’2Y>’1; min(2, |r|v/Y } x exp[— min(L, 4;»*2/1/}/2]]
=272 o+ IPVY x e Y21y ) < IFIVY.

Hencewe canreplacethe Riemannian sumin 1) above by aRiemannianintegral +an
error term:

Z (erlr(x+k) _ 1) e—(x+k)2/(2Y)
keZ

_ /H'Q (e¥7Er et — 1) o=@ gt (17T
- <e—’2Y/2 - 1) V2rY +0(rIVY).
Therefore we obtain for al n and & (with auniform ©):
[E(eﬂ’ W) ( W) €ln, g+ e[+z) _1
£ X E[(e_’zY/z - 1) + (9(|”|)]

e x (1+OEY-112))

- [[E(e—rZY/Z) —1+ @(|r|)] x (1+ a([E(Y—l/Z))).
This proves
[E<eﬁrW<Y> ( W(Y) modulo 1)
—1_ (1+ 0([E(Y‘1/2))) x [1 - E(e—’zm) + @(Irl)],
and then the result, with the help of lemma 11. o

8.4. Asymptotic law of the excursions

We shall now let the parameters » and n depend on the time ¢. Precisely, we take
r=Br=pt51andn =[of] :=max{j e N|j < ot).

Here B8 isarea parameter and o is some positive parameter to be specified later.
Set

r'3/2-9)

. nl-28
vB) =2 X 5 1)

« ((b+ NIt 1)23—1) % |13|25—1.
(8.7)
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SinceK;s(y) = 227321 (5 —1/2)—2Y279 (26— 1)~ (3/2-8) y¥ 14 0(y? 1),
we get from lemma 11 that

Rs(®+D1r1) = Ko+ B) Ir1)
Rs(+1)1r)
= y() +o(Ir?7h.

Let usfirst get rid of the somewhat particular case § = 1. In this cofinite case,
wemerdyhave @ =H =1,G=A=A, M, =1,Z, = Z> = 7°.

1- [E(e”z Y/2> _

Moreover Ezo (em "V) does not depend upon Z¢ , and then, denoting by r/ the
residue corresponding to v ;, we have:

n n—1
E (l_[eﬁ”/’f) = (|:1_[eﬂ”ﬂj:| x Ezg (eJ?lrW))
j=1

j=1

=E (ri_[lem”l’f) X [E(e‘/jl”n W(Y))

j=1
n .
_ l—[ E (e—(rr-f)z Y/Z)
j=1

This means that the windings of the different excursions are independent, and thus
we get for any real B and positive o, ast — oo (assuming for a while that all
residues equa r):

lor] - o]
E (Heﬁﬁwj) - [[E(eﬁﬂr 1w)] ¢

j=1
= (1=ygrn)" — e,

Let us now come to the main (infinite area) case § < 1.
Thenr, = o(r,z‘s_l) = 0(1/1), and assuming for awhile and for convenience
that all residues of w equal some r, we get from lemma 12 and (8.7):

= exp (% log [1= (1+a(Zey, Zep)) x (v(BrI/1 + o(l/r))])
j=1
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lot]
= exp (—y(ﬁ Y (T4 aZy. Zg) + o(l)) .

j=1

Hence coming back to the Markovian expression (8.6) of section 8.2 and using
(8.2) and lemma 10, we see that:

[o7]
ElT] NLBrv;

j—l

ler]
= E | My, % 1_[[E~. (e ﬂf‘"‘ﬁ/’ZQ)}

[o]
= | My, x exp (— y(ﬂr)t_lz (1+a(21j, ZQ)) +0(1)):|

j=1

i lof]
=E|exp (—y(,B r) z—lz (1+ a(zCI> zq’)) + 0(1))}

j=1

— exp[—y(ﬁn x 0 <1+/adx>],

ast — oo, where x isthe normalized Palm invariant probability measure of the
induced Markov chain (27 ® 'z <I>) Indeed we may view the ergodic stationary his-

torical proc&s(zs , —00 < s < t) asasuspended flow under the function ¢1. This
allows to apply Ambrose’s theorem and then to deduce that the induced Markov
cham(Z‘D Z‘I’) isstationary and ergodic, with invariant Palm law x . See ([SL-M],

Exposés I and I ).
The extension to different residues is straightforward.
Observethat thefinite areacase § = 1 can again be handled as the general case by

merely considering that /adx =0fors =1.

8.5. Counting the excursions

We need some information on the duration of the excursions of Z® in the cusps.
Thisisthe aim of the following lemma.

Lemma 13. There exists A > 0 such that [E(exp [A(gn - rn)]) is finite for any
n e N*. Moreover, E(z, — 7)) = (8 — 1/2)~1 x b~1/2 x (1 n @(b‘l/z)) for all

n> 2.
Proof .Fix0 <81 <8—-1/2<é8<1l,andn > 2.

By proposition 2, the drift term of Z is V log @, and thus by using proposition 4
we have on each [1,,, ¢,] in adapted coordl nates: Z> = (x 2, y?), with



246 N. Enriquez et al.

) Hdy? = dw; + (1 - 8) + O(1/b)) dt.

Let y/ denote the diffusion on [b + 1, oo[, starting from b + +/b, and solving
OHYdyl =dw] + (1/2—8)dt. Set ¢ :=inf{t > 0|y =b+1}.

The classical comparison lemma (see [I-W]) applies for large enough fixed b, and
givesalmost surely: ¢2 < ¢, — 1, < ¢1. Now, wehavey! = (b4 /b ) x exp[w, —
8;t] on [0, ¢']. Hence we have by the Cameron-Martin formula, for 1 < 8%/2:

E(e¢") = E((exp[x inf(r] — w] + 81 =log((h + vB)/(b + 1))
= exp |5 1096 +v/B)/(b + 1)
X[E(exp[()\ — 82/2) inf{t|w, = log((b +~/b) /(b + 1))}])

i —/82-2
= (0 + )/ + 1))‘S e
The first assertion follows. Then we deduce that
EC) = (8) 7 x log((b + Vb) /(b + 1)) = (8;)~* x b2 + 0(1/b).

The proof isachieved for n > 2, sincethe only constraint on |§ — 1/2 — §;| wasto
dominate some (’(1/b). For n = 1, we only have to modify the above estimate by
using the asymptotic form of V¢ in the cusps (following from proposition 4). This

gives:
2
§1—y/81 =22 00 y 81—\/62—21 s
+c y “dy

[E(ek(ll—fl))< b+ b
- b+1 pvb \D+1

< OQ. O

Thislemma allows us to compute now the equivalent of the number N; of ex-
cursions achieved at time ¢ by the ®-diffusion. Since we need to distinguish the
different cusps, we let an exponent i denote the excursions that occur in .A7; (b).

Lemma 14. Denoteby [z}, /] the sequence of intervals of those excursionswhich
occur in A7 (b), for 1 < i < N. Sothat the previous sequence [, ¢,] isjust the
reordering of the digjoint union of the present ones. For eachi, set N! := max {n €
N | ¢! < t}. Thenfor eachi N! /t convergesalmost surely ast — oo towards some

. . 2
positive real o’ . Moreover we have: o' = 3 @52 x <c(5) A(%)) x b3/2=2
(14 co2).

Proof. Observe first the obvious inequalities:

14N

t
/O Ly pave)y(ZH)ds < Y (¢h—1h) and
n=0

N/ . . ;

S < [ i @ds.
0

n=0
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Dividing by ¢ and applying the ergodic theorem twice gives amost surely:

.. _N! S
V(b + b)) < Iltmlnf T’ x E(¢5 — 15)
— 00
. N! S
< ||msup7f x E(¢h — ) < VO (b + D).

—>00

On the other hand, the almost sure convergence of N/ /¢ follows from the addi-
tive functional property of max{n € N | max{s < ¢/ | Z® € A (b +Vb)} < 1}.
Now, we get by definition of V% and by proposition 4:

1 00
Ve (b)) = @52 fo fh ®%(z) y 2 dx dy
2 o0
= 10157 x (@ 22n)” [~ @t oy ay
= || 0);2 (c(B)A(@,))Z X (25 — 1)~ x b1 x (14 O(1/b)).

Theresult is now straightforward from lemma 13 and from the above. |

Thefollowing lemmawill be useful to replace N! by its deterministic approximate
o't.

Lemma 15. For eachi andany ¢ > 1/2, =9 | N} — o' t | goesto zero in proba-
bility.

Proof. Let usdroptheindex i, uselessin this proof.
We essentially need to prove that the variables ¢; — ¢;_1 are square-integrable and
that their correlations decay exponentially. To proceed, let us first show that the
variables ¢; have an exponential moment, by using the spectral gap of z®.

1) Consider some Borelian function f from .# into [0, 1], and for any positive
e set G, = ef — A®/2 and denote by () the bottom of its spectrum. We know
that A(0) = Oisanisolated eigenvalue, with eigenstate 1, and then the Kato-Rellich
theorem ensures that for small enough ¢ A(¢) is still isolated, with eigenstate say
@e, andthat e — (A(g), ¢.) isanalytical at 0. We deduce then from the variational

expression for A(e) that we have A(g) = a/f dv® +o(e).
Sincee — A(e) clearly cannot decrease, we obtain that (1) > Oif /fdvq’ > 0.
Since —G1 istheinfinitesimal generator of the semi-group P,f defined by

t
Ptf<p(z) =F (go(Z,‘I’) X exp[ —/0 f(qu’)ds]), we deduce from the above that
for any positive t we have

t .
E <exp [—/ f(z;")dsD = (P/1,1)2y0, < D1
0
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Consider now some Borel subset B of .# suchthat V®(B) > 0, anditshitting time
by Z?, say S. Applying the preceding to f = 15, we get some strictly positive A
such that for any positive r we have

t t
PS>t <P (/ 15(Z2)ds = o) <E (exp [—f 1B(z§’)dsD <e M,
0 0

whence [E(exp[;\S/Z]) < 00.

Applying this successively to B = A" (b + +/b) andto B = .# \ A (b + 1), we
get the exponential integrability of the variables ¢;.

2) We now establish the exponential decay of the correlations between the vari-
ables¢; — ¢;_1 by using Dosblin’s method.
Denote by ¢(z, -) the density of Zgi starting from z € 9.47(b + 1), with respect to
the Palm measure x’, which denotes the projection on 8.4”(b + 1) of the (normal-
ized) Palm measure y . Seethe end of section 8.4. Thisisthen the transition density
of the symmetrical stationary Markov chain (Zg).

Now by ellipticity of A® and compactnessof 3.4 (b + 1), thereexist 0 < ¢ < ¢’ <
oosuchthatc < g(z,7)) < foranyz,z/ € 9.4 (b + 1).

Setting g} for g, (z, -), using the symmetry of ¢ and that /(q; —DTdy' = /(qg —

D~dy’, wesee
(@01 - DE) = / (@i —Dg¥ dy' < / (@i - V" ¢7 dx' - / @i - D cdy’
- f(q,i ~ Dt (@7 —Odx < A- ) 1@ — D oo

Similarly, (g5, — D (') = /(qj — 1)~ (c —¢%)dy’, and then

(4541~ DE) = 1= 11(g; = D lleo-
Whence (g, 1 — oo < (1=0) llg; — Lloo, and llg; — Lo < ¢’ (1 — )" As
aconseguence, weget forany n > 2andz € a.4°(b + 1), setting ;j’. = -1

< (- 0" 2E ().

E. (&) — E(&)

= |[ @2 - DEtc dx' @)
Therefore for any j, n € N*:
[E(&) = B € — ECJ4))
= |E((2 — ECa) Bz (61 — B )|
< () - o2 x (16— EGol) = 0(@ - o' 2).

3) Thestep 2) above showsthat Var(¢,) = O(n), andthenthat forany g > 1/2
n—4 (g,, — [E(;,J) goesto 0in L2-norm asn — oo. Thus using the stationarity of
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the induced chain Zg, we have &, = o' n + o(n?) in L2, where o’ := E,/(¢1) =
E(¢2 — ¢1). Hence we have in probability: Ny, 4ome)) = 1, and then, by the in-
creasing property of Ny, N, =n/o +o(n9),and N; = t/o0" + o(t?).

Finally, since we know from lemma 14 that N, /¢ converges almost surely to o, we
have1/0’ = o. |

8.6. Windings of Z*

We use now the preceding sections to prove that we may replace the numbers of

excursionsachieved at timer by their averages. Of coursewe set w,’; = .
rAlUR
» A ) N
Lemma 16. For eachi, r -1 Z Yy — Z Y, | goesto zero in probability.
n=1 n=1

Proof . Fix n €]0, 1/4[, take y €]0, 1], and forget theindices i, useless here.
1) Using lemma 15, we have, for large enough ¢:

Ny lo?]
PUAD Wn = W | > 1
n=1 n=1
[o t41Y/2+n]

=P(INi—erl =) 4p | 3yl =0 /n
n=[o t—11/2+1]
[0 1+11/2+1]
<n+P| Y wal" > x17
n=[o t—t1/2+n]
[Qt+tl/2+n]
<m0’ xim1 > E().

n=[o t—11/2+n]

2) Then, using again the modified diffusion Z; of section 8.1, we have:

E(ynl”) = E(¥, 1" x My,)
= E(Mq, x H(Ze) ™ x By (0171 Z5,) x H(Z,))
2 - "z
X E(Me, x B, (W11 2,))

=2 [E(an x Ej. (W’Iy))
c1 n

= 2 S EM,) x E(')Y) = 2 x EQy))
c1 c1

IA

since the law of ¢’ does not depend on Z,.  Hence we havefor al n € N*:

E(ynl”) < cEIW(Y)|”) < 2cE(Y7/?).
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Y 00
Yy -1\ _ —tY , —
E(YY) = E(Y x YV )_[E(—F(l—y)/o e Yy de)

1 o0
= —/ E(e YY)t dt,
'dA-y) Jo

and by lemma 11
d
E —ZYY S —tY
(e ) T (e™™)

ko4 VB VR ) [Ra(0+ D V)]

which is equivalent to

Y28 1(3/2 — §) (I'(6 — 1/2)) L
x (6 + V)P = b+ D) x P92 nearo,

do Wb -1HVb+1

2t(b+/b)
Hence E(Y?/?) isfinitefor § — 3/2 — y/2 > —1, thatistosay for y < 25 — 1.

3) By 1) and 2) above, we havefor 1/2 + 2n < 28y 1

an

x exp ((1—«/1—7)«/5) near -+oo.

<1 andlargeenough¢:

Nt [o1]
P (r; Z% —Z% > n) <n+n7 x 1701 ¢ 1Y o
n=1 n=1

<n+ @(t(l/””‘ﬁ)) <2n. O

We verify in the following lemma that only the excursions contribute asymp-
totically to the windings. N, is here the number of achieved excursions at time:

Ny:=max{N' [1<i<N}=max{neN|g <t}. (8.8)

Nt
—1
o =Y V| Lgogy
(fZ<D[O,t] r;_ n) {Z,” ¢ N (b+1)}

Proof . By proposition 2, the drift term of Z® is Vlog ®, and thus by using prop-
osition 4 we have on each [z, ¢,] in adapted coordinates: Z> = (x2, y?), with
() tdx? = dw; + Ls<1y O(1/b) d1.

Ontheother hand, r, <1/t andr, = 0 (1/t) if § < 1, and thususing (5.5) we get:

Ny
' &= Un | LYzop s
t (,/;D[O,t] ; n) {Z,” ¢ N (b+1)}

Lemma 17. limsup

—>0o0

=0.
2

2
lim sup

—>00

2
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< c limsup (t_z

t—0o0

t
2
/0 Loyt by OF) ds L

2
=0. O
2

We are now able to establish the asymptotic result on the windings of the -
diffusion Z. Recall that (2, ») denotes the residue of w (and of ) near the cusp
#.Recdl alsothat #4, ..., ?y arethecuspsof .#, and that A(#;) wasintroduced
in definition 2.

t
-1
e fo Liby=s? <p4vB) 9

Theorem 2. The law of 171 / @ converges towards the symmetric stable
Z®[0,1]
law with exponent (26 — 1) and rate

C(T, ) = | P32 xc(8)2x Eg’/zl/gxZ|r(J,,a))/2|(25 D 5(2,;)2. Thismeans
i=1

lim [E(exp I:\/—loct%_—ll/ &)D
=00 Z°’[0,t]

=exp (— /@=L, co)) , for anyreal a.

that

Proof . Fix some positive ¢, and take b large enough so that

P(Z® € /(b)) = VO (b)) <&, and ‘/ i| < eforl<i<N.

Note that thisis possible by lemma 12. Now thisimplies, with lemmas 16 and 17:

Iimsup‘[E <exp |:\/—1at2511/ d)D —exp (— le|?~ e, a)))‘
t—00 Z2[0,1]

E (exp [J—_latzs_—ll i‘pﬂ ])
n=1

—ep (~ e e, v) ’

LN
E|exp «/—10[th2¢,’,
i=1n=1

—ep (~ e e, v) ’

N
Hexp [—y(ar(,\%,a)))gi X <1+/adxi>]
i=1

< e+ limsup
11— 00

< e+ limsup
—>00

:8—|—
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—ep (~leP e w) ‘

by section 8.4, and now by definition of the constants y («) and C (T, w), and by
lemma 14, this equals (for b > £2 > 1):

e+ ’exp ( — PO, w) A+ O~ (1 + @(s)))

—exp (—|a|25—1C(F, a)))‘ — 0(s). o

Remark 7. 1) A proof similar to the proof of lemma 4 shows that theorem 2 is
valid as well with the form w instead of the form @, at least if || and div o’ are
bounded in . \ A (b,).

2) It ispossibleto show that thistheorem is still true with any initial law for the
®-diffusion, but we do not need this slightly stronger result to deduce below our
result on the geodesic flow.

9. Geodesic windings

Wegather heretheresultsof the preceding sections: link between geodesicwindings
and those of £(Z?) (corollary 4), equality of the diffusions Z and &(Z?) = 7 (£9)
(Proposition 2), and windings of Z? (theorem 2), to deduce below the asymptotic
behavior of J;(w) (see (5.1)), thereby completing the proof or our main theorem
(stated in section 2), which describes the asymptotic joint law under the Patterson-
Sullivan measure m of the geodesic windings.

Before concluding, we need to get rid of the random time change t;, inherited
from corollary 4. (Whereas t,,, with an integer subscript, still denotes the n-th start
of excursion). Thiswe do in the following lemma.

—1 -1 .
tm/ d)—tm/ J)‘ goes to zero in proba-
w0&8[0,7] Z®[0,t/(86—1/2)]

bility ast — oo.

Lemma 18.

Proof. 1) Using lemma (2, iii), we can adapt the proof of lemma 17 asfollows:

N,
ay 5-3 v
Z®[0, 5 AT+ N, )] =1

Tt
o2
/0 Yoot <y O |

1, [ ?
o) /0 L,y <t vy 95 ,

<climsup (b +vb)?172E(r;) + ¢ limsup o (173 E(z?) = 0.
1—00

1—>00

2

lim sup

—0o0

2

< ¢ limsup (r‘z

—>00

+
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2) We can extend the validity of lemma 15 to the random time 7, by using
lemma(2, iv) and the increasing property of N;. Indeed, we have with probability
converging to 1:

6 —=1/27 0"t —0t?) < Nis_y 1o 1,_ o0y <
< (6 —=1/27 Yo't + 0(t?),

with1/2 < ¢ < 3/4. Then the proof of lemma 16 remains valid, to prove that

i
Ny, =< N(8—1/2)*1t+0(t‘1)

I R (G e
171 |y yi— Y 4| goestozeroin probability.
n=1 n=1

3) We must now get rid of the possibly incomplete excursion alive at random
time ;.
Setforeachn € N*: ¢ ;== sup )/ &)‘,andl//*:: sup ‘f &))

Tn <t<{p ZQ[TMJ] O<r<¢ Z[O,t]

Fix e > 0,and 1/2 < g < 3/4, and consider, using lemma (2, iv), ¢ large enough
o that [P’<|rt - 6-1/27Y4 > o(tq)> < &, and, using lemma 15, so that
[P><|N((5,1/2)_1, Loy — 0 (6 =127 Y 0@ > o(tq)> < &. Then we have
for suchz:

[P’(r, X w(’kl+er) > 8) —2e < [P’(rt x max {yy|o(§— 1/2)"Y% — 0(1?) < 1,
<006 —=1/27"Y + 00} > 8)
< P(Fz x MaX {,, | Np 5-1/2)Li—o(ra)) < 1

= Nio5-1/2 1400} > 8)
<2+ P(rt x max (¥ | 02 (8 — 1/2) "1t — (1)

<n<02G-12 7Y%+ 009 > g)

n=ct+o(t?)

<2+ Z P(w:>8/rt>

n=ct—o(t1)
n=ct4o(t?)

=24+ ) (e/r)7 xE((0))

n=ct—o(t1)
< 26+ (ea/en) x 0(t) x (/r) ™" x E((W")")
<2+ 14— /(28=1) o [E((Ip/*))/>

asin the proof of lemma 16.
Finaly we just have to verify that (v'*)" isintegrablefor y < 25 — 1. Now

d (law) ¢ b2
v =r sup / Jsdwg | ="r sup [W;| x ([ ()N’s)zd5>
0 O<t<1 0

O<r<¢
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=r sup |Wt|xx/?,

O<r<1

where w and W are two standard real Brownian motions, independent of Y. Then

[E((lp’*)y) = x [E( sup |Wt|”> x E(YV/2> < 00

O<t<1

fory < 28 — 1, asin the proof of lemma 16.
4) So far, thanks to proposition 2, we just proved that in probability
» N [6-1/27%' 1] )
limsup ¢ 21 / @—Y_ Y yp|=0.But since we can deal
t—>00 mo£8[0,1] i1 =1
with the incomplete excursion possibly alive at time ¢ as in the proof of theorem
2, or asin 3) above (in an easier way however), lemmas 16 and 17 allow us to
conclude, observing that the expression in the statement does not dependon b. 0O

Finally we deduce our main theorem (stated in section 2) from (5.1), (5.3),
corollary 4, lemma 18 and theorem 2, with merely C'(T", w) = C (T, w)/(§ — 1/2).
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