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Abstract. Let M be a geometrically finite hyperbolic surface with infinite volume, having
at least one cusp. We obtain the limit law under the Patterson-Sullivan measure on T 1M of
the windings of the geodesics of M around the cusps. This limit law is stable with parameter
2δ − 1, where δ is the Hausdorff dimension of the limit set of the subgroup � of Möbius
isometries associated with M. The normalization is t−1/(2δ−1), for geodesics of length t . Our
method relies on a precise comparison between geodesics and diffusion paths, for which
we need to approach the Patterson-Sullivan measure mentioned above by measures that are
regular along the stable leaves.

1. Introduction

The study of the geodesic flow in constant negative curvature and finite volume
started with the proof of its chaotic behavior by Hadamard. Later Hopf proved its
ergodicity, starting a long line of results on the stochastic properties of hyperbolic
dynamical systems: a central limit theorem was proved by [Rat] and [Si] in the com-
pact case, was then extended in particular in [D-P], and a large deviation extension
of the central limit theorem was also obtained more recently in [W].

A first result on geodesic windings was established in [G-LJ], by means of a
coding method. Such coding method is also applied to counting closed geodesics
in homology classes, for example by [K-S], [La], [P-P], and recently by [B-P] in
the case of Schottky groups. See also [A-D] for related results.

A series of works ([LJ1], [LJ2], [Le], [E], [E-LJ], [F2]) uses another approach,
based on comparison between geodesics and Brownian paths. These works mostly
deal with a hyperbolic manifold M of finite volume, that can be represented by
the quotient of the hyperbolic space H under the action of a geometrically finite
discrete subgroup � of isometries.

When � is not cofinite, an important role is played by the Hausdorff dimen-
sion δ of the limit set (see [P], [Su1] or [Su2]). When the manifold is a surface
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admitting at least one cusp (this will be our fundamental assumption), δ is known
to be larger than 1/2 and δ(δ − 1) is the highest eigenvalue of the Laplacian. The
associated eigenstate � admits a representation by a measure µ on the boundary
which can be used to construct a probability measure on T 1M (see [P], [Su1] or
[Su2]). This probability measure, called Patterson-Sullivan measure (or sometimes
Bowen-Margulis measure), is carried by the geodesics that do not end in the funnels,
and is invariant under the geodesic flow.

Our goal in this article is to extend the methods and the results of the series
of articles mentioned above to the infinite volume situation, where it is natural to
substitute the Patterson-Sullivan measure for the Liouville measure.

We obtain the limit law under the Patterson-Sullivan measure on T 1M of the
normalized integral along the geodesics of M of any differential 1-form, closed
near the cusps. This limit law is stable with parameter 2δ − 1, and with a rate that

we compute explicitly. The normalization is t
−1

2δ−1 , for geodesics of length t .
The basic idea of the method is to transfer the problem from the geodesics to

the paths of some diffusion. This diffusion can be obtained by lifting the diffusion
associated with the fundamental state of M to the stable foliation. We then estimate
the windings of the diffusion paths, continuing thereby a long series of works on
stochastic windings (see in particular [Sp], [P-Y], [F1], [E]). This method also re-
quires a new approximation procedure for the Patterson-Sullivan measure on T 1M,
as a limit of measures which are absolutely continuous and quasi-invariant along
the stable leaves.

This strategy globally resembles the one which was already employed in [LJ1],
[LJ2], [L], [E], [E-LJ], and [F2] for dealing with the finite volume case, but its im-
plementation is here much more complicated. For example, the Brownian motion
has to be replaced by the ground state diffusion, and, even after that, the geodesic
flow and the diffusion lifted to the stable foliation do not have the same invariant
measure anymore. Also, we need to look at excursions in each cusp relative to an
approximating diffusion for which the calculations are possible, and that above a
level which increases ultimately to infinity, in order to use the asymptotic form of
the generator. Moreover, the different excursions do not contribute any longer in-
dependently. These difficulties lead to a lot of estimations, for which the half-plane
model is convenient.

Let us describe in some extent how we proceed.
Firstly, since the Patterson-Sullivan measure m is too singular to be related to

any good diffusion, we smoothen it, by some convolution along he stable horo-
cycles, into a less singular probability measure ν, we prove to be quasi-invari-
ant with respect to the geodesic and the stable horocycle flows. Moreover, we
can recover the measure m as limit of the images of ν by the positive geodesic
flow.

Then we introduce Zδ , a Brownian motion with a constant drift on the Poincaré
half-plane, which is a model for the generic stable leaf.Zδ induces a diffusion ξδ on
the tangent bundle T 1M, which admits ν as an invariant measure, and projects onto
the �-diffusion Z�, associated with the fundamental eigenstate � of the Laplacian
� on M, and also called the infinite Brownian loop on M (see [A-B-J]).
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Then we have to perform the substitution of the geodesics by the paths of the
diffusion Z�. This we do by means of a contour deformation, for which we have
to use a first passage time τt for Zδ , and to control two residual terms. In order to
allow this contour deformation, we need to lift the given 1-formω on M to a closed
1-form on each stable leaf.

So far, the problem relative to the geodesics is reduced to the problem relative
to the �-diffusion. And this amounts to calculate the asymptotic law of windings
of Z� in the cusps of M. In order to estimate those windings, we compute an
asymptotic of � in each cusp, which depends only on the height in this cusp. We
then replace the �-diffusion Z� by a modified diffusion Z̃, which behaves in the
cusps according to the computed asymptotic of �.

In the cusps, the modified diffusion Z̃ is a skew-product, hence we are able to
compute the winding law of its excursions. However, to get independence between
those excursions, we must show that the conditioning by the endpoints can be ne-
glected. It remains mainly to estimate the frequency of excursions of Z� in the
cusps, and to show we can replace the numbers of achieved excursions at time τt
by their deterministic equivalents.

The results of the present article have been partially announced in [E-F-LJ-1]
and [E-F-LJ-2].

2. Notations, basic data, and main result

Let H denote the hyperbolic plane, with boundary ∂H, unitary tangent bundle T 1H,
Riemannian area dṼ , and (hyperbolic) Laplacian �.

Given (z, z′, u) in H×H×∂H, denote by log [Bu(z, z
′)] the Busemann function,

that is to say the algebraic hyperbolic distance, on any geodesic ending at u, from
the stable horocycleH(z, u) determined by z to the stable horocycleH(z′, u). In the
Poincaré half-plane model, we haveBu(z, z

′) = p(z′, u)/p(z, u), p(z, u) denoting
the Poisson kernel:p(z, u) = Im(z)×|z−u|−2 if u �= ∞ andp(z,∞) = Im(z).
We have the cocycle property:

Bu(z, z
′′) = Bu(z, z

′)× Bu(z
′, z′′). (2.1)

Let � be a discrete torsion-free (non-elementary) group of Möbius isometries of
H, that we suppose geometrically finite. Let � = �(�) denote its limit set, with
Hausdorff dimension say δ. Recall that δ is also the critical convergence exponent
of the Poincaré series relative to�; (see for example ([Su2], theorem 1)). Obviously
δ ≤ 1.

Let {µz | z ∈ H} denote the family of Patterson (finite) measures on� associat-
ed with�. It can be defined, up to a multiplicative constant (that we definitively fix),
as the only family of measures on� satisfying the following geometric “conformal
density” property:

dµz′(u) = Bδ
u(z, z

′) dµz(u) for any z, z′ in H (2.2)

together with the invariance property by the group �, in the sense that:
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γ ∗µz = µγz for any γ in � and z in H, (2.3)

with the convention γ ∗µ := µ ◦ γ−1. See for example ([P], lecture 2), [Su2], or
([Ni], sections 3.4 and 4.7).

We shall be concerned with the hyperbolic quotient manifold M := �\H, for
which we make the additional hypothesis: M possesses at least one cusp.

It is known, due to Beardon, see for example ([Su2], page 265), that this implies:
δ > 1/2.
In particular

c(δ) :=
∫

R

(1+ v2)−δ dv = B(δ − 1/2, 1/2)/2 is finite. (2.4)

We shall identify the functions on M (respectively on T 1M) with the �-invariant
functions on H (respectively on T 1H).

Set

�(z) :=
∫

dµz = µz(∂H) = µz(�), and λo := δ(δ − 1)/2. (2.5)

This is a function on H which satisfies �� = 2λo�. See ([P], theorem 1
page 301).
Note that for every γ in � we have

�(γ z) = γ ∗µz(∂H) = µz(γ
−1(∂H)) = �(z), (2.6)

which shows that � is also a function on M. Moreover, it is the fundamental ei-
genstate on M. See ([P], theorem 1 page 301), or ([P-S], page 177). Note that an
obvious corollary is that the volume of M is finite if and only if δ = 1.
Let π denote the canonical projection from T 1H onto H as well as from T 1M onto
M. We shall use on the unitary tangent bundle T 1H the two following systems of
coordinates:

– firstly, (z, u) ∈ H×∂H, the geodesic running from z to u determining the unitary
tangent vector at the base point z; this identifies T 1H with H× ∂H;

– secondly, given a reference point z0 ∈ H, the point (z, u) of T 1H (just defined
above) can be represented by the triple (u, v, s) ∈ ∂H× ∂H× R, where

– v is the starting point of the geodesic ending at u and running through z;
– s is the algebraic hyperbolic distance from z to the orthogonal projection z1

of z0 onto the geodesic −→vu.

Denote by dist (ζ, uv) the hyperbolic distance from ζ ∈ H to the geodesic −→vu.
The following well-known identity is valid for any ζ in H, any distinct u, v in ∂H,
and any z on the geodesic −→vu running from v to u.

cosh2(dist (ζ, uv)) = Bu(ζ, z) Bv(ζ, z). (2.7)
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(
Indeed, since this is an intrinsic formula, we may consider the half-plane model

with u = ∞ and v = 0. Denoting then by (X, Y ) the Euclidean coordinates of
ζ in this model, and by (0, y) those of z, it is elementary that Bu(ζ, z) = y/Y ,
Bv(ζ, z) = (X2 + Y 2)/(yY ), and, using the classical formula for the distance (see
[P]), that cosh2(dist (ζ, uv)) = cosh2 dist (ζ, (0, |ζ |)) = (X2 + Y 2)2/(Y |ζ |)2 =
1+X2/Y 2 = Bu(ζ, z) Bv(ζ, z).

)
Define the normalized Patterson-Sullivan measure m̃ on T 1H by

dm̃(u, v, s) := ‖�‖−2
2 c(δ)× cosh2δ (dist (z0, uv)

)
dµz0(u) dµz0(v) ds. (2.8)

Note that by the geometric property (2.2) for (µz) and by the identity (2.7) above,
m̃ does not depend on the choice of the reference point z0. Hence it is intrinsic (it
depends only on the subgroup �), and then it is �-invariant. Moreover it is plainly
invariant with respect to the geodesic flow. It is sometimes also called (normalized)
Bowen-Margulis measure.

The Liouville measure λ̃ on T 1H can be expressed in a similar way, for any
reference point z0, by:

dλ̃(u, v, s) = cosh2 (dist (z0, uv)
)
dµh

z0
(u) dµh

z0
(v) ds, (2.9)

where µh
z denotes the harmonic measure at z. Recall that we have in the half-plane

model: dµh
z (u) = p(z, u) du. Note that the above geometric property for harmonic

measures holds, by changing δ into 1: dµh
z′(u) = Bu(z, z

′) dµh
z (u) for any z, z′ in

H. As can be verified by a direct elementary computation, the expression of λ̃ in
the (z, u) coordinates is: dλ̃(z, u) = dµh

z (u)dṼ (z).

Recall that any �-invariant measure ñ on T 1H induces a measure n on T 1M.
In particular, denote by λ the Liouville measure induced by λ̃, and by m the Patt-
erson-Sullivan measure induced by m̃. Similarly, denote by dV = π∗λ the area
measure on M.

Recall that the Liouville measures are invariant by the horocycle and geodesic
flows. But λ is finite only when δ = 1, whereas m is always finite (see for example
([P], th.1 p. 309); see also corollary 1 below).

Observe from the two expressions above for the Liouville measure the following
formula∫

F dṼ =
∫

F ◦ π(u, v, s) Bv(z0, π(u, v, s)) dµ
h
z0
(v) ds, (2.10)

valid for any u ∈ ∂H, any z0 ∈ H, and any test function F on H.
Let θt and θ+t denote respectively the geodesic and the positive horocyclic flows,

on T 1H and T 1M as well. Moreover for any z = (x, y) ∈ R × R∗+, set

Tz := θ+x θLog y. (2.11)

Observe the following important classical relation:

T(x,y) Tz′ = T(x,0)+ y z′ . (2.12)
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This means in particular that the set {Tz | z ∈ R × R∗+} constitutes a group,
isomorphic to the orientation preserving affine group of R.

Let us introduce the Lie derivatives: for any smooth function F on T 1M, any
ξ in T 1M, we set:

L0F(ξ) := do

dt
F
(
ξ θt
)
, L1F(ξ) := do

dt
F
(
ξ θ+t

)
. (2.13)

do
dt

means and will mean the derivative at t = 0 with respect to t . We immediately
see that:

[L0,L1] =L1, (2.14)

and

L0F(ξT(x,y)) = y
∂

∂y
F (ξT(x,y)), L1F(ξT(x,y)) = y

∂

∂x
F (ξT(x,y)). (2.15)

Since the flows act on the right hand side, while the quotient by� takes place on the
left hand side, these two operations commute. Thus the flows indeed make sense
on T 1M, and the translated measures T ∗z m̃ and T ∗z λ̃ induce respectively T ∗z m and
T ∗z λ on T 1M. In particular, to prove some formula relative to T 1M, m, λ, V and
to the flows, it will be sufficient to establish it (for any test-function) at the level of
T 1H, m̃, λ̃, Ṽ .

We are now able to state our main result:

Theorem. For any 1-form ω on M, closed in some neighborhood N of the cusps
of M and m-integrable in M \N, having residue r(Pi , ω) at the cusp Pi , and for
any real α, we have:

lim
t→∞

∫
T 1M

exp

[√−1α t
−1

2δ−1

∫
ξ [0,t]

ω

]
m(dξ) = exp

[
−|α|(2δ−1) C′(�, ω)

]
,

where C′(�, ω) := ‖�‖−2
2 × c(δ)2 × �(3/2−δ)

�(δ+1/2) ×
N∑
i=1

|r(Pi , ω)/2|(2δ−1) λ(Pi )
2.

Equivalently: the law under the probability measure m of the normalized

integral t
−1

2δ−1

∫
ξ [0,t]

ω of ω along the geodesics of length t converges towards the

two-sided stable law with exponent (2δ − 1) and rate C′(�, ω).

Here P1, . . . ,PN are the cusps of M, and the intrinsic parameter λ(Pi ) is
defined in definition 2 of section 7.1.

Observe that the expression of the rate C′(�, ω) of our limit stable law shows
that the form takes place only through its residues, and that the different cusps
asymptotically contribute independently.
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3. A new intrinsic measure onT 1M

We introduce a new intrinsic measure ν on T 1M. Its first interest is to be smooth
along the stable leaves and quasi-invariant under the geodesic and positive horo-
cyclic flows, and to have its pullback measures θS ∗ ν regularized from m by some
convolution along the stable horocycles of T 1M, and then converging towards m
as S increases to infinity.

Definition 1. Let ν̃ be the measure on T 1H defined by:

dν̃(z, u) = ‖�‖−2
2 �(z) dµz(u) dṼ (z). (3.1)

The L2-norm is relative to (M, dV ). Let ν be the corresponding measure on T 1M,
and denote also

dV �(z) := ‖�‖−2
2 �2(z) dV (z). (3.2)

Remark 1. Observe that the definition of ν is consistent, since the �-invariance of
�, Ṽ and the geometric property (2.2) of (µz) imply the�-invariance of ν̃. Observe
also that by definition of � we have π∗ν = V�, and then that ν is a probability
measure on T 1M.

Remark 2. In the finite volume case, we have δ = 1, � constant, dµ(u) is pro-
portional to the uniform measure du, and then our measure ν is proportional to the
measure m and to the Liouville measure λ.

Proposition 1. The measure ν is quasi-invariant under the geodesic and positive
horocycle flows:

d(Tz
∗ ν)

dν
(ξ) = y(1−δ) × � ◦ π(ξT −1

z )

� ◦ π(ξ) for any ξ in T 1M and

z = (x, y) in R × R∗
+.

Note that this quasi-invariance property is what remains from the invariance of
the Liouville measure λ under the flows, in the finite volume case.

Proof . As observed at the end of section 2, it is enough to prove the identity for ν̃.
Let us use the invariance of the Liouville measure and of the coordinate u under
the flows, and the expression of the Liouville measure in the coordinates system
ξ = ξ(z, u) ∈ T 1H. We get for any ζ ∈ R × R∗+ and any test functions H on ∂H

and G on T 1H:∫
G(ξ(z, u)Tζ )H(u) dµh

z (u) dṼ (z) =
∫

G(ξ(z, u))H(u) dµh
z (u) dṼ (z).

Thus we obtain for any u ∈ ∂H, z0 ∈ H, and any test function G on T 1H:

∫
G(ξ(z, u)Tζ ) Bu(z0, z) dṼ (z) =

∫
G(ξ(z, u)) Bu(z0, z) dṼ (z). (3.3)
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Whence using the definition 1 of ν̃, a reference point z0 ∈ H, the geometric property
(2.2) of (µz), and the (z, u)-coordinates on T 1H, we get:∫

G(ξTζ ) dν̃(ξ) = ‖�‖−2
2

∫
G(ξ(z, u)Tζ )�(z) Bδ

u(z0, z) dµz0(u) dṼ (z)

= ‖�‖−2
2

∫
G(ξ(z, u))� ◦ π(ξ(z, u)T −1

ζ )

×Bδ−1
u (z0, π(ξ(z, u)T

−1
ζ )) Bu(z0, z) dµz0(u) dṼ (z)

(we used here the identity (3.3))

=
∫

G(ξ)× � ◦ π(ξT −1
ζ )

� ◦ π(ξ) × Bδ−1
u (z0, π(ξT

−1
ζ ))

Bδ−1
u (z0, π(ξ))

dν(ξ)

=
∫

G(ξ)× � ◦ π(ξT −1
ζ )

� ◦ π(ξ) × Bδ−1
ξθ∞(π(ξ), π(ξT

−1
ζ )) dν(ξ).

The result follows, since writing ζ = (x, y), we clearly have by the very definition
of Bu:

Bδ−1
ξθ∞(π(ξ), π(ξT

−1
ζ )) = B1−δ

ξθ∞(π(ξθ− log y), π(ξ)) = y1−δ. ��
Theorem 1. The measure ν can be expressed by a convolution of m along the
stable horocycles of M. Precisely, we have:

ν = c(δ)−1
∫

R

(θ+x )
∗m(1+ x2)−δ dx. (3.4)

Proof. As observed at the end of section 2, it is enough to prove the identity for
ν̃ and m̃. Fix a test function F on T 1H and a reference point z0 ∈ H. Recall the
notation z = π(z, u) = π(u, v, s) in the (u, v, s) coordinates on T 1H. We have
by definition (2.5) of �, (3.1) in definition 1, the geometric property (2.2) of (µz),
and formula (2.10):

‖�‖2
2

∫
F dν̃

=
∫

F(z, u) dµz(w) dµz(u) dṼ (z)

=
∫

F(z, u) Bδ
u(z0, z) B

δ
w(z0, z) dµz0(u) dµz0(w) dṼ (z)

=
∫

F(u, v, s) Bδ
u(z0, z) B

δ
w(z0, z) Bv(z0, z) dµ

h
z0
(v) ds dµz0(u) dµz0(w).

Consider now the intersection z′ of the stable horocycle H(z, u) with the geo-
desic −→wu. So we have, using both coordinate systems on T 1H: ξ ′ := ξ(z′, u) =
ξ(z, u)θ+−x = (u,w, s′) for some real x and s′. Let us perform the change of vari-
able: s �−→ s′, keeping the other variables u, v,w, fixed. Observe that the map
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ξ = ξ(z, u) �−→ ξ ′ commutes with the geodesic flow, and therefore that ds = ds′.
Thus using (2.1), (2.7) and (2.8) we have:∫

F dν̃ = ‖�‖−2
2

∫
F(ξ ′θ+x ) B

δ
u(z0, z) B

δ
w(z0, z) Bv(z0, z) dµ

h
z0
(v)

× dµz0(u) dµz0(w) ds
′

= c(δ)−1
∫

F(ξ ′θ+x ) B
δ
u(z0, z) B

δ
w(z0, z) B

δ
u(z

′, z0) B
δ
w(z

′, z0)

× dµh
z (v) dm̃(u,w, s

′)

= c(δ)−1
∫

F(ξ ′θ+x ) B
δ
u(z

′, z) Bδ
w(z

′, z) dµh
z (v) dm̃(u,w, s

′)

= c(δ)−1
∫

F(ξ ′θ+x ) B
δ
w(z

′, z) dµh
z (v) dm̃(ξ

′)

= c(δ)−1
∫

F(ξθ+x ) B
δ
ξθ−∞(π(ξ), z) Bv(π(ξ), z) dµ

h
π(ξ)(v) dm̃(ξ),

where z = π(ξθ+x ) and v = ξθ+x θ−∞.
It remains to show thatBδ

ξθ−∞(π(ξ), z) Bv(π(ξ), z) dµ
h
π(ξ)(v) = (1+x2)−δdx.

Now, this is an intrinsic formula (x is a distance along the horocycle H(ξ)), thus it
is enough to prove it in a particular model for H. Let us take the half-plane model,
with ξθ∞ = u = ∞ and ξθ−∞ = w = 0.
Then we easily see that v = yx, B0(z, π(ξ)) = Bv(π(ξ), z) = 1 + x2, and that
dµh

π(ξ)(v) = p(π(ξ), v) dv = (y(1 + x2))−1y dx, where y = Im(π(ξ)). The
result follows. ��

Taking F = 1 and using the definition (2.4) of c(δ) and remark 1, we immedi-
ately deduce

Corollary 1. m is a probability measure on T 1M.

Remark 3. In particular we recover for δ > 1/2 that m is finite on T 1M, then
that µz ⊗ µz does not charge the diagonal, and then the classical result that µz is
atomless.

We also deduce the following approximation result on the measure m:

Corollary 2. The measure θ∗S ν converges as S → +∞, in the sense of the eval-
uation on each bounded continuous function on T 1M, towards the normalized
Patterson-Sullivan measure m.

Proof . This is a straightforward consequence of the following formula, valid for
any real S:

(θS)
∗ν = c(δ)−1

∫
R

(θ+
e−Sx)

∗m (1+ x2)−δ dx. (3.5)

Indeed, using theorem 1, the commutation formula (2.12), and the geodesic invari-
ance of m, we get:
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c(δ)

∫
F d((θS)

∗ν) = c(δ)

∫
F(ξθS) dν(ξ)

=
∫

F(ξθ+x θS) dm(ξ) (1+ x2)−δ dx

=
∫

F(ξθSθ
+
e−Sx) dm(ξ) (1+ x2)−δ dx

=
∫

F(ξθ+
e−Sx) dm(ξ) (1+ x2)−δ dx. ��

4. Diffusions onH, onM, and onT 1M

Let us from now on identify H with its Poincaré half-plane model R × R∗+, and

denote by z = (x, y) the current point. Recall that � = y2
(

∂2

∂y2 + ∂2

∂x2

)
.

4.1. The diffusions Zd
t

Let wt and Wt denote two independent standard real Brownian motions, defined
on (9,F,P). Set

yt := exp [wt+(δ− 1
2 ) t], Yt :=

∫ t

0
y2
s ds, xt :=

∫ t

0
ys dWs, Z

δ
t := (xt , yt ) ∈ H.

(4.1)
For all δ, Zδ

t is the diffusion on H starting from eo = (0, 1), with invariant measure
y2δ−2dxdy, and generator

1

2
�δ := 1

2
�+ δ y

∂

∂y
= y2

2

(
∂2

∂y2
+ 2δ

y
× ∂

∂y
+ ∂2

∂x2

)
. (4.2)

Similarly, denote by Zd
t the analogous process with δ replaced by d ∈ [0, 1]. In

particular, Z0
t is the Brownian motion on H.

We gather in the following lemma the facts we shall need, relating to these
diffusions.

Lemma 1. (i) Denoting by Pt the Brownian semi-group on M, we have for any
ξ ∈ T 1M, test-function f and t ≥ 0 : E

(
f ◦ π (ξTZ0

t
)
) = Ptf (π(ξ)).

(ii) TZd
t

is a right diffusion on the orientation preserving affine group of R.
(iii) αt := (x+xt )/yt is a symmetrical ergodic diffusion process on R, starting

from x, and with invariant measure having density x �−→ (1+ x2)−δ .
(iv) For each t ≥ 0, T −1

Z1
t

has the same law as TZ0
t
.

Proof. (i) Recall the classical identification between T 1H and the set of Möbius
isometries of H, and that in this identification we have for any ξ ∈ T 1M and
any z ∈ H: ξ(z) = π(ξTz), which remains valid with ξ ∈ T 1M and z ∈ M. In
particular, we see that π(ξTZ0

t
) = ξ(Z0

t ) is a Brownian motion on M, started from
π(ξ).

(ii) We have indeed for any d ∈ [0, 1]: T −1
Zd
t

TZd
t+s

= T
Ẑd
s,t
= TZd

s
◦<t , which

is independent of the sub-σ -field Ft generated by the coordinates until time t .
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Here Ẑd
s,t stands for

(
xdt+s−xdt

ydt
,
ydt+s
ydt

)
, <t denotes the standard shift on time, and we

naturally write Zd
t = (xdt , y

d
t ).

(iii) Itô’s formula shows that dαt =
√

1+ α2
t dw̃t + (1 − δ)αt dt , for some

Brownian motion w̃t , and thus that αt is a diffusion process with generator

G := ( 1+α2

2 ) d2

dα2 + (1− δ)α d
dα

.Then we have for any test-functions f and g:∫
R

Gf (α) g(α) (1+ α2)−δdα = −1

2

∫
R

f ′(α) g′(α) (1+ α2)1−δdα.

Therefore G and the semi-group of αt are selfadjoint with respect to the finite
measure (1+ x2)−δ dx.

(iv) Since Z1
t = (x1

t , y
1
t ) with y1

t = exp(wt + t/2) and x1
t =

∫ t

0
y1
s dWs , we

have: 1/y1
t = exp[−wt − t/2] and

−x1
t /y

1
t = −

∫ t

0
exp[ws − wt + (s − t)/2] dWs

= −
∫ t

0
exp[wt−s − wt − s/2] dWt−s ,

so that for each fixed t :

Ẑ1
t :=

(−x1
t

y1
t

,
1

y1
t

)
=
(∫ t

0
exp[w′s − s/2] dW ′

s , exp[w′t − t/2]

)
(law)= (x0

t , y
0
t ),

where w′s := wt−s − wt and W ′
s := Wt −Wt−s . This shows that T −1

Z1
t

= T
Ẑ1
t

(law)=
T(x0

t ,y
0
t )

= TZ0
t
, for each fixed t ≥ 0. ��

4.2. The stopping time τt

Our contour deformation in section 6 will use the following stopping time: set
for t ≥ 0

τt := inf {s > 0| ys = yoe
t }. (4.3)

It is clear from the formula (4.1) defining ys that τt is merely the first passage time
of some real Brownian motion with constant drift.
We collect in the following technical lemma all we shall need to handle τt .

Lemma 2. (i) Let Ir be the usual modified Bessel function. The joint law of τt and
xτt is given by: for any real w and any a ≥ −(δ − 1/2)2/2

E
[

exp(
√−1w xτt − a τt )

]
= e(δ−1/2) t × I√

2a+(δ−1/2)2
(|w|)

/
I√

2a+(δ−1/2)2
(|w| et ).
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(ii) The law of e−t xτt converges as t →∞.

(iii)We have E
(
e−a τt

) = exp
[
−
(

1/2− δ +
√
(δ − 1/2)2 + 2a

)
t
]
, for any

a ≥ −(δ−1/2)2/2, and E(τt ) = t/(δ−1/2),E(τ 2
t ) = (δ−1/2)−2t2+(δ−1/2)−3t.

(iv) For any q ∈]1/2, 1[ τt − t/(δ− 1/2) = o(tq), almost surely as t →+∞.

Proof . Set Ut := y(Y−1(t)), At := Y−1(t) and σt := inf {s > 0 |Us = et }.
We have then 〈xs〉 = Ys , ys = U(Ys), σs = Y (τs), As =

∫ s
0 U−2

r dr , Aσs = τs .

Moreover the generator of Us is 1
2

d2

du2 + δ
u

d
du

, whence dUs = dβs + (δ/Us) ds: Us

is the Bessel process with index (2δ + 1). Let us look for a C2 function g on R+
such that Ms := exp(−a As − F s)g(Us) be a martingale, for fixed positive a and
F. We have

Ms = g(1)+
∫ s

0
exp(−aAr − Fr) g′(Ur) dβr + 1

2

∫ s

0
exp(−aAr − Fr)

×
[
g′′(Ur)+ 2δ

Ur

g′(Ur)− 2
(
F + a

U2
r

)
g(Ur)

]
dr.

We must then have g′′(u) + 2δg′(u)/u − 2(au−2 + F) g(u) = 0. Set h(u) :=
uδ−1/2 g(u); this is a C2 function on R+ which satisfies:

h′′(u)+ h′(u)/u−
(

2F + (2a + (δ − 1/2)2)u−2
)
h(u) = 0.

Therefore we have h(u) = Ib(a)(u
√

2F) and g(u) = u1/2−δ Ib(a)(u
√

2F), where

b(a) :=
√
(δ − 1/2)2 + 2a and Ir (z) = zr ×

∑
k≥0

z2k

2r+2kk!�(r + 2k + 1)
.

Finally we have by the optional sampling theorem

E
[
exp
(√−1w xτt − a τt

)]
= E

[
exp

(
−|w|

2

2
σt − Aσt

)]
= g(1)/g(et )

= e(δ−1/2)t Ib(a)(|w|)
/
Ib(a)(|w|et ).

This proves (i) for a ≥ 0.
For getting (ii), it is enough to change a into 0 and w into we−t . Indeed, this gives

E
[

exp
(√−1w e−t xτt

)]
= e(δ−1/2)t I(δ−1/2)(|w|e−t )

/
I(δ−1/2)(|w|)

t→∞−→

∑

k≥0

�(δ + 1/2) w2k

4kk!�(δ + 2k + 1/2)



−1

∈ L2(R).

Since τt = inf{s > 0 |ws + (δ − 1/2)s > t}, (iii) follows easily from the Camer-
on-Martin formula. And this allows to complete the proof of (i) for negative a, by
analytic continuation. Finally, (iv) is straightforward from the following observa-
tion:

t = log yτt = (δ − 1/2) τt + wτt = (δ − 1/2) τt + o(τ
q
t ). ��
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4.3. The diffusion ξδt and its invariant measure ν

For any ξ ∈ T 1M, set

ξδt := ξ TZδ
t
, and (4.4)

Dδ :=L2
0 +L2

1 + (2δ − 1)L0 = D0 + 2 δL0. (4.5)

Remark 4. We have on T 1H:

D0(F ◦ π)(ξ T·) = �[F ◦ π(ξ T·)] = �(F ◦ ξ) = (�F) ◦ ξ = (�F) ◦ π(ξ T·),

whence D0(F ◦ π) = (�F) ◦ π , which remains valid on T 1M. But if δ �= 0 then
Dδ(F ◦ π) �= (�δF ) ◦ π .

Lemma 3. The process ξδt is the diffusion on T 1M starting from ξ and having
generator 1

2 D
δ . Moreover it admits ν as an invariant measure.

Proof. The diffusion property is straightforward from lemma (1, ii). Let us fix a
test-function F on T 1M, and a positive t . From (2.15) we get �δ[F(ξ Tz)] =
(DδF )(ξ Tz). Finally using theorem 1, the commutation formula (2.12), the geo-
desic invariance of m, and lemma (1, iii), we have:

∫
E
(
F(ξδt )

)
dν(ξ) = ‖�‖−2

2

∫
R

∫
E
(
F
(
ξθ+x TZδ

t

))
dm(ξ) (1+ x2)−δ dx

= ‖�‖−2
2

∫
R

∫
E
(
F
(
ξθ+(

x+xt
yt

))) dm(ξ) (1+ x2)−δ dx

= ‖�‖−2
2

∫ ∫
R

F
(
ξθ+x

)
(1+ x2)−δ dx dm(ξ) =

∫
F dν.

��

4.4. π(ξδt ) is the �-diffusion

We construct here, by projection of the stationary diffusion ξδt , a stationary dif-
fusion on M, related to the fundamental function �, that we call “�-diffusion”
and denote by Z�

t , and that we shall study in section 8 and use in section 9 to
perform the probabilistic approach of the geodesic behavior. This role is played
by the Brownian motion in the finite volume case. Note that the lift to H of this
�-diffusion happens to be the diffusion considered in [Su1], where the path mea-
sure is constructed from the semi-group via Kolmogorov extension theorem. The
major reason of the relevance of this �-diffusion in our problem is that it is a
Brownian motion conditioned to converge to the limit set �(�), according to the
Patterson measure µz when started from z. (See [E-F-LJ-3]. We shall however not
need this fact here).
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Proposition 2. Under the probability law ν ⊗ P, the projection π(ξδt ) of the sta-
tionary diffusion ξδt on T 1M is Z�

t , the stationary �-diffusion on M. It is symmet-
rical with invariant measure V�, and generator 1

2 �
� := 1

2 �
−1 � ◦ � − λo =

1
2 �+ (∇ log�) · ∇. (We identify the function � with the corresponding multipli-
cation operator, and recall that λo := δ(δ − 1)/2, see (2.5)).

Proof . A straightforward computation shows that yδ−1�δ ◦ y1−δ = �1 − 2λo.

Hence we have for each test-function ϕ and each t : E
(
y1−δ
t ϕ(T −1

Zδ
t

)
)

= e−λot

E
(
ϕ(T −1

Z1
t

)
)

.

Thus using lemma (1, iv) we get: E
(
y1−δ
t ϕ(T −1

Zδ
t

)
)
= e−λot E

(
ϕ(TZ0

t
)
)

.

In particular, using lemma (1, i), we have for any test-function f on M, any t and
any ξ ∈ T 1M:

E
(
y1−δ
t f ◦ π(ξT −1

Zδ
t

)
)
= e−λot E

(
f ◦ π(ξTZ0

t
)
)
= e−λot Ptf (π(ξ)). (4.6)

Consider now 0 = t0 < t1 < · · · < tn and test-functions f0, . . . , fn on M. We
have, using proposition 1:

∫ ∫ n∏
i=0

fi ◦ π(ξδti )dν(ξ) dP

=
∫ ∫

f0 ◦ π
(
ξT −1

Zδ
t1

)
×

n∏
i=1

fi ◦ π
(
ξT −1

Zδ
t1

TZδ
ti

)
d
((
TZδ

t1

)∗
ν
)
(ξ) dP

=
∫ ∫

(yt1)
1−δ × (�f0) ◦ π

(
ξT −1

Zδ
t1

)
× (f1/�) ◦ π(ξ)

×
n∏

i=2

fi ◦ π
(
ξδ(ti−t1) ◦<t1

)
dν(ξ) dP

=
∫

E
[
(yt1)

1−δ × (�f0) ◦ π
(
ξT −1

Zδ
t1

)]
× (f1/�) ◦ π(ξ)

×E

[
n∏

i=2

fi ◦ π(ξδ(ti−t1))
]
dν(ξ),

since the increments of TZδ
t

are independent, as already noticed for lemma (1, ii).
Thus using (4.6) above, we get:

∫ ∫ n∏
i=0

fi ◦ π(ξδti )dν(ξ) dP

= e−λot1
∫ (

f1

�
× Pt1(�f0)

)
(π(ξ))× E

(
n∏

i=2

fi ◦ π(ξδ(ti−t1))
)
dν(ξ)
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= e−λotn
∫ (

fn

�
× P(tn−tn−1)(fn−1 × · · · × P(t2−t1)(f1 × Pt1(�f0)) · · ·)

)
(π(ξ))

dν(ξ)

(by induction on n ∈ N)

= e−λotn
∫

f0

�
× Pt1

(
f1 × P(t2−t1)(f2 × · · · × P(tn−tn−1)(�fn) · · ·)

)
dV �

(since π∗ν = V� and by symmetry of �� with respect to V�)

= E

(
n∏

i=0

fi(Z
�
ti
)

)
. ��

Remark 5. The preceding statements are sufficient for our purpose. However, it
is possible to show some more relation between the diffusions considered here.
Indeed, by using the infinitesimal version of the quasi-invariance of ν and the ob-
servation that D0(� ◦ π) = (��) ◦ π = 2λo� ◦ π , we can compute the adjoint
of Dδ with respect to its invariant measure ν. We find that this adjoint equals
D� := (� ◦ π)−1 D0 ◦ (� ◦ π) − 2 λo. See [E-F-LJ-3]. Moreover, we see that
D�(f ◦ π) = (��f ) ◦ π for any test-function f on M, although Dδ(f ◦ π) �=
(�δf ) ◦ π .

5. Lift of a 1-form to a closed 1-form on each leaf

5.1. Contribution of a 1-form

Fix a 1-form ω on M, closed in some neighborhood N of the cusps of M and
m-integrable in M \N.

We are interested in the asymptotic behavior of the following quantity:

Jt (ω) :=
∫
T 1M

exp

[√−1 rt

∫
ξ [0,t]

ω

]
dm(ξ)

=
∫
T 1M

exp

[√−1 rt

∫ t

0
fω(ξθs) ds

]
dm(ξ), (5.1)

where t is positive, rt := t
−1

2δ−1 , and where the function fω is defined on T 1M by:

fω(ξ) := 〈ω(π(ξ)), �ξ〉, where ξ = (π(ξ), �ξ), �ξ ∈ T 1
π(ξ)M. (5.2)

Recall that ξ [0, t] means {π(ξθs)|0 ≤ s ≤ t}, that is to say the geodesic of length
t starting from ξ . Note that we have rt ≤ 1/t .

Let us decompose ω in ω = ω̃+ω′ + dF , with F of class C1 on M, ω̃ smooth
on M, harmonic in some neighborhood of each cusp and vanishing out of another
neighborhood of each cusp, and ω′ m-integrable, vanishing in some neighborhood
of the cusps. Note that ω̃ is defined up to some smooth form null far from the cusps
and near the cusps.
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Lemma 4. |Jt (ω)− Jt (ω̃)| converges to zero as t goes to infinity. Thus we have

lim
t→∞ Jt (ω) = lim

t→∞ J
f
t , where

J
f
t :=

∫
T 1M

exp

[√−1 t
−1

2δ−1

∫ t

0
f (ξθs) ds

]
dm(ξ), and f := fω̃. (5.3)

Proof. We have

|Jt (ω)− Jt (ω̃)| ≤
∫ ∣∣∣∣1− exp

[√−1 rt

∫ t

0
fdF (ξθs)ds

]∣∣∣∣ m(dξ)
+
∫ ∣∣∣∣1− exp

[√−1 rt

∫ t

0
fω′(ξθs)ds

]∣∣∣∣ m(dξ).
Now

∫ t

0
fdF (ξθs)ds = F(ξθt )−F(ξ), andF(ξθt ) is stationary by the geodesic

invariance of m. Thus the first term on the right hand side above goes to zero.
To deal with the second term, we observe that fω′ , as ω′, is m-integrable on

M. Thus the ergodic theorem applies, to ensure the almost sure convergence of

t−1
∫ t

0
fω′(ξθs)ds towards

∫
fω′ dm. Now this last integral is null by the invariance

of m under the symmetry �ξ �−→ −�ξ (which amounts to exchange the coordinates
u and v), while fω′(ξ) becomes −fω′(ξ) under this same symmetry.
This concludes the proof, since rt ≤ 1/t . ��

5.2. Coordinates in the cusps

Denote by P1, . . . ,PN the cusps of M.
For each fixed cusp Pi , consider the half-plane model for H adapted to Pi , that is
to say such that Pi = ∞ and such that the maximal parabolic subgroup of � fixing
Pi is precisely Z, that is to say the isometry subgroup of horizontal translations of
integer lengths. Denote by (xi, yi) ∈ R×R∗+ the canonical coordinates in this par-
ticular model adapted to the cusp Pi . Then consider the horocyclic neighborhood
of Pi at height a, that is to say Ni (a) := �\{yi ≥ a}, for positive a.

Let us fix a large enough, so that Ni (a) = Z\{yi ≥ a}, and that the distinct
Ni (a) be disjoint. Finally Set N(a) := ∪Ni=1 Ni (a).
So Di := {0 ≤ xi < 1} ∩ {yi ≥ a} is a fundamental domain for Ni (a), and the
metric in Di is given by

dM2 = (yi)−2
(
(dxi)2 + (dyi)2

)
. (5.4)

Let us specify the ω̃ we choose in the decomposition of ω in section 5.1: we fix
bo > a and a smooth function h on R+ such that h = 0 on [0, bo] and h = 1 on
[bo + 1,∞[, and we take
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ω̃ =
N∑
i=1

(h ◦ yi) ri dxi . (5.5)

The coefficients ri = r(Pi , ω) are the residues of ω̃ and of ω (near the cusps).
Note that (dxi) is a basis of the one-dimensional cohomology H 1(Ni (a)).
Note further that by definition ofL0 and f (see (2.13) and (5.3)) we get from (5.5):

f =
N∑
i=1

(h ◦ yi) ri L0 x
i. (5.6)

Of course we may extend any function on H (respectively on M) to a function
on T 1H (respectively on T 1M), by identifying for example xi and xi ◦ π .

For any ξ ∈ T 1M let πξ denote the covering map from H ≡ R×R∗+ onto M
defined by πξ (z) := π(ξTz). So π∗ξ ω̃ is naturally a 1-form on H. Moreover using
(2.15) we get:

π∗ξ dx
i = d(xi ◦ πξ ) = y−1 (L1 x

i)(ξT·) dx + y−1 (L0 x
i)(ξT·) dy,

and then

π∗ξ ω̃ (z) = y−1 f1(ξTz) dx + y−1 f (ξTz) dy, (5.7)

with

f1 :=
N∑
i=1

(h ◦ yi) ri L1 x
i. (5.8)

5.3. The conjugate function

We construct here a function g on T 1Mwhich is conjugate to the windings function
f . That is to say: we complete the winding form f (ξTz) dy/y into a closed form
ωξ on the leaf through ξ , by adding a term g(ξTz) dx/y. We also check that this
new form is close to the pull-back by πξ of the winding form ω̃ on M. This will
be crucial in section 6 in order to replace geodesics by diffusion paths.

Lemma 5. Set
f̃1 := (L0 − 1) f1 −L1f. (5.9)

Then this is a compactly supported smooth function on T 1M.

Proof. We use the commutation relation (2.14) between L0 and L1, (5.6) and
(5.8) to get:

f̃1 =
N∑
i=1

h′ ◦ yi × ri
(
L0 y

i L1 x
i −L1 y

i L0 x
i
)
,

which is smooth and vanishes where h′ ◦ yi vanishes, namely outside the compact

π−1
(⋃N

i=1 �\{a ≤ yi ≤ b}
)

. ��
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Lemma 6. Set

UAφ (ξ) := −
∫ A

0
e−s φ(ξθs) ds, (5.10)

for A in [0,∞[, ξ in T 1M, and φ a continuous function on T 1M. We have
(i)

g := lim
A→∞

UAL1f exists in m-probability. (5.11)

(ii) g − f1 = − lim
A→∞

UAf̃1 is bounded, with bounded L0 and L1 iterated deriv-

atives.
(iii) g is smooth along the stable leaves, and decreases exponentially fast above the
funnels.
(iv) (L0 − 1)g =L1 f .

Proof . (i) UAL1f (ξ) = UA(L0 − 1)f1(ξ)−UAf̃1(ξ) (by Lemma 5)

= −
∫ A

0
e−s

d

ds
f1(ξθs) ds +

∫ A

0
e−sf1(ξθs) ds −UAf̃1(ξ)

= f1(ξ)− e−Af1(ξθA)−UAf̃1(ξ)

converges as A→∞ towards f1(ξ)−U∞f̃1(ξ) in m-probability, by lemma 5.
(ii) By the above we have g − f1 = −U∞f̃1, which is bounded by lemma

5 again. Moreover since L0 and UA commute, the L0-derivatives of g − f1 are
bounded as well. Finally we uniformly have:

L1(UA −U∞)f̃1(ξ) = L1

∫ ∞

A

e−s f̃1(ξθs) ds

=
∫ ∞

A

e−2sL1f̃1(ξθs) ds −→{A→∞} 0,

whence L1(f1 − g) =L1U∞f̃1 = lim
A→∞

L1UAf̃1 is bounded by ‖L1f̃1 ‖∞ .

The same argument works for higher order derivatives.
(iii) Firstly, the smoothness is clear from (ii) and the smoothness of f1.

Now for ξ in a funnel, denote by t (ξ) the first time t at which ξθt hits N(a). Since
f is null on ξθ[0,t (ξ)], we have

−g(ξ) =
∫ ∞

t (ξ)

e−sL1f (ξθs) ds = e−t (ξ) g(ξθt(ξ)),

and thus we get

|g(ξ)| ≤ exp[−dist (π(ξ),N(a))]× sup |g(π−1(∂N(a)))|.

(iv) Then on one hand (L0− 1) and UA commute and we see as in (i) above:
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(L0 − 1)UAL1f (ξ) =L1f (ξ)− e−AL1f (ξθA) −→{A→∞} L1f (ξ)

in m-probability, and on the other hand:

(L0−1)UAL1f (ξ) = (L0−1)f1(ξ)−e−A(L0−1)f1(ξθA)−(L0−1)UAf̃1(ξ)

−→{A→∞} (L0 − 1)(f1 −U∞f̃1)(ξ) in m−probability. ��
Corollary 3. Set

ωξ (z) := g(ξTz) y
−1 dx + f (ξTz) y

−1 dy. (5.12)

This is a smooth closed 1-form on H, for any ξ in T 1M. Moreover

(π∗ξ ω̃ − ωξ )(z) = (f1 − g)(ξTz) y
−1 dx is a bounded 1-form on H.

Proof. The relation of lemma (6, iv) exactly means that the coefficient of dωξ
vanishes. The formula for π∗ξ ω̃ − ωξ is clear from (5.7), and the boundedness is
clear from lemma (6, ii). ��

6. From geodesic flow to stochastic flow

We take here advantage of the closedness of the form ωξ to change the integra-

tion path in J
f
t (introduced in (5.3), Lemma 4): we substitute the diffusion path

{ξTZδ
s
| 0 ≤ s ≤ τt } for the geodesic ξ [0, t]. In this contour deformation two resid-

ual terms appear, that we prove to be negligible. In the last part of this section, we
use the proximity between ωξ and π∗ξ ω̃ to come back to the form ω̃ (introduced in
section 5.1, formula (5.5)) on M.

6.1. From geodesics to diffusion paths

Using corollary 2, we get from (5.3): almost surely

J
f
t = lim

S→∞

∫
T 1M

exp

[√−1 t
−1

2δ−1

∫ t+log yS

log yS

f (ξθs) ds

]
dν(ξ)

= lim
S→∞

∫
T 1M

exp

[√−1 t
−1

2δ−1

∫ (0,ySet )

(0,yS)
ωξ

]
dν(ξ),

where we recall from lemma 6 and corollary 3 that there is a function g on T 1M,

bounded in π−1
(
M \ N(a)

)
, such that

ωξ (x, y) := g(ξT(x,y))
dx
y
+ f (ξT(x,y))

dy
y

is a closed smooth 1-form on H.
Denote by <t the shift on (9,F,P).

Note that we have in particular (by definitions (4.1) and (4.3) of yt and τt ): τt ◦
<S + S = inf {r > S | yr = yS e

t } and yτt ◦<S = yτt◦<S+S = yS e
t . We write:
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∫ (0,ySet )

(0,yS)
ωξ =

∫ Zδ
τt
◦<S

Zδ
S

ωξ +
∫ (xS,yS)

(0,yS)
ωξ −

∫ Zδ
τt
◦<S

(0,ySet )
ωξ

=
(∫ Zδ

τt

Zδ
0

ωξ

)
◦<S +

∫ (xS,yS)

(0,yS)
ωξ −

(∫ Zδ
τt

(0,yτt )
ωξ

)
◦<S.

Then we have (using lemma 1):

∣∣∣∣∣
∫ (xS,yS)

(0,yS)
ωξ

∣∣∣∣∣ =
∣∣∣∣
∫ xS

0
g(ξT(x,yS)) dx /yS

∣∣∣∣ ≤ |xS/yS | × sup
∣∣∣ g (ξT([0,xS ],yS)

) ∣∣∣
= |αS | × sup

∣∣∣ g (ξθlog yS θ
+
±[0,|αS |]

) ∣∣∣.
Fix now some strictly positive ε.

We know from lemma 1 that the laws of {αS | S ∈ R+} form a tight family. Thus
there exists A = Aε > 0 such that for all S ∈ R+ we have: P(αS ∈ [−A,A]) >
1− ε.

We also know from corollary 2 that the family {θ∗S ν | S ∈ R+} is tight. Thus
there exists h = hε > A such that for all S ∈ R+ we have: θ∗S ν

(
π−1(N(h−A)))

< ε.
Here we slightly modify the definition (see section 5.2) of the horocyclic neigh-

borhood N(h): we fix it such that (for any positive h′) for a given reference point
z0 ∈M we have: h′ = dist (z0,N(h′)).

Set Bε := sup
∣∣∣ g(π−1[M \N(h)]

) ∣∣∣ <∞. We have for all B > Bε:

ν ⊗ P
[
sup

∣∣∣ g (ξθlog yS θ
+
±[0,|αS |]

) ∣∣∣ > B
]

< ε + ν ⊗ P
[
sup

∣∣∣ g (ξθlog yS θ
+
[−A,A]

) ∣∣∣ > B
]

≤ ε + ν ⊗ P
[
π
(
ξθlog yS θ

+
[−A,A]

)
∩N(h) �= ∅

]
≤ ε + ν ⊗ P

[
π
(
ξθlog yS

) ∈N(h− A)
]

≤ ε + P(yS < 1)+ sup
S≥0

θ∗S ν
(
π−1(N(h− A))

)
< 3 ε for S > S0.

On the other hand, we know from lemma 1 that ν is an invariant measure for
ξδt = ξTZδ

t
, and thus we have:(∫ Zδ

τt

(0,yτt )
ωξ

)
◦<S =

(∫ (xτt ,e
t )

(0,et )
ωξ

)
◦<S

(law)=
∫ (xτt ,e

t )

(0,et )
ωξ .

Then∣∣∣∣∣
∫ (xτt ,e

t )

(0,et )
ωξ

∣∣∣∣∣ = e−t
∣∣∣∣
∫ xτt

0
g(ξT(x,et )) dx

∣∣∣∣ ≤ |ατt | × sup
∣∣∣ g (ξθt θ+±[0,|ατt |]

) ∣∣∣.
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Now lemma (2, (ii)) shows that the laws of {ατt | t ≥ 0} again form a tight family.
Thus the preceding argument applies again, and so we have just proved that the two
extra terms in our contour deformation (multiplied by rt ) asymptotically vanish in
ν ⊗ P-probability. Therefore we obtain that

J
f
t −

(∫
T 1M

exp

[√−1t
−1

2δ−1

∫
Zδ

[0,τt ]

ωξ

]
dν(ξ)

)
◦<S goes to zero in probabil-

ity.
Since ν is an invariant measure for ξδt = ξTZδ

t
, we see that the law of(∫

T 1M
exp

[√−1t
−1

2δ−1

∫
Zδ

[0,τt ]

ωξ

]
dν(ξ)

)
◦<S does not depend on S.

Thus we deduce in particular the following:

Proposition 3. J f
t − E

(∫
T 1M

exp

[√−1t
−1

2δ−1

∫
Zδ

[0,τt ]

ωξ

]
dν(ξ)

)
goes to zero

as t →∞.

6.2. Back to windings on M

We now take advantage of the proximity between ωξ and π∗ξ ω̃ to come back to the
form ω̃ of section 5 (see (5.5), (5.7) and (5.12)).

Lemma 7. t
−1

2δ−1 ×
∫
Zδ[0,τt ]

(ωξ − π∗ξ ω̃) goes to zero in L2(ν ⊗ P).

proof . We deduce from corollary 3 that
∫
Zδ[0,τt ]

(ωξ − π∗ξ ω̃) =
∫ τt

0
(f1 − g)

(ξδs ) dW
′
s is a square-integrable martingale, which using lemmas 2 and (6, ii) im-

plies

∥∥∥∥rt ×
∫
Zδ[0,τt ]

(ωξ − π∗ξ ω̃)
∥∥∥∥

2

L2(ν⊗P)

= r2
t

∫ ∫ ∫ τt

0
|f1 − g|2(ξ δs ) ds dP dν(ξ)

≤ t
−1

δ−1/2 × E(τt )× ‖f1 − g‖2
∞

= O

(
t
δ−3/2
δ−1/2

)
−→ 0. ��

We deduce from proposition 3, from lemma 7 above, and by definition of πξ
(in section 5.2):

Corollary 4. J
f
t − E

(∫
T 1M

exp

[√−1t
−1

2δ−1

∫
π◦ξδ[0,τt ]

ω̃

]
dν(ξ)

)
goes to zero as

t →∞.
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7. Asymptotics forΦ near the cusps

We shall need estimates on � and ∇� at two crucial steps. We establish them now.
In the estimate of �, a new intrinsic parameter of each cusp P appears, that we
denote by λ(P). We introduce it in two ways, before performing the estimates.

7.1. The intrinsic parameter λ(P)

Let us introduce some intrinsic objects relating to some fixed cusp P. We fix
first some horocyclic neighborhood N(P) of P, small enough to be homeomor-
phic to T × R+, and to each z ∈ N(P), we associate the line element, say
ξ(P, z) ∈ T 1

z M, based at z, orthogonal to the P-horocycle passing through z, say
H(P, z) = H(ξ(P, z)), and pointing at P. H(P, z) has length

M(P, z) := inf{x > 0 | ξ(P, z)θ+x = ξ(P, z) }. (7.1)

Then we observe that there exists a unique continuous map x �−→ ξz(x) from
[0, M(P, z)] into T 1

z M = π−1({z}), such that ξz(0)θR+ = ξ(P, z)θR− and such
that for each x the half-geodesics ξz(x)θR+ and ξ(P, z)θ+x θR− are asymptotic.
Observe also that, due to the geometric property (2.2), the Patterson measure µz,
seen as a measure on T 1

z H by means of the coordinate system (z, u), makes sense
on T 1

z M as well. Then we set for any z ∈N(P) and any x ∈ [0, M(P, z)]:

MP,z

(
ξ(P, z)θ+[0,x]

)
:= M(P, z)−δ × µz

(
ξz([0, x])

)
. (7.2)

This defines a positive measure MP,z on the horocycle H(P, z).
By identifying ξ(P, z) with the geodesic it generates, we may see MP,z as a mea-
sure on the set GP of all geodesics pointing at P.

Lemma 8. The measure MP,z depends only on the horocycle H(P, z), and, as z
goes to P,MP,z converges weakly, on the compact set GP of all geodesics pointing
at P, to some intrinsic positive measure MP.

Proof. Let us consider as in section 5.2 the half-plane model for H adapted to P,
that is to say such that P = ∞ and such that the maximal parabolic subgroup
of � fixing P is precisely Z (that is to say the isometry subgroup of horizontal
translations of integer lengths).
Consider also the measure µP on R, relative to this choice of model, defined by:

dµP(u) := p−δ(z, u) dµz(u). (7.3)

Note that it does not depend on the point z ∈ H.
Let us use the following elementary identity on Möbius transforms:

p(gz, gu) × |g′(u)| = p(z, u), (7.4)

for all z in H, u in ∂H and g isometry of H.
The norm is the Euclidean one in our half-plane model. This identity is given by
([P], page 282), and can be obtained by a direct computation. As a consequence,



Stable windings on hyperbolic surfaces 235

we obtain the following translation of the geometric property (2.2) of (µz) in terms
of µP: we have for any γ ∈ �

d(γ ∗µP) = p−δ(z, γ−1 ·) d(γ ∗µz) = p−δ(γ z, ·) |γ ′(γ−1 ·)|−δ dµγ z

= |(γ−1)′(·)|δ dµP.

In particular we see that µP is 1-periodic.
Now in the model adapted to P, we merely have, for 0 ≤ r ≤ 1:

MP,z

(
ξ(P, z)θ+[0,r×M(P,z)]

)
= M(P, z)−δ × µz([x, x + r])

= M(P, z)−δ ×
∫ x+r

x

pδ(z, u) dµP(u)

= yδ
∫ x+r

x

yδ(y2 + u2)−δ dµP(u)

=
∫ x+r

x

(1+ M(P, z)2u2)−δ dµP(u).

Thus we see that MP,z indeed depends only on H(P, z).
Moreover, seen as a subset of GP, Gx,r

P := ξ(P, z)θ+[0,r×M(P,z)] clearly does not

depend on y, and as z goes toP, we see thatMP,z

(
Gx,r
P

)
goes toµP([x, x+r]) =:

MP

(
Gx,r
P

)
. ��

We can thus define the following intrinsic parameter in two ways:

Definition 2. Set
λ(P) := MP

(
GP

)
= µP([0, 1]). (7.5)

7.2. The estimates relating to �

The following proposition gives the necessary estimates of � and of ∇� in the
cusps. The notationsN(P), M(P, z), ξ(P, z)were introduced in section 7.1 above.

Proposition 4. For each cusp P of M and for z ∈N(P), we have:

(i) �(z) = c(δ) λ(P) M(P, z)δ−1 + O
(
M(P, z)δ

)
;

(ii) L1 log� ◦ π
(
ξ(P, z)

)
= O

(
M(P, z)

)
;

(iii) L0 log� ◦ π
(
ξ(P, z)

)
= 1− δ + O

(
M(P, z)

)
.

Proof. Recall from section 5.2 that (xi, yi) ∈ R×R∗+ denote the canonical coor-
dinates in the particular model adapted to the cusp Pi . Since we consider a single
cusp, let us forget the index i of this cusp. We have by periodicity of µ := µP (see
section 7.1):

�(z) =
∫

[0,1[

∑
n∈Z

pδ(z, u+ n) dµ(u)

= y−δ
∫

[0,1[

∑
n∈Z

(
1+ y−2(x − u− n)2

)−δ
dµ(u).
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Now the function v �−→ (1+y−2v2)−δ is monotone on R− and on R+, and thus its
Riemannian sum in the last integral above cannot differ from its integral by more
than twice its maximum:∣∣∣∣∣

∑
n∈Z

(
1+ y−2(x − u− n)2

)−δ − ∫
R

(1+ y−2v2)−δ dv

∣∣∣∣∣ ≤ 2.

Whence

�(z) = y−δ µ([0, 1[)
∫

R

(1 + y−2v2)−δ dv + O(y−δ), which gives (i), since

y−1 = M(P, z).
In the same way

y
∂

∂x
�(z) = −2δ y−δ−1

∫
[0,1[

∑
n∈Z

(x − u− n)
(

1+ y−2(x − u− n)2
)−δ−1

dµ(u)

= −2δ µ([0, 1[) y1−δ
∫

R

(1+ v2)−δ−1 v dv + O(y−δ) = O(y−δ),

which with (i) gives (ii), and also

y
∂

∂y
�(z) = −δ �(z)+ 2δ y−δ

∫
[0,1[

∑
n∈Z

y−2 (x − u− n)2

×
(

1+ y−2(x − u− n)2
)−δ−1

dµ(u)

= −δ �(z)+ 2δ µ([0, 1[) y−δ

×
∫

R

(1+ y−2v2)−δ−1 y−2v2 dv + O(y−δ)

= −δ �(z)+ 2δ µ([0, 1[) y1−δ (c(δ)− c(δ + 1))+ O(y−δ)
= −δ�(z)+ c(δ) µ([0, 1[) y1−δ + O(y−δ),

which with (i) gives (iii). ��

8. Windings of theΦ-diffusion

In this section we shall calculate the limit law of t
−1

2δ−1

∫
Z�[0,t]

ω̃, that is to say of

the joint windings of the stationary �-diffusion Z�
t , by using discrete excursions

in the cusps.
The asymptotics of� (in section 7 above) lead to the study of an approximating

diffusion Z̃t on M, whose generator is simpler in the cusps, thereby allowing the
precise calculation of its windings in the cusps.

The passage from Z� to Z̃ results from Girsanov’s theorem, and is close to be
given by a Doob’s h-transform. This allows to deduce the law of the excursions of
Z� from the law of the excursions of Z̃, however necessarily conditioned by their
end-point.
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We must then show that this conditioning does not contribute asymptotically.
For that, we have to estimate its influence and ultimately let go to infinity the level
in the cusps above which we consider the excursions.

We perform then the passage from the number Nt of excursions achieved at
time t to a deterministic number by means of a precise estimation of Nt .

A key argument is that the�-diffusion admits a spectral gap. Indeed it is known
that the spectrum of −� in M is discrete up to the value 1/4, see for example
([P-S], theorem 2.4). Hence by the definition of �� (in section 4.4, proposition 2),
we see that it admits a spectral gap and therefore that there exists λ1 > 0 such that∥∥∥P�

t ϕ

∥∥∥
2
≤ e−λ1 t

∥∥∥ϕ∥∥∥
2

(8.1)

for any positive t and any centered ϕ ∈ L2(V �),whereP�
t denotes the semi-group

associated with Z�
t .

8.1. The modified diffusion Z̃

Since the value of ∇ log � in the cusps can be known only asymptotically (see
section 7), we are led to consider the winding contributions of the diffusion paths
above a sufficiently high level b, and to modify the�-diffusionZ�

t above this level
b, in order to get a simplified generator allowing the calculation of windings.

More precisely, proposition 4 leads to replace in the cusps the generator �� of
Z�
t by the simplified generator �1−δ (notation (4.2)). Now we observe that

�1−δ(yδ−1�) =
(
yδ−1� ◦ y1−δ − 2λo

)
(yδ−1�) = 0,

which means that the above modification can be performed by a Doob’s h-trans-
form, by means of the harmonic function yδ−1�. But this is the case only in the
cusps, and we have to take care of the necessary transition between the cusps and
the body of M, and to use a Girsanov’s transform. Of course we shall verify that
this Girsanov’s transform is close to a h-transform.

Recall from section 5.2 that we set Ni (a) := {yi ≥ a} and N(a) :=
∪Ni=1Ni (a). These are horocyclic neighborhoods of the cusps of M. Fix some
smooth increasing function ho from R onto [0, 1], null on R− and equal to 1 on
[1,∞[.

Let us take b in ]2,∞[, larger than bo used for the definition (5.5) of ω̃.
For each i ∈ {1, . . . , N}, set hi := 1Ni (b) × ho ◦ (yi − b).
So hi ∈ C∞(M, [0, 1]), hi = 0 in M \Ni (b), and hi = 1 in Ni (b + 1).

Definition 3. Set in Ni (b): �i :=
(
c(δ)λ(Pi )

)−1 × (yi)δ−1 ×�− 1.

Set then H := 1 + ∑N
i=1 hi�i , and G := 1

2�
� − (∇ log H) · ∇ = 1

2� +
(∇ log (�/H)) · ∇.
Let Z̃t be the diffusion on M with generator G and initial law V�, whose law is
given by the following Girsanov’s transform: for each t ≥ 0 and for any test-
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functional F :

E
[
F(Z̃[0, t])

]
= E

[
F(Z�[0, t]) exp

(
−
∫ t

0
∇ logH(Z�

s ) · dZ0
s

− 1
2

∫ t

0
|∇ logH |2(Z�

s ) ds

)]
.

Remark 6. (i) Proposition 4 shows that �i = O(1/yi) and ∇ log(1 + �i) =
O(1/yi).

(ii) G equals 1
2�

� in M \N(b) and equals 1
2�+ (1− δ)yi ∂

∂yi
in Ni (b+ 1).

(iii) H = 1 in M \N(b), H −→ 1 at each cusp, and H > 0 on M.
As a consequence, there are two constants c1 and c2 such that 0 < c1 ≤ H ≤ c2 <

∞ on M. Moreover ∇ logH =∑N
i=1 1Ni (b)O(1/y

i) = O(1/b).

Let us now apply the Girsanov’s theorem: we have for each t ≥ 0 and for any
test-functional F :

E
[
F(Z�[0, t])

]
= E
[
F(Z̃[0, t])×Mt

]
, (8.2)

where the martingale Mt is defined (for some Brownian motion Zo
s on M) by

Mt := exp

[∫ t

0
∇ logH(Z̃s) · dZo

s − 1
2

∫ t

0
|∇ logH |2(Z̃s) ds

]
. (8.3)

Observe that Mt indeed is a martingale, since by remark (6, iii) above ∇ logH is
bounded.

Lemma 9. Set ϕ := −G logH − 1
2 |∇ logH |2. Then ϕ vanishes outside

N(b) \N(b + 1), is O(1/b), and we have

Mt = H(Z̃0)
−1 ×H(Z̃t )× exp

[∫ t

0
ϕ(Z̃s) ds

]
.

Proof . Using Itô’s formula we get

∫ t

0
∇ logH(Z̃s) · dZo

s = logH(Z̃t )− logH(Z̃0)−
∫ t

0
G(logH)(Z̃s) ds,

whence the alternative formula for Mt , from the above definitions of Mt and of ϕ.
Then we have

ϕ = −1

2

(
� logH + |∇H |2 ×H−2

)
−
(
∇ log(�/H)

)
· ∇ logH

= −1

2

(
div((∇H)/H)+H−2 × |∇H |2

)
+
(
∇ log(H/�)

)
· ∇ logH

=
(
∇ log(H/�)

)
· ∇ logH − (2H)−1�H.
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As a consequence, we deduce as expected that ϕ = 0 on M \N(b), and also in
N(b + 1), since we have in each Ni (b + 1):

ϕ = ∇ log (yi)δ−1 · ∇ log ((yi)δ−1�)− (2(yi)δ−1�)−1�((yi)δ−1�)

= |∇ log (yi)δ−1|2 − (2(yi)δ−1)−1�((yi)δ−1)− (2�)−1��

= (δ − 1)2 − (δ − 1)(δ − 2)/2− δ(δ − 1)/2 = 0.

Finally remark 6 and proposition 4 show that we have equivalence between ϕ =
O(1/b) and�H = O(1/b), and then that it is enough to verify that��i = O(1/yi)
for each i. Now we have by definition 3, up to a constant and by application of
proposition (4, iii, i):

��i = (yi)δ−1��+ 2∇(yi)δ−1 · ∇�+��(yi)δ−1

= (yi)δ−1�×
(
δ(δ − 1)+ 2(δ − 1)((1− δ)+ O(1/yi))+ (δ − 1)(δ − 2)

)
= (yi)δ−1�× O(1/yi) = O(1/yi). ��

8.2. Discrete excursions and uniform integrability of Mt

Denote by [τn, ζn] the n-th time interval of excursion in the cusps, that is to say
precisely: ζ0 := 0, τ1 = τ is the first hitting time of N(b+√b), ζ is the first exit
time of N(b + 1), and for each n ∈ N∗:

ζn := ζ ◦<τn + τn and τn+1 := τ ◦<ζn + ζn. (8.4)

We shall need the Girsanov’s formula until the stopping time ζn. The following
lemma shows that this formula is valid, for any large enough fixed b.

Lemma 10. The martingale Mt is uniformly integrable on [0, ζn], for each n ∈ N.

Proof. 1) Observe first that by remark (6, iii) and lemma 9

sup{Mt | 0 ≤ t ≤ ζn} ≤ c2

c1
× exp

[∫ ζn

0
|ϕ(Z̃s)| ds

]

≤ c exp

[
O(1/b)

∫ ζn

0
1N(b)\N(b+1)(Z̃s) ds

]
.

We have then∫ ζn

0
1N(b)\N(b+1)(Z̃s) ds ≤

n−1∑
k=0

(∫ τ

0
1N(b)(Z̃s) ds

)
◦<ζk ,

whence

E
(

sup {Mt | 0 ≤ t ≤ ζn}
)

≤ c

(
sup

z∈∂N(b)

Ez

(
exp

[
O(1/b)

∫ τ

0
1N(b)(Z̃s) ds

]))n
.
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2) Let us consider for some λ > −1 the function fλ defined on [b, b + √
b ]

such that f ′λ(b) = 0 and y2f ′′λ (y) − yf ′λ(y) − λfλ(y) = 0. Up to a multiplicative
constant, this implies

fλ(y) = y ×
[√

λ+ 1×
(
(y/b)

√
λ+1 + (y/b)−

√
λ+1
)

−
(
(y/b)

√
λ+1 − (y/b)−

√
λ+1
)]

.

Note that fλ is positive decreasing for −1 < λ < 0 and large enough b.
Fix now λ = −2/3, and consider the following continuous function g on R: g is
constant on ] −∞, b] and on [b +√

b,∞[, and equals f−2/3/f−2/3(b +
√
b ) on

[b, b +√
b].

Observe that g decreases, has derivative zero at b, and equals 1 on [b+√b,∞[.
Extend g to a continuous function g̃ on M, by taking g̃ constant on M \N(b)

and equal to g(y) on ∂N(y), for y ≥ b.
Now, by proposition 4 and remark (6, iii), we have in N(b), for large enough
fixed b:

y
∂

∂y
log(�/H) = 1− δ + O(1/b) ≥ −1/2,

and thus for z ∈N(b)\N(b+√b ): Gg̃(z) ≤ 1
2 (y

2g′′(y)−yg′(y)) = − 1
3 g(y).

Therefore we have Gg̃ + 1
3 1N(b) g̃ ≤ 0 on M \N(b +√

b ).
As a consequence, using Itô’s formula (valid since g′(b) = 0) we get for any
z ∈N(b):

Ez

[
g̃
(
Z̃t∧τ

)
exp
(

1
3

∫ t∧τ

0
1N(b)(Z̃s) ds

)]
− g(b)

= Ez

[∫ t∧τ

0

(
Gg̃ + 1

3 1N(b) g̃
)
(Z̃s) exp

(
1
3

∫ s

0
1N(b)(Z̃u) du

)
ds

]
≤ 0,

whence by letting t go to infinity:

sup
z∈N(b)

Ez

[
exp

(
1
3

∫ τ

0
1N(b)(Z̃s) ds

)]
≤ g(b) <∞.

With 1) above, this concludes the proof. ��
Set

ψn :=
∫
Z�[τn,ζn]

ω̃, ψ ′
n :=

∫
Z̃[τn,ζn]

ω̃, and ψ ′ :=
∫
Z̃[0,ζ ]

ω̃. (8.5)

By lemmas 9 and 10 and the strong Markov property, we have for any real r and
n ∈ N∗:

E


exp

[ n∑
j=1

√−1 r ψj

] = E


exp

[ n∑
j=1

√−1 r ψ ′
j

]
×Mζn



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= E


H(Z̃0)

−1 × exp
[ n∑
j=1

√−1 r ψ ′
j

]

× exp
[ n∑
j=1

∫ τj

ζj−1

ϕ(Z̃s) ds
]
×H(Z̃ζn)




= E


H(Z̃0)

−1 ×
n∏

j=1

exp
[ ∫ τj

ζj−1

ϕ(Z̃s) ds
]

×
n∏

j=1

E
Z̃τj

[
e
√−1 r ψ ′

∣∣∣Z̃ζj

]
×H(Z̃ζn)




= E


Mζn ×

n∏
j=1

E
Z̃τj

[
e
√−1 r ψ ′

∣∣∣Z̃ζj

] . (8.6)

8.3. Approximation of the excursion law

Let us consider an excursion path Z̃[τn, ζn]. It occurs near some cuspP, and we may
lift it to H, in a model adapted toP. So we get a diffusion path {Z̃s = (x̃s , ỹs) | τn ≤
s ≤ ζn}, taking its values in R × [b + 1,∞[, and such that Z̃τn = (0, b + √

b)

and Z̃ζn = (x̃ζn , b + 1). Moreover Z̃s = (x̃s , ỹs) has generator �1−δ , and thus
there exist two independent standard real Brownian motions wt and Wt such that

x̃ζn = W(Y) with Y :=
∫ ζ

0
(ỹs)

2 ds and dỹs = ỹs dws + (1− δ) ỹs ds.

Recall that by (5.5) and (8.5) ψ ′
n = r(P, ω)× x̃ζn .

We compute the law of the variable Y in the following lemma.

Lemma 11. For any positive r we have

E
(
e−r

2 Y/2
)
= K̃δ

(
(b +

√
b )r
)/

K̃δ

(
(b + 1) r

)
,

where K̃δ(r) := r(δ−1/2) K(δ−1/2)(r) and K(δ−1/2) denotes the usual modified Bes-
sel function of index (δ − 1/2). As a consequence, we have E(Y−1/2) = O(b−1/2).

Proof. 1) exp
[
− r2

2

∫ t

0
(ỹs)

2 ds
]
× K̃(ỹt ) is equal to martingale + 1

2

∫ t
0 exp

[
−

r2

2

∫ s
0 (ỹu)

2du
] (

(ỹs)
2K̃ ′′(ỹs)+ 2(1− δ) ỹsK̃

′(ỹs)− r2 (ỹs)
2K̃(ỹs)

)
ds

and then is a bounded martingale for K̃ bounded near +∞ satisfying
K̃ ′′(y)+ 2(1−δ)

y
K̃ ′(y)− r2 K̃(y) = 0.

Setting f (y) := y(1/2−δ) K̃(y), we get f null at +∞ satisfying
f ′′(y)+f ′(y)/y−(r2+(δ−1/2)2y−2) f (y) = 0, whence f (y) = c K(δ−1/2)(ry).
Hence K̃(y) = c′ K̃δ(ry), and finally the optional sampling theorem gives the
result.
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2) We deduce from 1) above that

E(Y−1/2) =
√

2

π

∫ ∞

0
E
(
e− r2 Y/2

)
dr

= (b + 1)−1

√
2

π

∫ ∞

0
K̃δ

(
b +√

b

b + 1
× r

)/
K̃δ(r) dr.

Now there exist two positive constants c1 and c2 such that 0 < c1 ≤ K̃δ ≤ c2 on
[0, 2] and c1 r

δ−1 e−r ≤ K̃δ(r) ≤ c2 r
δ−1 e−r on {1 ≤ r <∞}. Therefore∫ ∞

0
K̃δ

(
b +√

b

b + 1
× r

)/
K̃δ(r) dr ≤ c2

c1
×
(

1+
∫ ∞

1
e(1−

√
b )(b+1)−1r dr

)

= O
(
(b + 1)b−1/2

)
,

whence the result. ��
We see from expression (8.6) in section 8.2 that we need to estimate the condi-

tioned winding law by means of the unconditioned one. This we do in the following
lemma, where our notations remain as above.

Lemma 12. There exists a real measurable function a on ∂N(b+√b )×∂N(b+1)
such that ‖a‖∞ = O(b−1/2) and such that for any integer n ≥ 2 and any real r we
have:

E
Z̃τn

(
e
√−1 r x̃ζ

∣∣∣ Z̃ζn

)
= 1−

(
1+ a(Z̃τn, Z̃ζn)

)
×
(

1− E
[
e− r2 Y/2

]
+ O(|r|)

)
.

Proof. 1) We have: E
Z̃τn

(
e
√−1 r x̃ζ

∣∣∣ Z̃ζn

)
= E

(
e
√−1 r W(Y )

∣∣∣W(Y) modulo 1
)
.

Let us fix some real η and some positive ε. We have firstly

E
(
e
√−1 r W(Y )

∣∣∣W(Y) ∈]η, η + ε[+Z
)
− 1

=
E

[(
e
√−1 r W(Y ) − 1

)
×
∑
k∈Z

1{η<W(Y)−k<η+ε}

]

E

[∑
k∈Z

1{η<W(Y)−k<η+ε}

]

=
E

[
(2πY)−1/2

∫
R

∑
k∈Z

(
e
√−1 r x − 1

)
e−x2/(2Y ) 1{η<x−k<η+ε} dx

]

E

[
(2πY)−1/2

∫
R

∑
k∈Z

e−x2/(2Y ) 1{η<x−k<η+ε} dx

]

=
E

[
(2πY)−1/2

∫ η+ε

η

∑
k∈Z

(
e
√−1 r (x+k) − 1

)
e−(x+k)2/(2Y ) dx

]

E

[
(2πY)−1/2

∫ η+ε

η

∑
k∈Z

e−(x+k)2/(2Y ) dx

] .
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2) Then

sup
{
|e
√−1 rk − 1| × e−k

2/(2Y )
∣∣∣ k ∈ R

}
≤ sup

{
min{2, |rk|} × e−k

2/(2Y )
∣∣∣ k ∈ R

}
= max

{
max {e−k2/(2Y ) | k ≥ 2/r}; max {|rk| × e−k

2/(2Y ) | 0 ≤ k ≤ 2/r}
}

= max
{
e− 2(r2Y )−1; min{2, |r|

√
Y } × exp [− min{1, 4r−2/Y }/2 ]

}
= 2 e−2(r2Y )−1

1{Y>4r−2} + |r|
√
Y × e−1/2 1{Y≤4r−2} ≤ |r|

√
Y .

Hence we can replace the Riemannian sum in 1) above by a Riemannian integral + an
error term: ∑

k∈Z

(
e
√−1 r (x+k) − 1

)
e−(x+k)

2/(2Y )

=
∫

R

(
e
√−1 r (x+k) − 1

)
e−(x+k)

2/(2Y ) dk + O(|r|
√
Y )

=
(
e− r2Y/2 − 1

)√
2πY + O(|r|

√
Y ).

Therefore we obtain for all η and ε (with a uniform O):

E
(
e
√−1 r W(Y )

∣∣∣W(Y) ∈]η, η + ε[+Z
)
− 1

=
ε × E

[(
e− r2Y/2 − 1

)
+ O(|r|)

]
ε ×

(
1+ O(E(Y−1/2))

)
=
[
E
(
e− r2Y/2

)
− 1+ O(|r|)

]
×
(

1+ O(E(Y−1/2))
)
.

This proves

E
(
e
√−1 r W(Y )

∣∣∣W(Y) modulo 1
)

= 1−
(

1+ O(E(Y−1/2))
)
×
[
1− E

(
e− r2Y/2

)
+ O(|r|)

]
,

and then the result, with the help of lemma 11. ��

8.4. Asymptotic law of the excursions

We shall now let the parameters r and n depend on the time t . Precisely, we take

r = β rt = β t
−1

2δ−1 and n = [F t] := max {j ∈ N | j ≤ F t}.
Here β is a real parameter and F is some positive parameter to be specified later.
Set

γ (β) := 21−2δ × �(3/2− δ)

�(δ + 1/2)
×
(
(b +

√
b )2δ−1 − (b + 1)2δ−1

)
× |β|2δ−1.

(8.7)
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Since K̃δ(y) = 2δ−3/2 �(δ−1/2)−21/2−δ (2δ−1)−1�(3/2−δ) y2δ−1+o(y2δ−1),
we get from lemma 11 that

1− E
(
e−r

2 Y/2
)
=

K̃δ

(
(b + 1) |r|

)
− K̃δ

(
(b +√

b ) |r|
)

K̃δ

(
(b + 1) |r|

)
= γ (r)+ o(|r|2δ−1).

Let us first get rid of the somewhat particular case δ = 1. In this cofinite case,
we merely have: � = H = 1, G = �� = �, Mt ≡ 1, Z̃t = Z�

t = Zo
t .

Moreover EZo
τn

(
e
√−1 r ψ

)
does not depend upon Zo

τn
, and then, denoting by rj the

residue corresponding to ψj , we have:

E


 n∏
j=1

e
√−1 r ψj


 = E




n−1∏
j=1

e
√−1 r ψj


× EZo

τn

(
e
√−1 r ψ

)

= E


n−1∏
j=1

e
√−1 r ψj


× E

(
e
√−1 rrn W(Y )

)

=
n∏

j=1

E
(
e−(rr

j )2 Y/2
)
.

This means that the windings of the different excursions are independent, and thus
we get for any real β and positive F, as t → ∞ (assuming for a while that all
residues equal r):

E


 [Ft]∏
j=1

e
√−1 β rt ψj


 =

[
E
(
e
√−1 β t−1 ψ

)][F t]

=
(

1− γ (β r)/t
)[F t] −→ e−γ (β r) F.

Let us now come to the main (infinite area) case δ < 1.

Then rt = o
(
r2δ−1
t

)
= o(1/t), and assuming for a while and for convenience

that all residues of ω equal some r , we get from lemma 12 and (8.7):

[Ft]∏
j=1

E
Z̃τj

(
e
√−1 β rt ψ

′ ∣∣∣ Z̃ζj

)

=
[Ft]∏
j=1

[
1−

(
1+ a(Z̃τj , Z̃ζj )

)
×
(
γ (β r)/t + o(1/t)

)]

= exp


 [Ft]∑
j=1

log
[
1−

(
1+ a(Z̃τj , Z̃ζj )

)
×
(
γ (β r)/t + o(1/t)

)]
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= exp


−γ (β r) t−1

[Ft]∑
j=1

(
1+ a(Z̃τj , Z̃ζj )

)
+ o(1)


 .

Hence coming back to the Markovian expression (8.6) of section 8.2 and using
(8.2) and lemma 10, we see that:

E


 [Ft]∏
j=1

e
√−1 β rt ψj




= E


Mζ[Ft] ×

[Ft]∏
j=1

E
Z̃τj

(
e
√−1 β rt ψ

′ ∣∣∣ Z̃ζj

)

= E


Mζ[Ft] × exp


− γ (β r) t−1

[Ft]∑
j=1

(
1+ a(Z̃τj , Z̃ζj )

)
+ o(1)






= E


exp


−γ (β r) t−1

[Ft]∑
j=1

(
1+ a(Z�

τj
, Z�

ζj
)
)
+ o(1)






−→ exp

[
−γ (β r)× F ×

(
1+

∫
a dχ

)]
,

as t → ∞, where χ is the normalized Palm invariant probability measure of the
induced Markov chain (Z�

τj
, Z�

ζj
). Indeed we may view the ergodic stationary his-

torical process (Z�
s ,−∞ < s ≤ t) as a suspended flow under the function ζ1. This

allows to apply Ambrose’s theorem and then to deduce that the induced Markov
chain (Z�

τj
, Z�

ζj
) is stationary and ergodic, with invariant Palm law χ . See ([SL-M],

Exposés I and II).
The extension to different residues is straightforward.
Observe that the finite area case δ = 1 can again be handled as the general case by

merely considering that
∫
a dχ = 0 for δ = 1.

8.5. Counting the excursions

We need some information on the duration of the excursions of Z�
t in the cusps.

This is the aim of the following lemma.

Lemma 13. There exists λ > 0 such that E
(

exp
[
λ(ζn − τn)

])
is finite for any

n ∈ N∗. Moreover, E(ζn − τn) = (δ − 1/2)−1 × b−1/2 ×
(

1 + O(b−1/2)
)

for all

n ≥ 2.

Proof . Fix 0 < δ1 < δ − 1/2 < δ2 < 1, and n ≥ 2.
By proposition 2, the drift term of Z�

t is ∇ log�, and thus by using proposition 4
we have on each [τn, ζn] in adapted coordinates: Z�

t = (x�t , y
�
t ), with
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(y�t )
−1 dy�t = dw′t + ((1− δ)+ O(1/b)) dt .

Let yit denote the diffusion on [b + 1,∞[, starting from b +√
b, and solving

(yit )
−1 dyit = dw′t + (1/2− δi) dt . Set ζ i := inf{t > 0 | yit = b + 1}.

The classical comparison lemma (see [I-W]) applies for large enough fixed b, and
gives almost surely: ζ 2 ≤ ζn− τn ≤ ζ 1. Now, we have yit = (b+√b )× exp[w′t −
δi t] on [0, ζ i]. Hence we have by the Cameron-Martin formula, for λ ≤ δ2

1/2:

E
(
eλ ζ

i
)
= E
(

exp
[
λ inf{t | − w′t + δi t = log((b +

√
b )/(b + 1))}

])
= exp

[
δi log((b +

√
b )/(b + 1))

]
×E
(

exp
[
(λ− δ2

i /2) inf{t |wt = log((b +
√
b )/(b + 1))}

])

=
(
(b +

√
b )/(b + 1)

)δi−√δ2
i −2λ

.

The first assertion follows. Then we deduce that

E(ζ i) = (δi)
−1 × log((b +

√
b )/(b + 1)) = (δi)

−1 × b−1/2 + O(1/b).

The proof is achieved for n ≥ 2, since the only constraint on |δ − 1/2− δi | was to
dominate some O(1/b). For n = 1, we only have to modify the above estimate by
using the asymptotic form of V� in the cusps (following from proposition 4). This
gives:

E
(
eλ (ζ1−τ1)

)
≤
(
b +√

b

b + 1

)δ1−
√
δ2

1−2λ

+ c

∫ ∞

b+√b

(
y

b + 1

)δ1−
√
δ2

1−2λ

y−2δ dy

<∞. ��

This lemma allows us to compute now the equivalent of the number Nt of ex-
cursions achieved at time t by the �-diffusion. Since we need to distinguish the
different cusps, we let an exponent i denote the excursions that occur in Ni (b).

Lemma 14. Denote by [τ in, ζ
i
n] the sequence of intervals of those excursions which

occur in Ni (b), for 1 ≤ i ≤ N . So that the previous sequence [τn, ζn] is just the
reordering of the disjoint union of the present ones. For each i, set Ni

t := max {n ∈
N | ζ in ≤ t}. Then for each i Ni

t /t converges almost surely as t →∞ towards some

positive real Fi . Moreover we have: Fi = 1
2 ‖�‖−2

2 ×
(
c(δ) λ(Pi )

)2 × b3/2−2δ ×(
1+ O(b−1/2)

)
.

Proof. Observe first the obvious inequalities:

∫ t

0
1Ni (b+

√
b )(Z

�
s ) ds <

1+Ni
t∑

n=0

(ζ in − τ in) and

Ni
t∑

n=0

(ζ in − τ in) <

∫ t

0
1Ni (b+1)(Z

�
s ) ds.
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Dividing by t and applying the ergodic theorem twice gives almost surely:

V�(Ni (b +
√
b )) ≤ lim inf

t→∞
Ni
t

t
× E(ζ i2 − τ i2)

≤ lim sup
t→∞

Ni
t

t
× E(ζ i2 − τ i2) ≤ V�(Ni (b + 1)).

On the other hand, the almost sure convergence of Ni
t /t follows from the addi-

tive functional property of max{n ∈ N | max{s < ζ in |Z�
s ∈Ni (b +

√
b )} ≤ t}.

Now, we get by definition of V� and by proposition 4:

V�(Ni (b)) = ‖�‖−2
2

∫ 1

0

∫ ∞

b

�2(z) y−2 dx dy

= ‖�‖−2
2 ×

(
c(δ) λ(Pi )

)2
∫ ∞

b

(1+ O(1/y)) y−2δ dy

= ‖�‖−2
2 ×

(
c(δ) λ(Pi )

)2 × (2δ − 1)−1 × b1−2δ × (1+ O(1/b)).

The result is now straightforward from lemma 13 and from the above. ��

The following lemma will be useful to replace Ni
t by its deterministic approximate

Fi t .

Lemma 15. For each i and any q > 1/2, t−q |Ni
t − Fi t | goes to zero in proba-

bility.

Proof. Let us drop the index i, useless in this proof.
We essentially need to prove that the variables ζj − ζj−1 are square-integrable and
that their correlations decay exponentially. To proceed, let us first show that the
variables ζj have an exponential moment, by using the spectral gap of Z�

t .
1) Consider some Borelian function f from M into [0, 1], and for any positive

ε set Gε := εf −��/2 and denote by λ(ε) the bottom of its spectrum. We know
that λ(0) = 0 is an isolated eigenvalue, with eigenstate 1, and then the Kato-Rellich
theorem ensures that for small enough ε λ(ε) is still isolated, with eigenstate say
ϕε, and that ε �→ (λ(ε), ϕε) is analytical at 0. We deduce then from the variational

expression for λ(ε) that we have λ(ε) = ε

∫
f dV � + o(ε).

Since ε �→ λ(ε) clearly cannot decrease, we obtain that λ(1) > 0 if
∫
f dV � > 0.

Since −G1 is the infinitesimal generator of the semi-group P
f
t defined by

P
f
t ϕ(z) := Ez

(
ϕ(Z�

t )× exp
[
−
∫ t

0
f (Z�

s ) ds
])

, we deduce from the above that

for any positive t we have

E

(
exp

[
−
∫ t

0
f (Z�

s ) ds

])
= 〈Pf

t 1, 1〉L2(V �) ≤ e−λ(1) t .
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Consider now some Borel subsetB of M such that V�(B) > 0, and its hitting time
by Z�

t , say S. Applying the preceding to f = 1B , we get some strictly positive λ
such that for any positive t we have

P(S > t) ≤ P

(∫ t

0
1B(Z

�
s ) ds = 0

)
≤ E

(
exp

[
−
∫ t

0
1B(Z

�
s ) ds

])
≤ e−λ t ,

whence E
(

exp[λS/2]
)
<∞.

Applying this successively to B = N(b +√
b ) and to B = M \N(b + 1), we

get the exponential integrability of the variables ζj .
2) We now establish the exponential decay of the correlations between the vari-

ables ζj − ζj−1 by using Dœblin’s method.
Denote by q(z, ·) the density of Z�

ζ1
starting from z ∈ ∂N(b + 1), with respect to

the Palm measure χ ′, which denotes the projection on ∂N(b+ 1) of the (normal-
ized) Palm measure χ . See the end of section 8.4. This is then the transition density
of the symmetrical stationary Markov chain (Z�

ζj
).

Now by ellipticity of �� and compactness of ∂N(b+1), there exist 0 < c < c′ <
∞ such that c ≤ q(z, z′) ≤ c′ for any z, z′ ∈ ∂N(b + 1).

Setting qzn for qn(z, ·), using the symmetry of q and that
∫
(qzn−1)+dχ ′ =

∫
(qzn−

1)−dχ ′, we see:

(qzn+1 − 1)(z′) =
∫
(qzn − 1) qz

′
dχ ′ ≤

∫
(qzn − 1)+ qz

′
dχ ′ −

∫
(qzn − 1)− c dχ ′

=
∫
(qzn − 1)+ (qz

′ − c) dχ ′ ≤ (1− c) ‖(qzn − 1)+‖∞.

Similarly, (qzn+1 − 1)(z′) ≥
∫
(qzn − 1)− (c − qz

′
) dχ ′, and then

−(qzn+1 − 1)(z′) ≤ (1− c) ‖(qzn − 1)−‖∞.
Whence ‖qzn+1 − 1‖∞ ≤ (1− c) ‖qzn − 1‖∞, and ‖qzn − 1‖∞ ≤ c′ (1− c)n−1. As
a consequence, we get for any n ≥ 2 and z ∈ ∂N(b+ 1), setting ζ ′j := ζj − ζj−1:

∣∣∣Ez(ζ ′n)− E(ζ ′n)
∣∣∣ = ∣∣∣∫ (qzn−1(z

′)− 1)Ez′(ζ1) dχ
′(z′)

∣∣∣ ≤ c′ (1− c)n−2 Eχ ′(ζ1).

Therefore for any j, n ∈ N∗:∣∣∣E((ζ ′j − E(ζ ′j ))(ζ
′
j+n − E(ζ ′j+n))

)∣∣∣
=
∣∣∣E((ζ1 − E(ζ1))EZ�

ζ1
(ζ ′n − E(ζ ′n))

)∣∣∣
≤ c′ Eχ ′(ζ1) (1− c)n−2 × E

(
|ζ1 − E(ζ1)|

)
= O

(
(1− c)n−2

)
.

3) The step 2) above shows that V ar(ζn) = O(n), and then that for any q > 1/2

n−q
(
ζn − E(ζn)

)
goes to 0 in L2-norm as n→∞. Thus using the stationarity of
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the induced chain Z�
ζj

, we have ζn = F′ n + o(nq) in L2, where F′ := Eχ ′(ζ1) =
E(ζ2 − ζ1). Hence we have in probability: N(F′n+o(nq)) = n, and then, by the in-
creasing property of Nt , Nn = n/F′ + o(nq), and Nt = t/F′ + o(tq).
Finally, since we know from lemma 14 that Nt/t converges almost surely to F, we
have 1/F′ = F. ��

8.6. Windings of Z�
t

We use now the preceding sections to prove that we may replace the numbers of

excursions achieved at time t by their averages. Of course we setψi
n :=

∫
Z�[τ in,ζ

i
n]
ω̃.

Lemma 16. For each i, t
−1

2δ−1

∣∣∣∣∣∣
Ni
t∑

n=1

ψi
n −

[Fi t]∑
n=1

ψi
n

∣∣∣∣∣∣ goes to zero in probability.

Proof . Fix η ∈ ]0, 1/4[, take γ ∈ ]0, 1[, and forget the indices i, useless here.
1) Using lemma 15, we have, for large enough t :

P


rt

∣∣∣∣∣∣
Nt∑
n=1

ψn −
[F t]∑
n=1

ψn

∣∣∣∣∣∣ > η




≤ P
(
|Nt − F t | > t1/2+η

)
+ P


 [F t+t1/2+η]∑

n=[F t−t1/2+η]

|ψn| > η
/
rt




≤ η + P


 [F t+t1/2+η]∑
n=[F t−t1/2+η]

|ψn|γ > ηγ × t
γ

2δ−1




≤ η + η−γ × t
−γ

2δ−1

[F t+t1/2+η]∑
n=[F t−t1/2+η]

E(|ψn|γ ).

2) Then, using again the modified diffusion Z̃t of section 8.1, we have:

E(|ψn|γ ) = E(|ψ ′
n|γ ×Mζn)

= E
(
Mτn ×H(Z̃τn)

−1 × E
Z̃τn

(|ψ ′|γ | Z̃ζn)×H(Z̃ζn)
)

≤ c2

c1
× E
(
Mτn × E

Z̃τn
(|ψ ′|γ | Z̃ζn)

)
= c2

c1
× E
(
Mτn × E

Z̃τn
(|ψ ′|γ )

)
= c2

c1
× E(Mτn)× E(|ψ ′|γ ) = c2

c1
× E(|ψ ′|γ )

since the law of ψ ′ does not depend on Z̃τ . Hence we have for all n ∈ N∗:

E(|ψn|γ ) ≤ cE(|W(Y)|γ ) ≤ 2cE(Y γ/2).
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Now

E(Y γ ) = E(Y × Yγ−1) = E

(
Y

�(1− γ )

∫ ∞

0
e−tY t−γ dt

)

= 1

�(1− γ )

∫ ∞

0
E(e−tY Y ) t−γ dt,

and by lemma 11

E(e−tY Y ) = − d

dt
E(e−tY )

= − d

dt

[
K̃δ

(
(b +

√
b )
√

2t
)/

K̃δ

(
(b + 1)

√
2t
)]

,

which is equivalent to

21/2−δ �(3/2− δ) (�(δ − 1/2))−1

×
(
(b +

√
b )2δ−1 − (b + 1)2δ−1

)
× tδ−3/2 near 0,

and to
(
√
b − 1)

√
b + 1√

2t (b +√
b )

× exp
(
(1−

√
b )
√

2t
)

near +∞.

Hence E(Y γ/2) is finite for δ − 3/2− γ /2 > −1, that is to say for γ < 2δ − 1.

3) By 1) and 2) above, we have for 1/2+ 2η≤ γ

2δ − 1
<1 and large enough t :

P


rt

∣∣∣∣∣∣
Nt∑
n=1

ψn −
[F t]∑
n=1

ψn

∣∣∣∣∣∣ > η


 ≤ η + η−γ × t

−γ
2δ−1 × 2t1/2+η × c′

< η + O
(
t (1/2+η− γ

2δ−1 )
)
< 2η. ��

We verify in the following lemma that only the excursions contribute asymp-
totically to the windings. Nt is here the number of achieved excursions at time t :

Nt := max {Ni
t | 1 ≤ i ≤ N} = max {n ∈ N | ζn ≤ t}. (8.8)

Lemma 17. lim sup
t→∞

∥∥∥∥∥ t −1
2δ−1

(∫
Z�[0,t]

ω̃ −
Nt∑
n=1

ψn

)
1{Z�

t /∈N(b+1)}

∥∥∥∥∥
2

= 0.

Proof . By proposition 2, the drift term of Z�
t is ∇ log�, and thus by using prop-

osition 4 we have on each [τn, ζn] in adapted coordinates: Z�
t = (x�t , y

�
t ), with

(y�t )
−1 dx�t = dwt + 1{δ<1} O(1/b) dt .

On the other hand, rt ≤ 1/t and rt = o (1/t) if δ < 1, and thus using (5.5) we get:

lim sup
t→∞

∥∥∥∥∥ rt
(∫

Z�[0,t]
ω̃ −

Nt∑
n=1

ψn

)
1{Z�

t /∈N(b+1)}

∥∥∥∥∥
2

2
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≤ c lim sup
t→∞

(
t−2

∥∥∥∥
∫ t

0
1{bo≤yφs ≤b+

√
b } (y

φ
s )

2 ds

∥∥∥∥
1

+
∥∥∥∥o (t−1)

∫ t

0
1{bo≤yφs ≤b+

√
b } ds

∥∥∥∥
2

2

)
= 0. ��

We are now able to establish the asymptotic result on the windings of the �-
diffusion Z�

t . Recall that r(P, ω) denotes the residue of ω (and of ω̃) near the cusp
P. Recall also that P1, . . . ,PN are the cusps of M, and that λ(Pi )was introduced
in definition 2.

Theorem 2. The law of t
−1

2δ−1

∫
Z�[0,t]

ω̃ converges towards the symmetric stable

law with exponent (2δ − 1) and rate

C(�,ω) := ‖�‖−2
2 ×c(δ)2× �(3/2−δ)

�(δ−1/2)×
N∑
i=1

|r(Pi , ω)/2|(2δ−1) λ(Pi )
2. This means

that

lim
t→∞ E

(
exp

[√−1α t
−1

2δ−1

∫
Z�[0,t]

ω̃

])

= exp
(
− |α|2δ−1 C(�,ω)

)
, for any real α.

Proof . Fix some positive ε, and take b large enough so that

P(Z�
t ∈N(b)) = V�(N(b)) < ε, and

∣∣∣ ∫ a dχi
∣∣∣ < ε for 1 ≤ i ≤ N.

Note that this is possible by lemma 12. Now this implies, with lemmas 16 and 17:

lim sup
t→∞

∣∣∣∣E
(

exp

[√−1α t
−1

2δ−1

∫
Z�[0,t]

ω̃

])
− exp

(
− |α|2δ−1 C(�,ω)

)∣∣∣∣
≤ ε + lim sup

t→∞

∣∣∣∣∣E
(

exp

[√−1α t
−1

2δ−1

Nt∑
n=1

ψn

])

− exp
(
− |α|2δ−1 C(�,ω)

) ∣∣∣∣∣
≤ ε + lim sup

t→∞

∣∣∣∣∣∣E

exp


√−1α t

−1
2δ−1

N∑
i=1

[Fi t]∑
n=1

ψi
n






− exp
(
− |α|2δ−1 C(�,ω)

) ∣∣∣∣∣
= ε +

∣∣∣∣∣
N∏
i=1

exp

[
− γ
(
α r(Pi , ω)

)
Fi ×

(
1+

∫
a dχi

)]
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− exp
(
− |α|2δ−1 C(�,ω)

) ∣∣∣∣∣
by section 8.4, and now by definition of the constants γ (α) and C(�,ω), and by
lemma 14, this equals (for b > ε−2 > 1):

ε +
∣∣∣exp

(
− |α|2δ−1C(�,ω)(1+ O(b−1/2))(1+ O(ε))

)
− exp

(
−|α|2δ−1C(�,ω)

)∣∣∣ = O(ε). ��

Remark 7. 1) A proof similar to the proof of lemma 4 shows that theorem 2 is
valid as well with the form ω instead of the form ω̃, at least if |ω′| and div ω′ are
bounded in M \N(bo).

2) It is possible to show that this theorem is still true with any initial law for the
�-diffusion, but we do not need this slightly stronger result to deduce below our
result on the geodesic flow.

9. Geodesic windings

We gather here the results of the preceding sections: link between geodesic windings
and those of ξ(Zδ

t ) (corollary 4), equality of the diffusions Z�
t and ξ(Zδ

t ) = π(ξδt )

(Proposition 2), and windings of Z�
t (theorem 2), to deduce below the asymptotic

behavior of Jt (ω) (see (5.1)), thereby completing the proof or our main theorem
(stated in section 2), which describes the asymptotic joint law under the Patterson-
Sullivan measure m of the geodesic windings.

Before concluding, we need to get rid of the random time change τt , inherited
from corollary 4. (Whereas τn, with an integer subscript, still denotes the n-th start
of excursion). This we do in the following lemma.

Lemma 18.

∣∣∣∣t −1
2δ−1

∫
π◦ξδ[0,τt ]

ω̃ − t
−1

2δ−1

∫
Z�[0,t/(δ−1/2)]

ω̃

∣∣∣∣ goes to zero in proba-

bility as t →∞.

Proof. 1) Using lemma (2, iii), we can adapt the proof of lemma 17 as follows:

lim sup
t→∞

∥∥∥∥∥∥ rt

∫

Z�[0,τt∧τ(1+Nτt )]
ω̃ −

Nτt∑
n=1

ψn



∥∥∥∥∥∥

2

2

≤ c lim sup
t→∞

(
t−2

∥∥∥∥
∫ τt

0
1{bo≤yφs ≤b+

√
b } (y

φ
s )

2 ds

∥∥∥∥
1

+
∥∥∥∥o (t−1)

∫ τt

0
1{bo≤yφs ≤b+

√
b } ds

∥∥∥∥
2

2

)

≤ c lim sup
t→∞

(b +
√
b )2 t−2 E(τt )+ c lim sup

t→∞
o (t−2) E(τ 2

t ) = 0.
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2) We can extend the validity of lemma 15 to the random time τt by using
lemma(2, iv) and the increasing property of Ni

t . Indeed, we have with probability
converging to 1:

(δ − 1/2)−1Fit − o(tq) < Ni
(δ−1/2)−1t−o(tq ) ≤ Nτt ≤ Ni

(δ−1/2)−1t+o(tq )
< (δ − 1/2)−1Fit + o(tq),

with 1/2 < q < 3/4. Then the proof of lemma 16 remains valid, to prove that

t
−1

2δ−1

∣∣∣∣∣∣∣
Ni
τt∑

n=1

ψi
n −

[(δ−1/2)−1Fi t]∑
n=1

ψi
n

∣∣∣∣∣∣∣ goes to zero in probability.

3) We must now get rid of the possibly incomplete excursion alive at random
time τt .

Set for each n ∈ N∗: ψ∗
n := sup

τn<t<ζn

∣∣∣ ∫
Z�[τn,t]

ω̃

∣∣∣, and ψ ′∗ := sup
0<t<ζ

∣∣∣ ∫
Z̃[0,t]

ω̃

∣∣∣.
Fix ε > 0, and 1/2 < q < 3/4, and consider, using lemma (2, iv), t large enough

so that P
(
|τt − (δ − 1/2)−1t | > o(tq)

)
< ε, and, using lemma 15, so that

P
(
|N((δ−1/2)−1t ±o(tq )) − F ((δ − 1/2)−1t ± o(tq))| > o(tq)

)
< ε. Then we have

for such t :

P
(
rt × ψ∗

(1+Nτt )
> ε
)
− 2ε ≤ P

(
rt ×max {ψ∗

n | F (δ − 1/2)−1t − o(tq) < τn

< F (δ − 1/2)−1t + o(tq)} > ε
)

≤ P
(
rt ×max {ψ∗

n |N(F (δ−1/2)−1t−o(tq )) ≤ n

≤ N(F (δ−1/2)−1t+o(tq ))} > ε
)

≤ 2ε + P
(
rt ×max {ψ∗

n | F2 (δ − 1/2)−1t − o(tq)

≤ n ≤ F2 (δ − 1/2)−1t + o(tq)} > ε
)

≤ 2ε +
n=ct+o(tq )∑
n=ct−o(tq )

P
(
ψ∗
n > ε/rt

)

≤ 2ε +
n=ct+o(tq )∑
n=ct−o(tq )

(ε/rt )
−γ × E

(
(ψ∗

n )
γ
)

≤ 2ε + (c2/c1)× o(tq)× (ε/rt )
−γ × E

(
(ψ ′∗)γ

)
≤ 2ε + tq−(γ /(2δ−1)) × E

(
(ψ ′∗)γ

)
as in the proof of lemma 16.

Finally we just have to verify that (ψ ′∗)γ is integrable for γ < 2δ − 1. Now

ψ ′∗ = r sup
0<t<ζ

∣∣∣∣
∫ t

0
ỹs dws

∣∣∣∣ (law)= r sup
0<t<1

|Wt | ×
(∫ ζ

0
(ỹs)

2 ds

)1/2
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= r sup
0<t<1

|Wt | ×
√
Y ,

where w and W are two standard real Brownian motions, independent of Y . Then

E
(
(ψ ′∗)γ

)
= rγ × E

(
sup

0<t<1
|Wt |γ

)
× E
(
Yγ/2

)
<∞

for γ < 2δ − 1, as in the proof of lemma 16.
4) So far, thanks to proposition 2, we just proved that in probability

lim sup
t→∞

t
−1

2δ−1

∣∣∣∣∣∣
∫
π◦ξδ[0,τt ]

ω̃ −
N∑
i=1

[(δ−1/2)−1Fi t]∑
n=1

ψi
n

∣∣∣∣∣∣ = 0. But since we can deal

with the incomplete excursion possibly alive at time t as in the proof of theorem
2, or as in 3) above (in an easier way however), lemmas 16 and 17 allow us to
conclude, observing that the expression in the statement does not depend on b. ��

Finally we deduce our main theorem (stated in section 2) from (5.1), (5.3),
corollary 4, lemma 18 and theorem 2, with merely C′(�, ω) = C(�,ω)/(δ−1/2).
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81–120 ( 2000)

[D-P] Denker, M., Philipp, W.: Approximation by Brownian motion for Gibbs mea-
sures and flows under a function, Ergodic Th. and Dyn. Systems, 4, 541–552
(1984)
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