

Classical

Nodal

Numerical results

Asymptotic preserving schemes for moment models on unstructured meshes

Emmanuel Franck

CEA/DAM/DIF/DSSI - UPMC/LJLL

06 Juillet 2010

 $\label{eq:supervisors} \mbox{Supervisors}: \mbox{Christophe Buet (CEA/DAM) and Bruno Després (UPMC/LJLL)}$

Emmanuel Franck - Présentation

Introduction

Classical scheme

Nodal schemes

Numerical results

Conclusion

2 Classical " asymptotic preserving" scheme

4 Numerical results

Background and objectives : Transport equation

Introduction

Classical scheme

Nodal schemes

Numerical results

Conclusion

- Inertial confinement fusion : Compression of a gaz capsule with a set of laser beams in order to meet the thermonuclear ignition conditions.
- **Radiation hydrodynamics** : Interaction between the gas modeled by Euler equations and the radiance, modeled by a transport equation.
- Transport equation : f(t, x, v) ≥ 0 the distribution fonction associated to particules located in x and with a velocity v. We consider the following equation of the form :

$$\partial_t f(t, \mathbf{x}, \mathbf{v}) + \mathbf{v} \cdot \nabla f(t, \mathbf{x}, \mathbf{v}) = \sigma_S Q(f, f) + \sigma_a S(f),$$

where Q(f, f) is a collision operator (or scattering) and S(f) an absorption/emission term.

Classical scheme

Nodal schemes

Numerical results

Conclusion

Background and Objectives : diffusion limit

- **Diffusion regime** : The transport equation has, in some regimes, the property to tend towards an equation of diffusion on the first moment of f.
- Example : Non-equilibrium diffusion limit We study the limit when t is high and σ_S >> σ_a. We begin by rescaling the equation :

$$ilde{t} = arepsilon t, \ ilde{\sigma_S} = arepsilon \sigma_S, \ ilde{\sigma_a} = (1/arepsilon) \sigma_a$$

We obtain

$$\partial_t f(t,\mathbf{x},\mathbf{v}) + \frac{1}{\varepsilon} \mathbf{v}.\nabla f(t,\mathbf{x},\mathbf{v}) = \frac{1}{\varepsilon^2} \sigma_S Q(f,f) + \sigma_a S(f).$$

Proposition : diffusion limit

When ε tends to 0 the previous equation, in the case $\sigma_a = 0$, tends to

$$\partial_t \rho(t, \mathbf{x}) - rac{1}{\sigma_S} riangle
ho(t, \mathbf{x}) = \mathbf{0},$$

with
$$ho(t,\mathbf{x}) = \int_{\Omega} f(t,\mathbf{x},\mathbf{v}) dv.$$

Classical scheme

Nodal schemes

Numerical results

Conclusion

Simplified hyperbolic models, nammed moment models, depend on spacesvariables.

• Simplified models :

Moment models

- Pn models : we develop the transport equation on a basis of spherical harmonics.
- Sn models : We use a quadrature formula for discretized the scattering operator, we obtain one equation for each quadrature point.
- M1 model : This is the P1 nonlinear model, where the closing is obtained by minnizing the entropy.

Example of P1 model :

$$\partial_t \boldsymbol{\rho} + \frac{1}{\varepsilon} \nabla \cdot (\mathbf{u}) = 0$$
$$\partial_t (\mathbf{u}) + \frac{1}{3\varepsilon} \nabla \boldsymbol{\rho} = -\frac{\sigma_S}{\varepsilon^2} \mathbf{u}$$

Thesis objective

The objective is to construct finite volume schemes for the simplified models capturing the diffusion limit on unstructured meshes.

Results for the 1D case

- Consistency error of the standard upwing scheme : $O\left(\frac{\Delta x}{\varepsilon} + \Delta t\right)$
- Consistency error of the Jin-Levermore scheme :
 - for the first equation : $O\left(\Delta x^2 + arepsilon \Delta x + \Delta t
 ight)$
 - for the second equation : $O\left(\frac{\Delta x}{\varepsilon} + \Delta t\right)$
 - Consistency error to the Gosse-Toscani scheme : $O\left(\Delta x + \Delta t\right)$

 \Rightarrow Conclusion : The schemes of Jin-Levermore and Gosse-Toscani are AP since the consitency errors are not dependent of ε

- The Jin-Levermore scheme with the following discretization of the source term : $\frac{1}{2}(u_{j+1/2} + u_{j-1/2})$ is equivalent to the Gosse-Toscani scheme.
 - \Rightarrow Aim : Construct the equivalent in dimension two of these schemes.

[1] L. Gosse, G. Toscani An asymptotic-preserving well-balanced scheme for the hyperbolic heat equations C. R. Acad. Sci Paris, Ser. I 334 (2002) 337-342

S. Jin, D. Levermore Numerical schemes for hyperbolic conservation laws with stiff relaxation terms. JCP 126,449-467 ,1996, n°0149 $\,$

Classical scheme

Nodal schemes

Numerical results

Conclusion

Classical scheme

Nodal schemes

Numerical results

Conclusion

Classical " asymptotic preserving " scheme

First case : P1 system

Introduction

Classical scheme

Nodal schemes

Numerical results

Conclusion

$$\begin{cases} \partial_t p + \frac{1}{\varepsilon} \nabla .(\mathbf{u}) = 0\\ \partial_t (\mathbf{u}) + \frac{1}{3\varepsilon} \nabla p = -\frac{\sigma_s}{\varepsilon_2} \mathbf{u} \end{cases}$$

This system is obtained from the transport equation with the scattering term $Q(f, f) = \frac{1}{2\pi} \int_{S^1} (f(t, x, \mathbf{v}') - f(t, x, \mathbf{v})) dv'$.

- Asymptotic limit : Using a Hilbert expansion, we obtain the following limit : $\partial_t p \frac{1}{3\sigma_S} \triangle p = 0$
 - Afterwards, we will study the telegraph equation that corresponds to P1 without coefficient $\frac{1}{3}$.
 - This system is equivalent to the telegraph scalar equation :

$$\partial_{tt} p + \frac{1}{\varepsilon} \partial_t p = \frac{1}{\varepsilon} \triangle p.$$

Notations

• We define the notation for the classical scheme and the nodal scheme.

Introduction

Classical scheme

Nodal schemes

Numerical results

Conclusion

 $\Rightarrow \mathbf{u}_{jk}.\mathbf{n}_{jk} \text{ and } p_{jk} \text{ are the fluxes associated to the edge } \partial\Omega_{jk}.$ $\Rightarrow \mathbf{u}_r \text{ and } p_{ir} \text{ are the fluxes associated to the vertex } X_r$

Jin-Levermore method in 2D

Introduction

Classical scheme

Nodal schemes

Numerical results

Conclusion

• **Principle** : Modify the upwind scheme, incorporing the stationary states associated to the system with an implicit construction of the fluxes. When ε tends to 0, $\nabla p = -(1/\varepsilon)\mathbf{u}$ is not negligible. The classical approximation, constant in each cell, ignores this variation. So we want then to insert this variation using the Taylor formulas.

$$\begin{cases} p_j \simeq p_{jk} - \frac{\sigma}{\varepsilon} (\mathbf{u_{jk}}, \mathbf{x_j} - \mathbf{x_{jk}}) \\ u_k \simeq p_{jk} - \frac{\sigma}{\varepsilon} (\mathbf{u_{jk}}, \mathbf{x_k} - \mathbf{x_{jk}}). \end{cases}$$

• Hypothesis : we suppose that we have a mesh that satisfies the Delaunay condition. Then :

$$(\mathsf{x}_{\mathsf{j}\mathsf{k}}-\mathsf{x}_{\mathsf{j}})=d_{jk}\mathsf{n}_{\mathsf{j}\mathsf{k}}$$
 et $(\mathsf{x}_{\mathsf{j}\mathsf{k}}-\mathsf{x}_{\mathsf{k}})=-d_{kj}\mathsf{n}_{\mathsf{j}\mathsf{k}}.$

We use this development, with the acoustic solver, to obtain the fluxes :

$$\begin{pmatrix} \mathbf{u_j}\mathbf{n_{jk}} + p_j = \mathbf{u_{jk}}\mathbf{n_{jk}} + p_{jk} + (\sigma/\varepsilon)d_{jk}\mathbf{u_{jk}}.\mathbf{n_{jk}} \\ \mathbf{u_k}\mathbf{n_{jk}} + p_k = \mathbf{u_{jk}}\mathbf{n_{jk}} - p_{jk} + (\sigma/\varepsilon)d_{kj}\mathbf{u_{jk}}.\mathbf{n_{jk}}. \end{pmatrix}$$

Asymptotic preserving scheme in 2D

Proposition : Jin-Levermore scheme

Introduction

Classical scheme

Nodal schemes

Numerical results

Conclusion

$$|T_{j}| \frac{p_{j}^{n+1} - p_{j}^{n}}{\Delta t} + \frac{1}{\varepsilon} \sum_{k} l_{jk} \mathbf{u}_{jk} \cdot \mathbf{n}_{jk} = 0$$

$$|T_{j}| \frac{u_{1,j}^{n+1} - u_{1,j}^{n}}{\Delta t} + \frac{1}{\varepsilon} \sum_{k} l_{jk} p_{jk} n_{jk}^{x} = -|T_{j}| \frac{\sigma}{\varepsilon^{2}} u_{1,j}^{n}$$

$$|T_{j}| \frac{u_{2,j}^{n+1} - u_{2,j}^{n}}{\Delta t} + \frac{1}{\varepsilon} \sum_{k} l_{jk} p_{jk} n_{jk}^{y} = -|T_{j}| \frac{\sigma}{\varepsilon^{2}} u_{2,j}^{n},$$

$$(1)$$

with the fluxes

$$\begin{cases} \mathbf{u}_{jk} \cdot \mathbf{n}_{jk} = \frac{(\mathbf{u}_j + \mathbf{u}_k)\mathbf{n}_{jk} + (p_j - p_k)}{2 + (\sigma/\varepsilon)(d_{jk} + d_{kj})} \\ p_{jk} = \frac{(\mathbf{u}_j\mathbf{n}_{jk} + p_j)(1 + d_{kj}(\sigma/\varepsilon)) - (\mathbf{u}_k\mathbf{n}_{jk} - p_k)(1 + d_{jk}(\sigma/\varepsilon))}{2 + (\sigma/\varepsilon)(d_{jk} + d_{kj})}. \end{cases}$$
(2)

Diffusion limit : VF4 scheme

Asymptotic limit of the Jin-Levermore

$$|T_j| \frac{p_j^{n+1} - p_j^n}{\triangle t} - \sum_k l_{jk} \frac{p_k^n - p_j^n}{d(x_j, x_k)} = 0.$$

Introduction

Classical scheme

Nodal schemes

Numerical results

Conclusion

This scheme is named VF4.

- We obtain an asymptotic preserving scheme, but there are several problems :
 - The VF4 scheme does not converge if we use meshes that do not satisfy the Delaunay condtion.
 - The CFL condition is $riangle t << \varepsilon h$, where h is the step of the mesh.
- **Conclusion :** A Classical writing of the finite volume scheme, using an edge formulation does not allow to obtain an AP scheme on unstructured meshes.

Classical scheme

Nodal schemes

Numerical results

Conclusion

How to define a good scheme?

- Using previous results, we want :
 - A limit diffusion scheme that is effective on unstructured meshes and possibly preserving the maximum principle,
 - An implicit scheme to avoid the very restrictive CFL condition.
 - An extensible method in 3D (problem with non-coplanar faces),
 - A scheme able to treat the case of σ variable,
- The principal idea to solve this problem, is to use a nodal formulation. We reconstruct the nodal gradient, and not a gradient in the normal direction, which gives geometric conditions on the mesh.

Classical scheme

Nodal schemes

Numerical results

Conclusion

Nodal schemes

Classical scheme

Nodal schemes

Numerical results

Conclusion

Construction of the nodal schemes

- Idea : Use the nodal scheme "GLACE" constructed for linearized Euler equations, by analogy with the P1 model and use this scheme with the Jin-Levermore method.
- **Difficulty** : we do not know the limit diffusion scheme. This may lead at the construction of a new scheme, studed after.
- Solver for linearized Euler equations :

$$\begin{cases} p_{jr} - p_j = (\mathbf{u_j} - \mathbf{u_r}, \mathbf{n_{jr}}) \\ \sum_j l_{jr} p_{jr} \mathbf{n_{jr}} = 0. \end{cases}$$

Nodal solver

Applying to the Jin-Levermore method, we obtain the following solver :

$$\begin{cases} p_{jr} - p_j = (\mathbf{u}_j - \mathbf{u}_r, \mathbf{n}_{jr}) - \frac{\sigma}{\varepsilon} (\mathbf{u}_r, \mathbf{x}_r - \mathbf{x}_j) \\ \sum_j l_{jr} (\mathbf{n}_{jr} \otimes \mathbf{n}_{jr} + \frac{\sigma}{\varepsilon} (\mathbf{n}_{jr} \otimes (\mathbf{x}_r - \mathbf{x}_j))) \mathbf{u}_r = \sum_j l_{jr} (p_j + (\mathbf{u}_j, \mathbf{n}_{jr})) \mathbf{n}_{jr}. \end{cases}$$

Classical scheme

Nodal schemes

Numerical results

Conclusion

Invertibility of the matrix associated to the solver

• The fluxes exist if the matrix associated to the nodal solver is invertible. \Rightarrow Result of C. Mazeran : The matrix

 $\sum_{j} \mathit{l_{jr}}(n_{jr} \otimes n_{jr})$

is positive definite if all the cells are nodegenerate.

• the difficulty is to show the invertibility of

$$A_r = \sum_j l_{jr} (\mathbf{n}_{jr} \otimes (\mathbf{x}_r - \mathbf{x}_j))$$

 \Rightarrow **Idea** : Try to write A_r as a perturbation of $I_d V$ (V control volume) and prove that if we do not have a mesh with many deformation, this perturbation is small enough, that A_r stays positive definite.

First result

We can write this matrix as

$$A = idV - \frac{1}{4}\sum_{j} P_{j},$$

with $P_{j} = (\mathbf{x}_{j+1} - \mathbf{x}_{j+1/2})^{\perp} \otimes (\mathbf{x}_{j+1} - \mathbf{x}_{j+1/2}) - (\mathbf{x}_{j+1/2} - \mathbf{x}_{j})^{\perp} \otimes (\mathbf{x}_{j+1/2} - \mathbf{x}_{j}).$

Classical scheme

Nodal schemes

Numerical results

Conclusion

• We study
$$(x, A_r x) \ge ||x||^2 (|| Id_V || -\frac{1}{4} || P ||)$$

- Cartesian case : $||I_d V|| = \triangle x^2$ and $\frac{1}{4} ||P|| = \frac{\triangle x^2}{2}$. By continuity we can hope the invertibility for deformed cartesian meshes.
- Let x_j be the cell center, $x_{j+1/2}$ the edge center. We define V_{T_j} the volume of polygon constructed be with these points and the node r.

Result

If the following condition is verified, the matrix is invertible.

$$V_{\mathcal{T}_i} \geq \frac{1}{4} \parallel \mathsf{x}_{j+1/2} - \mathsf{x}_{j-1/2} \parallel \parallel \mathsf{x}_j - \frac{1}{2}(\mathsf{x}_{j+1/2} - \mathsf{x}_{j-1/2}) \parallel$$

• By choosing the gravity center, a quantitative result shows that matrix is invertible if the angles of triangles are superior to approximatively 5 or 6 degrees.

Diffusion limit

We use a Hilbert expansion on the nodal scheme to obtain the limit scheme

Introduction

Classical

Nodal schemes

Numerical results

Conclusion

The limit scheme is :

$$|T_{j}| \frac{p_{j}^{n+1} - p_{j}^{n}}{\triangle t} + \sum_{r} l_{jr}(\mathbf{u}_{r}.\mathbf{n}_{jr}) = 0$$

$$\sigma(\sum_{j} l_{jr}\mathbf{n}_{jr} \otimes (\mathbf{x}_{r} - \mathbf{x}_{j}))\mathbf{u}_{r} = \sum_{j} l_{jr}p_{j}\mathbf{n}_{jr}.$$

- Numerically this limit scheme is effective on unstructured mesh.
- The problem of VF4 scheme is associated to the gradient reconstruction in the normal direction. It is possible, under conditions on the mesh. In the nodal formulation, we reconstruct a gradient in any direction that helps to eliminate geometric constraints.

Classical scheme

Nodal schemes

Numerical results

Conclusion

Theorical study of diffusion scheme

We define the following errors :

$$\| e(t) \|_{L^{2}(\Omega)} = (\sum_{j} | T_{j} | (p_{j}(t) - p(x_{j}, t))^{2})^{\frac{1}{2}}$$
$$\| f(t) \|_{L^{2}([0, t] \times \Omega)} = (\int_{0}^{t} \sum_{r} | V_{r} | (\mathbf{u}_{r}(t) - \nabla p(x_{r}, t))^{2})^{\frac{1}{2}}$$

heorem

We assume that $p \in W^{3,\infty}(\Omega)$. If there exists a constant α such that $A_r^S \ge \alpha V_r$, then the semi-discrete diffusion scheme is convergent for all time T > 0,

$$|| e(t) ||_{L^{2}(\Omega)} + || f(t) ||_{L^{2}([0,t] \times \Omega)} = C(T)h$$

- Ideal of the proof :Classical study of consistancy and Gronwall lemma.
- The semi-discrete scheme is decrasing in L² norm.
- The matrix associated to the implicit scheme with Neumann boundary condition, is invertible. The implicit scheme is *L*²-stable.

Classical scheme

Nodal schemes

Numerical results

Conclusion

 In one dimension, the Jin-Levermore scheme with a discretization of the source term using the flux, is equivalent to the Gosse-Toscani scheme.

Other approaches with nodal scheme

 Idea : construction of a new scheme equivalent to Gosse-Toscani scheme in dimension two, nammed JL-(b)

$$\begin{cases} | T_j | \frac{p_j^{n+1} - p_j^n}{\triangle t} + \frac{1}{\varepsilon} \sum_r l_{jr} (\mathbf{u}_r.\mathbf{n}_{jr}) = 0\\ | T_j | \frac{\mathbf{u}_j^{n+1} - \mathbf{u}_j^n}{\triangle t} + \frac{1}{\varepsilon} \sum_r l_{jr} p_{jr} \mathbf{n}_{jr} = -\frac{\sigma}{\varepsilon^2} \sum_r l_{jr} \mathbf{n}_{jr} \otimes (\mathbf{x}_r - \mathbf{x}_j) \mathbf{u}_r \end{cases}$$

- Other approaches studied :
 - The G. Kluth's tensor notation in order to use a CHIC tensor, instead of using GLACE tensor.
 - Change the matrix A_r by $I_d V_r$ to avoid invertibility problem.

Property

The semi-discrete schemes JL-(a) for $A_r = I_d V_r$ and the JL-(b) scheme for all the variants are decreasing in L^2 norm. The time implicite discretization are L^2 stable.

Classical scheme

Nodal schemes

Numerical results

Conclusion

Numerical results

Example of unstructured meshes

Two examples of unsctrutured meshes.

Classical scheme

Nodal schemes

Numerical results

Conclusion

Results for the transport regime

Periodic solution of telegraph equation associated to the initial condition $u_0 = cos(\pi x)cos(\pi y)$ and $v_0 = 0$. Final time = 0.1 sec, $\sigma = 1$, $\varepsilon = 1$.

Results for the diffusion scheme

Initial condition : the fundamental solution at time 0.001. Final time 0.011. Type of meshes : cartesian, distorded cartesian, \ll smooth », mesh of equilateral triangles.

Classical scheme

Nodal

schemes Numerical results

Conclusion

Results for the asymptotic regime

• We take the same hypothesis that for the diffusion, using the AP schemes JL-(a) and JL-(b) for some different values of *ε*.

The results are the same for the scheme JL-(b) and JL(a).

Conclusion

- Introduction
- Classical scheme
- Nodal schemes
- Numerical results

Conclusion

- We obtain an AP invalid scheme on unstructured meshes, using the Jin-Levermore method and a classical acoustic solver,
- The nodal scheme GLACE, used with the Jin-Levermore method, gives an AP scheme defined on a lot of unstructured meshes.
- Further the limit diffusion mesh is simple, we can give a convergence result allowing to assure the efficiency on unstructured meshes.
- **Problems** : This scheme gives not the VF4 scheme on cartesian mesh and does not respect the maximum principle.

• Perspectives :

- Construct schemes which tend to familiar diffusion schemes (MPFA, Hybrid method....)
- Extent to the M1 model using the Lagrange+remap method.
- Construction of AP schemes for the models Pn and Sn.

future preprint

[1] Chritophe Buet, Bruno Després, Emmanuel Franck *Design of asymptotic preserving schemes for the telegraph equation on unsctructured meshes.* proceeding Laboratoire Jacques Louis-Lions. UMPC 2010.

Thank you

Classical scheme

Nodal schemes

Numerical results

Conclusion

Thank you for your attention