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Background and objectives : Transport equation

• Inertial confinement fusion : Compression of a gaz capsule with a set of
laser beams in order to meet the thermonuclear ignition conditions.

• Radiation hydrodynamics : Interaction between the gas modeled by Euler
equations and the radiance, modeled by a transport equation.

• Transport equation : f (t, x, v) ≥ 0 the distribution fonction associated to
particules located in x and with a velocity v. We consider the following
equation of the form :

∂t f (t, x, v) + v.∇f (t, x, v) = σS Q(f , f ) + σaS(f ),

where Q(f , f ) is a collision operator (or scattering) and S(f ) an
absorption/emission term.
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Background and Objectives : diffusion limit

• Diffusion regime : The transport equation has, in some regimes, the
property to tend towards an equation of diffusion on the first moment of f.

• Example : Non-equilibrium diffusion limit We study the limit when t is
high and σS >> σa. We begin by rescaling the equation :

t̃ = εt, σ̃S = εσS , σ̃a = (1/ε)σa

We obtain

∂t f (t, x, v) +
1

ε
v.∇f (t, x, v) =

1

ε2
σS Q(f , f ) + σaS(f ).

Proposition : diffusion limit
When ε tends to 0 the previous equation, in the case σa = 0, tends to

∂tρ(t, x)− 1

σS
4ρ(t, x) = 0,

with ρ(t, x) =

ˆ
Ω

f (t, x, v)dv .
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Moment models

• Simplified hyperbolic models, nammed moment models, depend on
spacesvariables.

• Simplified models :
• Pn models : we develop the transport equation on a basis of spherical

harmonics.
• Sn models : We use a quadrature formula for discretized the

scattering operator, we obtain one equation for each quadrature
point.

• M1 model : This is the P1 nonlinear model, where the closing is
obtained by minnizing the entropy.

Example of P1 model : 8>>><>>>:
∂t p +

1

ε
∇.(u) = 0

∂t (u) +
1

3ε
∇p = −σS

ε2
u

.

Thesis objective
The objective is to construct finite volume schemes for the simplified models
capturing the diffusion limit on unstructured meshes.
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Results for the 1D case

• Consistency error of the standard upwing scheme : O

„
∆x

ε
+ ∆t

«
• Consistency error of the Jin-Levermore scheme :

• for the first equation : O
`
∆x2 + ε∆x + ∆t

´
• for the second equation : O

„
∆x

ε
+ ∆t

«
• Consistency error to the Gosse-Toscani scheme : O (∆x + ∆t)

⇒ Conclusion : The schemes of Jin-Levermore and Gosse-Toscani are AP
since the consitency errors are not dependent of ε

• The Jin-Levermore scheme with the following discretization of the source
term : 1

2
(uj+1/2 + uj−1/2) is equivalent to the Gosse-Toscani scheme.

⇒ Aim : Construct the equivalent in dimension two of these schemes.

[1] L. Gosse, G. Toscani An asymptotic-preserving well-balanced scheme for
the hyperbolic heat equations C. R. Acad. Sci Paris,Ser. I 334 (2002)
337-342

S. Jin, D. Levermore Numerical schemes for hyperbolic conservation laws
with stiff relaxation terms. JCP 126,449-467 ,1996, n̊ 0149

Emmanuel Franck – Présentation 6/27



Introduction

Classical
scheme

Nodal
schemes

Numerical
results

Conclusion

Classical ” asymptotic preserving ” scheme
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First case : P1 system

8>>><>>>:
∂t p +

1

ε
∇.(u) = 0

∂t (u) +
1

3ε
∇p = −σS

ε2
u

.

This system is obtained from the transport equation with the scattering

term Q(f , f ) =
1

2π

ˆ
S1

(f (t, x , v
′
)− f (t, x , v))dv

′
.

• Asymptotic limit : Using a Hilbert expansion, we obtain the following

limit : ∂t p − 1

3σS
4p = 0

• Afterwards, we will study the telegraph equation that corresponds to P1
without coefficient 1

3
.

• This system is equivalent to the telegraph scalar equation :

∂tt p +
1

ε
∂t p =

1

ε
4p.
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Notations

• We define the notation for the classical scheme and the nodal scheme.

Edge notations nodal notations

ljk

Ωj

~njk

∂Ωjk

∂Ωjk+1

Xr

Xr−1

Xr+1

ljr ~njr

⇒ ujk .njk and pjk are the fluxes associated to the edge ∂Ωjk .
⇒ ur and pjr are the fluxes associated to the vertex Xr
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Jin-Levermore method in 2D

• Principle : Modify the upwind scheme, incorporing the stationary states
associated to the system with an implicit construction of the fluxes. When
ε tends to 0, ∇p = −(1/ε)u is not negligible.The classical approximation,
constant in each cell, ignores this variation. So we want then to insert this
variation using the Taylor formulas.8<: pj ' pjk −

σ

ε
(ujk, xj − xjk)

uk ' pjk −
σ

ε
(ujk, xk − xjk).

• Hypothesis : we suppose that we have a mesh that satisfies the Delaunay
condition. Then :

(xjk − xj) = djk njk et (xjk − xk) = −dkj njk.

We use this development, with the acoustic solver, to obtain the fluxes :
ujnjk + pj = ujknjk + pjk + (σ/ε)djk ujk .njk

uknjk + pk = ujknjk − pjk + (σ/ε)dkj ujk .njk .
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Asymptotic preserving scheme in 2D

Proposition : Jin-Levermore scheme8>>>>>>>>><>>>>>>>>>:

| Tj |
pn+1

j − pn
j

4t
+

1

ε

X
k

ljk ujk .njk = 0

| Tj |
un+1

1,j − un
1,j

4t
+

1

ε

X
k

ljk pjk nx
jk = − | Tj | σ

ε2
un

1,j

| Tj |
un+1

2,j − un
2,j

4t
+

1

ε

X
k

ljk pjk ny
jk = − | Tj | σ

ε2
un

2,j ,

(1)

with the fluxes8>>>><>>>>:
ujk .njk =

(uj + uk )njk + (pj − pk )

2 + (σ/ε)(djk + dkj )

pjk =
(ujnjk + pj )(1 + dkj (σ/ε))− (uk njk − pk )(1 + djk (σ/ε))

2 + (σ/ε)(djk + dkj )
.

(2)

Emmanuel Franck – Présentation 11/27



Introduction

Classical
scheme

Nodal
schemes

Numerical
results

Conclusion

Diffusion limit : VF4 scheme

Asymptotic limit of the Jin-Levermore

| Tj |
pn+1

j − pn
j

4t
−
X

k

ljk
pn

k − pn
j

d(xj , xk )
= 0.

This scheme is named VF4.

• We obtain an asymptotic preserving scheme, but there are several

problems :

• The VF4 scheme does not converge if we use meshes that do not
satisfy the Delaunay condtion.

• The CFL condition is 4t << εh, where h is the step of the mesh.

• Conclusion : A Classical writing of the finite volume scheme, using an edge
formulation does not allow to obtain an AP scheme on unstructured
meshes.
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How to define a good scheme ?

• Using previous results, we want :

• A limit diffusion scheme that is effective on unstructured meshes and
possibly preserving the maximum principle,

• An implicit scheme to avoid the very restrictive CFL condition.
• An extensible method in 3D (problem with non-coplanar faces),
• A scheme able to treat the case of σ variable,

• The principal idea to solve this problem, is to use a nodal formulation. We
reconstruct the nodal gradient, and not a gradient in the normal direction,
which gives geometric conditions on the mesh.
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Nodal schemes
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Construction of the nodal schemes

• Idea : Use the nodal scheme ”GLACE” constructed for linearized Euler
equations, by analogy with the P1 model and use this scheme with the
Jin-Levermore method.

• Difficulty : we do not know the limit diffusion scheme. This may lead at the
construction of a new scheme, studed after.

• Solver for linearized Euler equations :8<:
pjr − pj = (uj − ur, njr)X

j

ljr pjr njr = 0.

Nodal solver
Applying to the Jin-Levermore method, we obtain the following solver :8>><>>:

pjr − pj = (uj − ur, njr)− σ
ε

(ur, xr − xj)X
j

ljr (njr ⊗ njr +
σ

ε
(njr ⊗ (xr − xj)))ur =

X
j

ljr (pj + (uj, njr))njr.
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Invertibility of the matrix associated to the solver

• The fluxes exist if the matrix associated to the nodal solver is invertible. ⇒
Result of C. Mazeran : The matrixP

j ljr (njr ⊗ njr)

is positive definite if all the cells are nodegenerate.

• the difficulty is to show the invertibility of

Ar =
X

j

ljr (njr ⊗ (xr − xj ))

⇒ Idea : Try to write Ar as a perturbation of Id V (V control volume) and
prove that if we do not have a mesh with many deformation, this
perturbation is small enough, that Ar stays positive definite.

First result
We can write this matrix as

A = idV − 1

4

P
j Pj ,

with Pj = (xj+1 − xj+1/2)⊥ ⊗ (xj+1 − xj+1/2)− (xj+1/2 − xj )
⊥ ⊗ (xj+1/2 − xj ).
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• We study (x ,Ar x) ≥‖ x ‖2 (‖ IdV ‖ −
1

4
‖ P ‖)

• Cartesian case : ‖ Id V ‖= 4x2 and
1

4
‖ P ‖= 4x2

2
. By continuity we can

hope the invertibility for deformed cartesian meshes.

• Let xj be the cell center, xj+1/2 the edge center. We define VTi
the volume

of polygon constructed be with these points and the node r.

Result
If the following condition is verified, the matrix is invertible.

VTi
≥ 1

4
‖ xj+1/2 − xj−1/2 ‖‖ xj − 1

2
(xj+1/2 − xj−1/2) ‖

• By choosing the gravity center, a quantitative result shows that matrix is
invertible if the angles of triangles are superior to approximatively 5 or 6
degrees.
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Diffusion limit

• We use a Hilbert expansion on the nodal scheme to obtain the limit
scheme.

Proposition
The limit scheme is :8>>><>>>:

| Tj |
pn+1

j − pn
j

4t
+
X

r

ljr (ur.njr) = 0

σ(
X

j

ljr njr ⊗ (xr − xj))ur =
X

j

ljr pj njr.

• Numerically this limit scheme is effective on unstructured mesh.

• The problem of VF4 scheme is associated to the gradient reconstruction in
the normal direction. It is possible, under conditions on the mesh. In the
nodal formulation, we reconstruct a gradient in any direction that helps to
eliminate geometric constraints.
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Theorical study of diffusion scheme

We define the following errors :

‖ e(t) ‖L2(Ω)= (
X

j

| Tj | (pj (t)− p(xj , t))2)
1
2

‖ f (t) ‖L2([0,t]xΩ)= (

ˆ t

0

X
r

| Vr | (ur (t)−∇p(xr , t))2)
1
2

Theorem
We assume that p ∈W 3,∞(Ω). If there exists a constant α such that AS

r ≥ αVr ,
then the semi-discrete diffusion scheme is convergent for all time T > 0,

‖ e(t) ‖L2(Ω) + ‖ f (t) ‖L2([0,t]xΩ)=C(T)h

• Ideal of the proof :Classical study of consistancy and Gronwall lemma.

• The semi-discrete scheme is decrasing in L2 norm.

• The matrix associated to the implicit scheme with Neumann boundary
condition, is invertible. The implicit scheme is L2-stable.

Emmanuel Franck – Présentation 19/27



Introduction

Classical
scheme

Nodal
schemes

Numerical
results

Conclusion

Other approaches with nodal scheme

• In one dimension, the Jin-Levermore scheme with a discretization of the
source term using the flux, is equivalent to the Gosse-Toscani scheme.

• Idea : construction of a new scheme equivalent to Gosse-Toscani scheme in
dimension two, nammed JL-(b)8>>>><>>>>:

| Tj |
pn+1

j − pn
j

4t
+

1

ε

X
r

ljr (ur.njr) = 0

| Tj |
un+1

j − un
j

4t
+

1

ε

X
r

ljr pjr njr = − σ
ε2

P
r ljr njr ⊗ (xr − xj )ur

• Other approaches studied :

• The G. Kluth’s tensor notation in order to use a CHIC tensor, instead
of using GLACE tensor.

• Change the matrix Ar by Id Vr to avoid invertibility problem.

Property
The semi-discrete schemes JL-(a) for Ar = Id Vr and the JL-(b) scheme for all the
variants are decreasing in L2 norm. The time implicite discretization are L2 stable.
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Numerical results
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Example of unstructured meshes

Two examples of unsctrutured meshes.

Distorted mesh ”Smooth” cartesian mesh
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Results for the transport regime

Periodic solution of telegraph equation associated to the initial condition
u0 = cos(πx)cos(πy) and v0 = 0. Final time = 0.1 sec, σ = 1, ε = 1.

modified acoustic scheme nodal scheme
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Results for the diffusion scheme

Initial condition : the fundamental solution at time 0.001. Final time 0.011. Type
of meshes : cartesian, distorded cartesian, « smooth », mesh of equilateral
triangles.

VF4 scheme nodal diffusion scheme
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Results for the asymptotic regime

• We take the same hypothesis that for the diffusion, using the AP schemes
JL-(a) and JL-(b) for some different values of ε.

asymptotic results

The results are the same for the scheme JL-(b) and JL(a).
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Conclusion

• We obtain an AP invalid scheme on unstructured meshes, using the
Jin-Levermore method and a classical acoustic solver,

• The nodal scheme GLACE, used with the Jin-Levermore method, gives an
AP scheme defined on a lot of unstructured meshes.

• Further the limit diffusion mesh is simple, we can give a convergence result
allowing to assure the efficiency on unstructured meshes.

• Problems : This scheme gives not the VF4 scheme on cartesian mesh and
does not respect the maximum principle.

• Perspectives :

• Construct schemes which tend to familiar diffusion schemes (MPFA,
Hybrid method....)

• Extent to the M1 model using the Lagrange+remap method.
• Construction of AP schemes for the models Pn and Sn.

future preprint
[1] Chritophe Buet, Bruno Després, Emmanuel Franck Design of asymptotic
preserving schemes for the telegraph equation on unsctructured meshes.
proceeding Laboratoire Jacques Louis-Lions. UMPC 2010.
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Thank you

Thank you for your attention
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