Time implicit scheme for JOREK MHD code: Newton procedure, continuation and preconditioning

E. Franck, M. Hölzl, E. Sonnendrücker

Max Planck Institute of Plasma physics, Garching, Germany

Workshop High order numerical method for PDE with involutive constrains, Oberwolfach, 26 September 2013

- 4 同 ト 4 ヨ ト 4 ヨ ト

Table of contents

3 Newton and continuation methods, stabilization

Preconditioning

・ 同 ト ・ ヨ ト ・ ヨ ト

Physical context and models

ъ

Iter

• Fusion DT: Reaction between Deuterium and tritium which product Helium and energy. The deuterium and tritium form a plasma (ionized gas).

・ロト ・日本 ・モト ・モト

æ

Iter

- Fusion DT: Reaction between Deuterium and tritium which product Helium and energy. The deuterium and tritium form a plasma (ionized gas).
- Iter: International project to prove the efficiency of controlled fusion as a power source. Iter is an experimental power plant using fusion.

Iter

- Fusion DT: Reaction between Deuterium and tritium which product Helium and energy. The deuterium and tritium form a plasma (ionized gas).
- Iter: International project to prove the efficiency of controlled fusion as a power source. Iter is an experimental power plant using fusion.
- Magnetic confinement: The plasma obtained by the reaction is confined in the center of the reactor (tokamak) using a powerful magnetic field.

Iter

- Fusion DT: Reaction between Deuterium and tritium which product Helium and energy. The deuterium and tritium form a plasma (ionized gas).
- Iter: International project to prove the efficiency of controlled fusion as a power source. Iter is an experimental power plant using fusion.
- Magnetic confinement: The plasma obtained by the reaction is confined in the center of the reactor (tokamak) using a powerful magnetic field.
- **Tokamak**: Toroidal room used for the plasma confinement.

Models for Iter

• The dynamic of the plasmas in Iter is a very difficult multiscale problem.

Figure: Spatial and time scales

イロト イヨト イヨト イヨト

æ

Models for Iter

- The dynamic of the plasmas in Iter is a very difficult multiscale problem.
- We have different models for the different time and space scales :
 - Kinetic Vlasov-Maxwell equation not use for instance in the codes.
 - Gyrokinetic approximation of the Vlasov-Maxwell equation used for the turbulence in the core tokamak
 - MagnetoHydrodynamics fluids models (resistive MHD, two fluids MHD) used to simulate the edge instabilities.

Figure: Spatial and time scales

ELMs and instabilities

- An edge-localized mode ("ELM's") is a disruptive instability occurring in the edge region of a tokamak plasma.
- The development of edge-localized modes poses an important challenge in magnetic fusion research with tokamaks. Instabilities can damage wall components due to their extremely high energy transfer rate.
- Aim: simulate the ELM's to estimate the amplitude of these instabilities and understand how control these.
- *MHD stability in X-point Geometry: simulation of ELMs*, G. Huysmans, O. Czarny, Nuclear fusion, 2007.
- Reduced magnetohydrodynamic simulation of toroidally and poloidally localized edge localized modes, M. Hölzl and co-workers, Phys. of Plasmas, 2012.

MHD model

The full- resistive MHD model is given by

$$\begin{cases} \partial_t \rho + \nabla .(\rho \mathbf{v}) = \nabla .(D_{||} \nabla_{||} \rho + D_\perp \nabla_\perp \rho) + S_p \\ \rho \partial_t \mathbf{v} + \rho \mathbf{v} . \nabla \mathbf{v} + \nabla (\rho T) = \mathbf{J} \times \mathbf{B} + \nu \bigtriangleup \mathbf{v} \\ \rho \partial_t T + \rho \mathbf{v} . \nabla T + (\gamma - 1) \rho T \nabla \mathbf{v} = \nabla .(K_{||} \nabla_{||} T + K_\perp \nabla_\perp T) + S_h \qquad (1) \\ \partial_t \mathbf{B} = \nabla \times (\mathbf{v} \times \mathbf{B}) - \nabla \times \eta \mathbf{J} + S_c \\ \nabla .\mathbf{B} = \mathbf{0} \end{cases}$$

with ρ the density, **v** the velocity, T the temperature, **B** the magnetic field and $\mathbf{J} = \nabla \times \mathbf{B}$ the current.

- The terms $D_{||}$, D_{\perp} , $K_{||}$, K_{\perp} are anisotropic diffusion tensors.
- Source terms: *S_c* correspond to the current source, *S_h* correspond to the heat source, *S_p* correspond to the particle source.

・ロト ・回ト ・ヨト ・ヨト

Reduced MHD: assumption and derivation

- We consider the cylindric coordinates $(R, Z, \phi) \in \Omega \times [0, 2\pi]$.
- (R, Z) correspond to the poloidal plan and ϕ the toroidal direction.

Reduced MHD: assumptions

$$\mathbf{B} = \frac{F_0}{R} \mathbf{e}_{\phi} + \frac{1}{R} \nabla \Psi \times \mathbf{e}_{\phi} \quad \mathbf{v} = -R \nabla u \times \mathbf{e}_{\phi} + v_{||} \mathbf{B}$$

with u the electrical potential and ψ the poloidal magnetic flux.

- For the reduced MHD the quantities are ρ , T, Ψ , u, $v_{||}$ the parallel velocity, w the vorticity and z_j the toroidal current.
- Derivation: Plug B and v in the density, magnetic and energy equations. For the equations on u and v_{||} we use

$$R\mathbf{e}_{\phi} \cdot \nabla \times (\rho \partial_t \mathbf{v} + \rho \mathbf{v} \cdot \nabla \mathbf{v} + \nabla (\rho T) = \mathbf{J} \times \mathbf{B} + \nu \triangle \mathbf{v})$$

and

$$\mathbf{B}.\left(\rho\partial_t\mathbf{v}+\rho\mathbf{v}.\nabla\mathbf{v}+\nabla(\rho T)=\mathbf{J}\times\mathbf{B}+\nu\Delta\mathbf{v}\right).$$

Reduced MHD without $v_{||}$: most simple model

• With $v_{||} = 0$ we obtain the model considered in this talk.

• We solve
$$\partial_t A(\mathbf{U}) = B(\mathbf{U}, t)$$
 with

$$B(\mathbf{U}) = \begin{pmatrix} [\Psi, u] - \epsilon \frac{F_0}{R} \partial_{\phi} u + \frac{\eta(T)}{R} (z_j - S_c(\Psi)) - \eta_n \nabla . (\nabla z_j) \\ \frac{1}{2} [R^2 ||\nabla u||^2, \hat{\rho}] + [R^2 \hat{\rho} w, u] + [\Psi, z_j] - \epsilon \frac{F_0}{R} \partial_{\phi} z_j - [R^2, \rho] \\ + \nabla . (R\nu(T) \nabla w) - \nu_n \nabla . (\nabla w) \\ \frac{1}{R^2} z_j - \nabla . (\frac{1}{R^2} \nabla \Phi) \\ w - \nabla . (\nabla u) \\ R^2 [\rho, u] + 2R\rho \partial_Z u + \nabla . (D_{||} \nabla_{||} \rho + D_\perp \nabla_\perp \rho) + S_\rho(\Psi) \\ R^2 [T, u] + 2(\gamma - 1)RT \partial_Z u + \nabla . (K_{||} \nabla_{||} T + K_\perp \nabla_\perp T) + S_h(\Psi) \end{pmatrix}$$

with $\hat{\rho} = R^2 \rho$ and $\partial_t A(\mathbf{U}) = \left(\frac{1}{R} \partial_t \Psi, R \nabla . (\hat{\rho} \nabla (\partial_t u)), 0, 0, R \partial_t \rho, R \partial_t T\right)$.

• $\eta(T)$ and η_n are the physical and numerical resistivity. $\nu(T)$ and ν_n are viscosity coefficients.

Jorek Code: description

æ

Description of the jorek code I

- Jorek: Fortran 90 code, parallel (MPI+OpenMP) + algebraic libraries (Pastix, MUMPS ...)
- Initialization
- Determinate the equilibrium
 - Define the boundary of the computational domain
 - Create a first grid which is used to compute the aligned grid
 - Compute $\psi(R, Z)$ in the new grid.
- Compute equilibrium
 - Solve the Grad-Shafranov equation

$$R\frac{\partial}{\partial R}\left(\frac{1}{R}\frac{\partial\Psi}{\partial R}\right) + \frac{\partial^{2}\Psi}{\partial Z^{2}} = -R^{2}\frac{\partial p}{\partial\Psi} - F\frac{\partial F}{\partial\Psi}$$

Figure: unaligned grid

・ロト ・日本 ・モート ・モート

Description of the jorek code II

- Computation of aligned grid
 - Identification of the magnetic flux surfaces
 - Create the aligned grid (with x-point)
 - Interpolate $\Psi(R, Z)$ in the new grid.
- Recompute equilibrium of the new grid.
- Time-stepping (restart)
 - Construction of the matrix and some profiles (diffusion tensors, sources terms)
 - Solve linear system
 - Update solutions
 - Plot kinetic magnetic energies and restart files.

Figure: Aligned grid

Spatial discretization

- The equations in the poloidal plane are discretized using finite element method.
- For the toroidal direction: Fourier expansion.
- Basis functions: Cubic Bezier elements
 - Generalization of cubic Hermite elements.
 - The generalization allows the local refinement of each element essential for adaptive mesh refinement.
 - 4 degrees of freedom by node to describe a function.
 - The isoparametric formulation (discretization of (*R*, *Z*) using the Bezier elements) the finite elements can be accurately aligned with the equilibrium flux surfaces.
 - The Cubic Bezier elements assure a C^1 polynomial reconstruction.

Only moment with involutive constrains

- Potential writing of Magnetic field assure that div B = 0.
- Bezier surfaces and finite elements for MHD simulations, O. Czarny, G. Huysmans, JCP 2008.

Time scheme in Jorek code

- We recall the model $\partial_t A(\mathbf{U}) = B(\mathbf{U}, t)$
- For time stepping we use a Crank Nicholson or BDF2 scheme :

$$(1+\zeta)A(\mathbf{U}^{n+1}) - \zeta A(\mathbf{U}^n) + \zeta A(\mathbf{U}^{n-1}) = \theta \Delta t B(\mathbf{U}^{n+1}) + (1-\theta)\Delta t B(\mathbf{U}^n)$$

• Defining $G(\mathbf{U}) = (1 + \zeta)A(\mathbf{U}) - \theta \Delta t B(\mathbf{U})$ and

$$b(\mathbf{U}^n,\mathbf{U}^{n-1}) = (1+2\zeta)A(\mathbf{U}^n) - \zeta A(\mathbf{U}^{n-1}) + (1-\theta)\Delta tB(\mathbf{U}^n)$$

we obtain the nonlinear problem

$$G(\mathbf{U}^{n+1}) = -G(\mathbf{U}^n) + b(\mathbf{U}^n, \mathbf{U}^{n-1})$$

• First order linearization

$$\left(rac{\partial G(\mathbf{U}^n)}{\partial \mathbf{U}^n}
ight)\delta \mathbf{U}^n = -G(\mathbf{U}^n) + b(\mathbf{U}^n,\mathbf{U}^{n-1})$$

with $\delta \mathbf{U}^n = \mathbf{U}^{n+1} - \mathbf{U}^n$ and $\frac{\partial G(\mathbf{U}^n)}{\partial \mathbf{U}^n}$ the jacobian of $G(\mathbf{U}^n)$.

æ

Time scheme in Jorek code

- Linear solver in Jorek:
 - Case 1: Direct solver using pastix (using when $n_{tor} = 1$)
 - Case 2: Iterative solver
- Iterative Solver step 1: Preconditioning
 - Extraction of submatrices associated to each toroidal mode.
 - We factorize and solve exactly (with Pastix) each subsystem.
 - We construct the initial vector of GMRES using the solutions of these systems.
- Iterative solver step 2: GMRES solver for the global matrix.
- The submatrices are used as right preconditioning for the GMRES method.
- This preconditioning is based on the assumption that the coupling between the toroidal mods is weak and linear.
- Finally we predict the solution neglecting the coupling between the mods.
- In practice for some test cases this coupling is strongly nonlinear.

・ロン ・回と ・ヨン ・ヨン

Jorek code: convergence issues

Problem :

- For some test cases the GMRES method does not converge in the non linear phase for large time step and small numerical viscosity terms.
- Why ?
 - The preconditioning is not sufficient to obtain a robust GMRES method ?
 - The spatial poloidal and toroidal discretizations are not adapted ? Problem of positivity ?
 - The mesh is not adapted ? non C¹ polynomial reconstruction at the X-point (singularity of the mesh).
 - The models (linear and nonlinear hyperbolic parts) are not stables ?

Numerical example

Density

1.0

• evolution of energy in time with adaptive time step.

< A

Numerical example

Numerical example

Newton and continuation methods, stabilization

・ロン ・回 と ・ ヨ と ・ ヨ と

э.

Inexact Newton scheme

- At the time step n, we compute $b(\mathbf{U}^n, \mathbf{U}^{n-1})$, $G(\mathbf{U}^n)$
- We choose $\mathbf{U}_0 = \mathbf{U}^n$ and ε_0 .
- Step k of the Newton procedure
 - We compute $G(\mathbf{U}_k)$ and $\left(\frac{\partial G}{\partial \mathbf{U}_k}\right)$
 - We solve the linear system with GMRES

$$\left(\frac{\partial G(\mathbf{U}_k)}{\partial \mathbf{U}_k}\right) \delta \mathbf{U}_k = \tilde{G}(\mathbf{U}_k) = b(\mathbf{U}^n, \mathbf{U}^{n-1}) - G(\mathbf{U}_k)$$

and the following convergence criterion

$$\frac{||\left(\frac{\partial G}{\partial \mathbf{U}_k}\right)\delta\mathbf{U}_k+\tilde{G}(\mathbf{U}_k)||}{||\tilde{G}(\mathbf{U}_k)||} \leq \varepsilon_k, \quad \varepsilon_k = \gamma \left(\frac{||\tilde{G}(\mathbf{U}_k)||}{||\tilde{G}(\mathbf{U}_{k-1})||}\right)^{\alpha}$$

- We iterate with $\mathbf{U}_{k+1} = \mathbf{U}_k + \delta \mathbf{U}_k$.
- We apply the convergence test (for example $||\tilde{G}(\mathbf{U}_k)|| < \varepsilon_a + \varepsilon_r ||\tilde{G}(\mathbf{U}^n)||$)
- If the newton procedure stop we define Uⁿ⁺¹ = U_{k+1}.

Image: A math a math

Dissipation continuation: principle

- Nonlinear problem: $R(\mathbf{U}) = 0$ not easy to solve.
- Idea: replace the initial problem by the homotopy mapping F(U, λ) = 0 easier to solve.

Algorithm

- Set $d_0 = d_{max}$ and $R_0 = R(\mathbf{U}^0)$
- For *i* = 1, 2, 3.... do
 - Set $F_0 = F(\mathbf{U}^i, d_i)$
 - For $n = 1, 2, 3..n_{max}$ do
 - Compute residual *R*(**U**)
 - if $||R(\mathbf{U})|| \leq \varepsilon_1 ||R_0||$ then done
 - Compute homotopy map $F(\mathbf{U}, d_i)$
 - if $||F(\mathbf{U})|| \leq \varepsilon_2 ||F_0||$ then exit loop
 - Inexact Newton step : find $\delta \mathbf{U}$ such as $||A\delta \mathbf{U} + F|| \le \eta F$.
 - $\mathbf{U} = \mathbf{U} + \delta \mathbf{U}$ and end for
 - set $d_{i+1} < d_i$
- Dissipation continuation: $F(\mathbf{U}, d) = 0 = R(\mathbf{U}) + dD(\mathbf{U})$ with D a diffusion operator.

イロト イポト イヨト イヨト

2

Dissipation continuation: remarks

• Diffusion system used in jorek with additional visocisty

$$\begin{cases} \partial_t \frac{\Psi}{R^2} = \frac{\eta(T)}{R} z_j - \lambda_1 \nabla . (\nabla z_j) \\ R \nabla . (\hat{\rho} \nabla (\partial_t u)) = \nabla . (R \nu (T) \nabla w) + \lambda_2 \nabla . (\nabla w) \\ R \partial_t \rho = \nabla . (D \nabla \rho) + \lambda_5 \nabla . (\nabla \rho) \\ R \partial_t T = \nabla . (K \nabla T) + \lambda_6 \nabla . (\nabla T) \end{cases}$$

with
$$\hat{\rho} = R^2 \rho$$
, $z_j = R^2 \nabla . (\frac{1}{R^2} \nabla \Phi)$ and $w = \nabla . (\nabla u)$.

energy estimate and dissipative system

$$\frac{d}{dt}\frac{1}{2}\int \left(\frac{||\nabla\Psi||^2}{R^2} + R\hat{\rho}||\nabla u||^2 + \rho^2\right) = -\eta(T)\int \frac{||\Delta\Psi||^2}{R^2} - d_1\frac{z_j^2}{R^2} - \int (d_2 + R\nu(T))w^2 - \int (||D|| + l_d d_5)T^2||\nabla\rho||^2 - \int (||K|| + l_d d_6)\rho^2||\nabla T||^2$$

- Problem: non positive values for T imply ν(T) and η(T) negative and the system can be non dissipative.
- Problem: In jorek we use absolute value which can generate non C¹ problem and the non convergence.

Remarks about continuation method

- Preconditioning for Newton procedure: algorithm which gives a good initial guess for Newton procedure.
- The continuation method can be view as an Preconditioning for Newton procedure.
- Efficiency and robustness depend on the formula to compute the new diffusion coefficient.

• Example :
$$d_i = \max\left(\min\left(\alpha d_{i-1}, \left(\frac{||G(\mathbf{U}^k)||}{||G(\mathbf{U}^0)||}\right)^{\beta}\right), d_{\min}\right)$$
 with $\alpha < 1$ and $\beta > 1$.

• The continuation method can be used to find way to explain the non convergence of solvers.

・ロト ・回ト ・ヨト ・ヨト

3

New global structure of the time step

- Computation of the residue G(Uⁿ)
- Inexact Newton procedure
 - Computation of the Residue $G(\mathbf{U}^k)$ and the Jacobian.
 - We factorize ans solve each submatrices to construct an initial guess.
 - GMRES solver with right preconditioning.
- If the Newton procedure converge quickly, we begin the following time step with a bigger step time.
- If the Newton procedure converge not quickly, we begin the following time step with the same or a smaller time step.
- However we restart the time step with the dissipation continuation procedure.
- If the continuation procedure converge, we begin the following time step.
- However we restart the time step with a smaller time step.

Stabilization of reduced MHD Models I

- B. Després and R. Sart have proposed a new method to derive the reduced MHD models using the moment method.
- They shows that to obtain energy estimate for a class of reduced models we must had a term on the poloidal magnetic flux Ψ equation.
- This term satisfies a elliptic equation.
- Results for this model: linear instabilities in the toroidal direction.
- Preliminary study shows that the class of model used in Jorek does not admit this problem.
- However the numerical and theoretical stabilities of the nonlinear reduced models are not clear.
- Stability of linear toroidal terms for model with $v_{||}$?
- Derivation of hierarchies of reduced MHD models in Tokama geometry, B. Després, Rémy Sart, 2013.

イロン 不同と 不同と 不同と

э

Stabilization of reduced MHD Models II

- To understand the difference between the different point of view: weak form.
- Weak form used in Jorek

$$\begin{cases} \int (\partial_t \rho + \nabla .(\rho \mathbf{v})) \rho^* = 0 \\ \int (\partial_t \rho \mathbf{v} + \rho \mathbf{v} . \nabla \mathbf{v} + \nabla (\rho T) - \mathbf{J} \times \mathbf{B}) R^2 \nabla u^* \times \nabla \phi = 0 \\ \int (\partial_t \rho T + \rho \mathbf{v} . \nabla T + (\gamma - 1) \rho T \nabla \mathbf{v}) T^* = 0 \\ \int (\partial_t \mathbf{B} - \nabla \times (\mathbf{v} \times \mathbf{B}) + \nabla \times \eta \mathbf{J}) \frac{\psi}{R} = 0 \end{cases}$$
(2)

• with
$$\mathbf{B} = \nabla \psi \times \nabla \phi$$
 and $\mathbf{v} = R^2 \nabla u \times \nabla \phi$.

• Interesting to study the impact of this small modification on the stability and conditioning.

・ロト ・回ト ・ヨト ・ヨト

æ

Stabilization of reduced MHD Models II

- To understand the difference between the different point of view: weak form.
- Weak form used in the moment method

$$\begin{cases} \int (\partial_t \rho + \nabla .(\rho \mathbf{v}))\rho^* = 0 \\ \int (\partial_t \rho \mathbf{v} + \rho \mathbf{v} . \nabla \mathbf{v} + \nabla (\rho T) - \mathbf{J} \times \mathbf{B}) R^2 \nabla u^* \times \nabla \phi = 0 \\ \int (\partial_t \rho T + \rho \mathbf{v} . \nabla T + (\gamma - 1)\rho T \nabla \mathbf{v}) T^* = 0 \\ \int (\partial_t \mathbf{B} - \nabla \times (\mathbf{v} \times \mathbf{B}) + \nabla \times \eta \mathbf{J}) \nabla \psi^* \times \nabla \phi = 0 \end{cases}$$
(2)

• with
$$\mathbf{B} = \nabla \psi \times \nabla \phi$$
 and $\mathbf{v} = R^2 \nabla u \times \nabla \phi$.

• Interesting to study the impact of this small modification on the stability and conditioning.

・ロン ・回 と ・ ヨ と ・ ヨ と

æ

Conclusion about continuation and Newton methods

- Test and validate the Dissipation continuation method for some reduced models.
- Global strategy:
 - Basic method : Newton procedure
 - If the Newton method does not converge, the time step is recomputed using the dissipation continuation method.
 - If the Continuation method does not converge, the time step is recomputed using a smaller time step.
 - If the Newton method converge quickly we increase the time step.
- Expected result: Use Continuation method when Newton does not converge avoid to use too small time step,
- Study numerical and theoretical stability of the models following the ideas B. Després and R. Sart

Preconditioning

æ

Preconditioning idea I

- An optimal, parallel fully implicit Newton-Krylov solver for 3D viscoresistive Magnetohydrodynamics, L. Chacon, Phys. of plasma, 2008.
- Scalable parallel implicit solvers for 3D magnetohydrodynamics, L. Chacon, Journal of Phys. 2009.
- Aim: Construct an algorithm which give a good prediction of the solution and which is good conditioned
 - The algorithm must give a solution of $A\delta \mathbf{U}^n = -G(\mathbf{U}^n) + b(\mathbf{U}^n, \mathbf{U}^{n-1})$ with $A \approx \frac{\partial G(\mathbf{U}^n)}{\partial \mathbf{U}^n}$.
 - A must be good-conditioned. Idea: parabolization of the coupled hyperbolic equations.
- Example

$$\begin{cases} \partial_t u = \partial_x v \\ \partial_t v = \partial_x u \end{cases} \longrightarrow \begin{cases} u^{n+1} = u^n + \Delta t \partial_x v^{n+1} \\ v^{n+1} = v^n + \Delta t \partial_x u^{n+1} \end{cases}$$

- We obtain $(1 \Delta t^2 \partial_{xx})u^{n+1} = u^n + \Delta t \partial_x v^n$.
- The matrix associated to $(1 \Delta t^2 \partial_{xx})$ is diagonal dominant and good conditioned.

Preconditioning idea II

- To apply easily this method for more complicated equations, we use a other interpretation.
- We assume that the matrix associated to the previous linear system is

$$\left(\begin{array}{cc} D_1 & U \\ L & D_2 \end{array}\right)$$

• Using a Schur decomposition we obtain

$$\begin{pmatrix} D_1 & U \\ L & D_2 \end{pmatrix} = \begin{pmatrix} I & UD_2^{-1} \\ 0 & I \end{pmatrix} \begin{pmatrix} P_{schur} & 0 \\ 0 & D_2 \end{pmatrix} \begin{pmatrix} I & 0 \\ D_2^{-1}L & I \end{pmatrix}$$

$$\left(\begin{array}{cc} I & -\Delta t\partial_x \\ -\Delta t\partial_x & I \end{array}\right) = \left(\begin{array}{cc} I & -\Delta t\partial_x \\ 0 & I \end{array}\right) \left(\begin{array}{cc} P_{schur} & 0 \\ 0 & I \end{array}\right) \left(\begin{array}{cc} I & 0 \\ -\Delta t\partial_x & I \end{array}\right)$$

- The first and third matrices are triangular donc easily to invert.
- $P_{schur} = D_1 UD_2^{-1}L = (1 \Delta t^2 \partial_{xx})$ is good conditioned.

・ロン ・回 と ・ ヨ と ・ ヨ と

Preconditioning : preparation and Schur decomposition

 $\bullet~$ We apply the Schur decomposition to the model without $v_{||}.$ The system solved is

$$\frac{\partial G(\mathbf{U}^{n})}{\partial \mathbf{U}^{n}} \delta \mathbf{U}^{n} = \begin{pmatrix} D_{\psi} & 0 & D_{\psi,T} & D_{\psi,z_{j}} & 0 & U_{\psi,u} \\ 0 & D_{\rho} & 0 & 0 & 0 & U_{\rho,u} \\ 0 & 0 & D_{T} & 0 & 0 & U_{T,u} \\ D_{z_{j},\psi} & 0 & 0 & D_{z_{j}} & 0 & 0 \\ 0 & 0 & 0 & 0 & D_{w} & D_{w,u} \\ L_{u,\psi} & L_{u,\rho} & L_{u,T} & L_{u,z} & L_{u,w} & D_{u} \end{pmatrix} \delta \mathbf{U}^{n} = \tilde{G}(\mathbf{U}^{n})$$

with $\delta \mathbf{U}^n = (\delta \psi, \delta \rho, \delta T, \delta z_j, \delta w, \delta u)$ and $\tilde{G}(\mathbf{U}^n) = -G(\mathbf{U}^n) + b(\mathbf{U}^n, \mathbf{U}^{n-1}).$

- The terms *D* contains advection and diffusion operators.
- The terms L and U contains non linear coupling hyperbolic operators.
- We reduce the number on variable using the definition of w and z_j.

$$\frac{\partial G(\mathbf{U}^{n})}{\partial \mathbf{U}^{n}} \delta \mathbf{U}^{*} = \begin{pmatrix} D_{\psi}^{*} & 0 & D_{\psi,T}^{*} & U_{\psi,u} \\ 0 & D_{\rho} & 0 & U_{\rho,u} \\ 0 & 0 & D_{T} & U_{T,u} \\ L_{u,\psi}^{*} & L_{u,\rho}^{*} & L_{u,T}^{*} & D_{u}^{*} \end{pmatrix} \delta \mathbf{U}^{*}$$

with $\delta \mathbf{U} = (\delta \psi, \delta \rho, \delta T, \delta u)$

・ロト ・回ト ・ヨト ・ヨト

Preconditioning : Algorithm

• The final system with Schur decomposition is given by

$$\delta \mathbf{U}^{n} = \frac{\partial G(\mathbf{U}^{n})}{\partial \mathbf{U}^{n}}^{-1} \tilde{G}(\mathbf{U}^{n}) = \begin{pmatrix} M & U \\ L & D_{u} \end{pmatrix}^{-1} \tilde{G}(\mathbf{U}^{n})$$
$$= \begin{pmatrix} I & M^{-1}U \\ 0 & I \end{pmatrix} \begin{pmatrix} M^{-1} & 0 \\ 0 & P_{schur}^{-1} \end{pmatrix} \begin{pmatrix} I & 0 \\ -LM^{-1} & I \end{pmatrix} \tilde{G}(\mathbf{U}^{n})$$

with $P_{schur} = D_u^* - LM^{-1}U$.

• *M*, *D*^{*}_u are associated to the advection and diffusion operators. *L*, *U* are associated to the hyperbolic coupling operators.

 $\left\{ \begin{array}{ll} {\rm Predictor}: & M\delta \mathbf{v}_p^n = (-G_v^n + B_v^n) \\ {\rm potential update}: & P_{schur}\delta u^n = (-L\delta \mathbf{v}_p^n - G_u^n + B_u^n)) \\ {\rm Corrector}: & M\delta \mathbf{v}_p^n = M\delta \mathbf{v}_p^n - U\delta u^n \\ {\rm Current update}: & D_{zj}\delta z_j^n = D_{z_j,\psi}\delta\psi^n \\ {\rm Vorticity update}: & D_w\delta w^n = D_{w,u}\delta u^n \end{array} \right.$

with $\delta v_{\rho} = (\delta \Psi, \delta \rho, \delta T)$, $G_{\mathbf{v}}$ and $B_{\mathbf{v}}$ the right hand side associated to the equations on Ψ , ρ and T.

Preconditioning : Approximation of the Schur complement

- For define the Schur complement $P_{schur} = D_u^* LM^{-1}U$ we must know the matrix M^{-1} .
- Consequently we must approximate *P_{schur}*. Two approximations:
- Small flow approximation (L. Chacon)
 - In P_{schur} we assume that $M^{-1} \approx \Delta t$
 - Mathematical problem: estimate the operator LU.
- Arbitrary flow approximation (L. Chacon).
 - We introduce a operator M_* (in *u*-space) with $UM_* \approx MU$.
 - Consequently $P_{Schur} = (D_u M_* LU) M_*^{-1}$ with LU given by the small flow approximation.
 - In this case the Potential udapte step in given by

 $\left[\begin{array}{ll} \text{potential update I}: & (D_u M_* - LU) \delta u^{*,n} = \left(-L \delta \mathbf{v}_p^n - G_u^n + B_u^n \right) \right) \\ \text{potential update II}: & \delta u^n = M_* \delta u^{*,n} \end{array} \right]$

• Mathematical problem: estimate the operator *M*_{*}.

소리가 소문가 소문가 소문가

Extension for others reduced MHD and full MHD

- Extension of the PC-algorithm for the models with parallel velocity and full MHD.
- For the full-MHD we have

Helmholtz decomposition

$$\mathbf{v} = R \nabla \mathbf{u} \times \mathbf{e}_{\phi} + R \mathbf{w} \mathbf{e}_{\phi} + \frac{1}{R^2} \nabla_{\perp} \boldsymbol{\chi}$$

with u, w, χ scalar fluxes.

- *u* is associated mainly with the Alfven wave.
- w is associated mainly with the slow wave.
- χ is associated mainly with the fast wave.
- In the model 199, the choice of the velocity show the Alfven wave dominated.
- In the reduced MHD with parallel velocity and the full-MHD, the Schur complement is modified and the different type of wave are present.

AP scheme for anisotropic diffusion in Jorek

Anisotropic diffusion

- It is known that the anisotropic diffusion operators are ill-conditioned.
- For instance the main problem of non convergence come from hyperbolic coupling. But it is possible that anisotropic diffusion impact the conditioning.
- In the future it will be interesting to study the impact of these terms and adapt the AP at the jorek code.
- Asymptotic-Preserving schemes. Modeling, simulation and mathematical analysis of magnetically confined plasmas, C. Negulescu.

・ロト ・日本 ・モート ・モート

Preconditioning: Remarks and schedule of work

- The PC preconditioning method use a prediction of the solution based on the approximation of the Schur complement.
- It is possible that this prediction of the solution is better than the prediction based on a jacobian when all the coupling terms between the mods are neglected.
- This preconditioning is compatible easily with free jacobian method.

Schedule of work

- Implement the Schur complement preconditioning in Pigasus code (Talk A. Ratnani) with multigrids methods for each subsystems.
- Same study for some reduced models with density, temperature and parallel velocity.
- In Pigasus study the efficient of AP schemes vs geometric multigrid methods (A. Ratnani) for anisotropic diffusion terms.
- Implement the Schur complement preconditioning and multigrid methods in Jorek (objectives for semi-long time),

・ロン ・回と ・ヨン ・ヨン

Thanks

Thanks for your attention

æ