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Mathematic and physical context
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Stiff hyperbolic systems

� Stiff hyperbolic system with source terms:

∂tU +
1

ε
∂xF (U) +

1

ε
∂yG(U) =

1

ε
S(U)−

σ

ε2
R(U), U ∈ Rn

with ε ∈ ]0, 1] et σ > 0.

� Subset of solutions given by the balance between the source terms and the convective

part:

� Diffusion solutions for ε→ 0 and S(U) = 0:

∂tV − div (K(∇V,σ)) = 0, V ∈ Ker R.

� Steady-state for σ = 0 et ε→ 0 :

∂xF (U) + ∂yG(U) = S(U).

� Applications: biology, neutron transport, fluid mechanics, plasma physics, Radiative
hydrodynamic (hydrodynamic + linear transport of photon).
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Notion of WB and AP schemes

� Acoustic equation with damping and gravity:
∂tp +

1

ε
∂xu = 0,

∂tu +
1

ε
∂xp = −

1

ε
g −

σ

ε2
u,

−→ ∂tp − ∂x
(

1

σ
(∂xp + g)

)
= 0.

� Steaty-state: u = 0, ∂xp = −g .

� Godunov-type schemes give an error
O(∆x).

� For nearly uniform flows, spurious
velocities larger that physical velocity.

� Important deviation of the steady-state.

� WB scheme: discretize the steady-state
exactly of with high accuracy.

� Ref: S. Jin, A steady-state capturing
method for hyperbolic method with
geometrical source terms.

� Consistency of Godunov-type

schemes: O(
∆x

ε
+ ∆t).

� CFL condition: ∆t(
1

∆xε
+
σ

ε2
) ≤ 1.

� Consistency of AP schemes:
O (∆x + ∆t).

� CFL condition: degenerate on
parabolic CFL at the limit.

� Ref: S. Jin, D. Levermore Numerical
schemes for hyperbolic conservation
laws with stiff relaxation.

� To construct WB and AP schemes: incorporate the source in the fluxes to capture the
balance between source and convective terms.
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Exemple of AP and WB Godunov schemes
� Jin-Levermore (or Gosse Toscani) scheme
� plug the balance law ∂xE = −σ

ε
F + O(ε2) in the fluxes. We write

p(xj ) = p(xj+ 1
2

) + (xj − xj+ 1
2

)∂xp(xj+ 1
2

)

p(xj ) = p(xj+ 1
2

)− (xj − xj+ 1
2

)
σ

ε
u(xj+ 1

2
)

Coupling the previous relation (and the same for xj+1) with the fluxes{
uj + pj = uj+ 1

2
+ pj+ 1

2
+ σ∆x

2ε
uj+ 1

2
,

uj+1 − pj+1 = uj+ 1
2
− pj+ 1

2
+ σ∆x

2ε
uj+ 1

2
.

� To finish we take the following source term 1
2

(uj+ 1
2

+ uj− 1
2

).

Gosse-Toscani scheme:
pn+1
j −pnj

∆t
+ M

unj+1−unj−1

2ε∆x
−M

pnj+1−2pnj +pnj−1

2ε∆x
= 0,

un+1
j −unj

∆t
+ M

pnj+1−pnj−1

2ε∆x
−M

unj+1−2unj +unj−1

2ε∆x
+ M σ

ε2 u
n
j = 0,

with M = 2ε
2ε+σ∆x

.

� Consistency error of the Gosse-Toscani scheme: O (∆x + ∆t).

� Explicit CFL: ∆t
(

1
∆xε

)
≤ 1, Semi-implicit CFL : ∆t

(
1

∆xε+∆x2

)
≤ 1.
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Numerical example
� Validation test for AP scheme: the data are p(0, x) = G(x) with G(x) a Gaussian

u(0, x) = 0 and σ = 1, ε = 0.001.

Ap scheme Godunov scheme

Scheme L1 error CPU time
Godunov, 10000 cells 0.0366 1485m4.26s

Godunov, 500 cells 0.445 0m24.317s
AP, 500 cells 0.0001 0m15.22s
AP, 50 cells 0.0065 0m0.054s
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Schémas ”Asymptotic preserving” 2D
� Classical extension in 2D of the Jin-Levermore scheme : modify the upwind fluxes

(1D fluxes write in the normal direction) plugging the steady-state in the fluxes.

x j

xr+1

xr−1

l jk

xr

Cell Ω j

Cell Ωk

xk

n jk

� ljk and njk the normal and length associated with the edge ∂Ωjk .

Asymptotic limit of the hyperbolic scheme:

| Ωj | ∂tpj (t)−
1

σ

∑
k

ljk
pnk − pnj

d(xj , xk )
= 0.

� ||P0
h − Ph|| → 0 only on strong geometrical conditions.

� Additional difficulty in 2D: The basic extension of AP schemes do not converge on
2D general meshes ∀ε.

E. Franck WB and AP schemes 8/28

8/28



Example of unstructured meshes
Random mesh Collela mesh
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Random triangular mesh Kershaw mesh
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AP scheme for the acoustic wave model with source terms
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Nodal scheme : linear case
� Linear case: P1 model


∂tp + 1

ε
div(u) = 0,

∂tu + 1
ε
∇p = − σ

ε2 u.
−→ ∂tp − div

(
1

σ
∇p
)

= 0.

Idea:
Nodal finit volume methods for P1 model +
AP and WB method.

Nodal schemes:
The fluxes are localized at the nodes of the
mesh (for the classical scheme this is at the
edge).

Notations

where the pentagon is split into subtriangles in two different ways.
On each of these subtriangles the barycentric functions are easily
defined as P1 linear functions. By continuity it defines over the
whole pentagon two different sets of barycentric functions. It
means that barycentric functions are not intrinsic objects, even if
the volume Vj is uniquely defined in this case.

Let us define Vj > 0 the volume of the cell Xj

V j ¼
Z

bXq

detðrXxÞdX ¼
Z

bXq

det
Xnvq

r¼1

rXkq
r $ xrjðqÞ

 !
dX; ð7Þ

where bXq is of course the unique reference cell that corresponds to
Xj. This formula defines a mapping from the vertices x = (x1, . . .) to
Vj. Therefore the volume Vj of the cell can be easily defined as a
function of the cell vertices. We can write with natural notations
Vj = Vj(x). In dimension d = 3 the situation may be more complicated
in case the faces are warped, because even the volume Vj is not un-
iquely defined on the geometrical standpoint. On the contrary the
volume is well-defined through the formula (7) for a given choice
of the barycentric functions. This is why we rely on (7) in the rest
of this paper.

Definition 2. The gradient of the volume with respect to the
vertices is

Cjr ¼ rxr V j 2 Rd: ð8Þ
The expression of Cjr is easy to compute in dimension d = 2. Con-

sider the typical situation of Fig. 4. By convention the vertices are
listed counterclockwise xr%1,xr,xr+1, . . . with coordinates xr = (xr,yr).
The quantity 1

2 ðxryrþ1 % yrxrþ1Þis the oriented area of the triangle
with vertices xr, xr+1 and O = (0,0). The sum of these oriented areas
is the total area Vj ¼

P
r

1
2 ðxryrþ1 % yrxrþ1Þ. The formula (8) implies

the formula used in [10]

Cjr ¼
1
2
%yr%1 þ yrþ1

xr%1 % xrþ1

! "
: ð9Þ

Next we consider the dimension d = 3. The reference cell is denoted
bX ¼ bXqðjÞ. One has the general formula that we deduce from (7)

Cjr ¼
X

s

X

t

xs ^ xt

Z

bX
det rkr ;rks;rktð ÞdX

! "
: ð10Þ

The characterization of Cjr for tetrahedrons and for hexahedrons
with warped faces is given in [7].

The scheme that we consider in the following is based on a very
specific nodal solver that we describe now. At the beginning of the
time step one computes the geometrical vectors Cjr for all cell Xj as
a function of the vertices xr.

Definition 3 (The nodal solver). Let us assume that we know the
values of some cell pressures pj and some cell velocities uj for all

cells around a certain vertex xr. The nodal solver at vertex xr is
defined by the following set of linear equations

pjr % pj þ qjcj !ur % uj;
Cjr

Cjrj j

! "
¼ 0;

P
j

Cjrpjr ¼ 0:

8
>><

>>:
ð11Þ

The unknowns are ðpjr; !urÞ. All other quantities are given. Here
qjcj > 0 is the positive acoustic impedance, and cj is the local speed
of sound.

The solution of the nodal solver is computed by elimination of
pjr in the second equation. One gets the linear equation Ar !ur ¼ br

where the matrix is

Ar ¼
X

j

qjcj
Cjr $ Cjr

jCjrj
2 Rd'd

and the right hand side is

br ¼
X

j

Cjr pj þ qjcj uj;
Cjr

jCjr j

! "! "
2 Rd:

In general the linear system that we have to solve is well posed
since the matrix on the left hand side is symmetric non-negative.
It is possible to show that it is a positive (thus invertible) matrix
Ar ¼ At

r > 0 provided the vectors (Cjr)j span Rd. This is the case in
practice [7]. See also a particular proof in dimension d = 2 [10].
The result of Proposition 25 can be interpreted as a new proof of
this well posedness of the nodal solver.

The GLACE scheme is a cell-centered Godunov like Lagrangian
scheme that has been recently proposed in [7]. As detailed in
Eqs. (11)–(15), this scheme is implemented using explicit Euler
time integration with time step Dt > 0.

Definition 4 (The GLACE scheme). At the beginning of the time step
tk = kDt one computes the geometrical vectors Ck

jr . Then one
computes the nodal pressures pk

jr and the nodal velocities !uk
r using

the nodal solver (11). With these quantities one updates the total
momentum and the total energy as follows. For the momentum
one uses

Mj
ukþ1

j % uk
j

Dt
¼ %

X

r

Ck
jrp

k
jr : ð12Þ

The total energy is updated with

Fig. 3. Non-uniqueness of the definition of the barycentric functions in dimension
d = 2. The pentagon is viewed as the union of 5 triangles on the left and as the union
of 3 triangles on the right. On each of the subtriangles the barycentric functions are
the standard linear P1 functions.

Fig. 4. A mesh in dimension d = 2. Notice that C?jr is the vector that joins the middle
of the edges.

B. Després / Comput. Methods Appl. Mech. Engrg. 199 (2010) 2669–2679 2671

� Nodal geometrical quantities Cjr = ∇xr |Ωj |.
�
∑

j Cjr =
∑

r Cjr = 0.
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2D AP schemes

Nodal AP schemes
| Ωj | ∂tpj (t) +

1

ε

∑
r

(ur , Cjr ) = 0,

| Ωj | ∂tuj (t) +
1

ε

∑
r

pcjr = Sj .

� Classical nodal fluxes: {
pcjr − pjCjr = α̂jr (uj − ur ),∑

j pcjr = 0,

with α̂jr =
Cjr⊗Cjr

‖Cjr‖
.

� New fluxes obtained plugging steady-state ∇p = −σ
ε

u in the fluxes:
pcjr − pjCjr = α̂jr (uj − ur )−

σ

ε
β̂jrur ,∑

j

α̂jr +
σ

ε

∑
j

β̂jr

 ur =
∑
j

pjCjr +
∑
j

α̂jruj .

with β̂jr = Cjr ⊗ (xr − xj ).

� Source term: (1) Sj = − σ
ε2 | Ωj | uj ou (2) Sj = − σ

ε2

∑
r β̂jrur ,

∑
r β̂jr = Îd |Ωj |.

� Using the second source term and rewriting the scheme we obtain an local semi
implicit scheme with a CFL independent of ε.
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Assumptions for the convergence proof

Geometrical assumptions

� (u,
(∑

r
Cjr⊗Cjr

|Cjr |

)
u) ≥ βh(u, u),

� (u,
(∑

j
Cjr⊗Cjr

|Cjr |

)
u) ≥ γh(u, u),

� (u,
(∑

j Cjr ⊗ (xr − xj )
)

u) ≥ αh2(u, u).

� First and second assumptions: true on all non degenerated meshes.

� Last assumption: we have obtained sufficient but not necessary conditions on the
meshes to satisfy this assumption.

� Example for triangles: all the angles must be larger that 12 degrees.

Assumption on regularity and initial data
� u(t = 0, x) = − ε

σ
∇p(t = 0, x)

� Regularity for exact data: V(t, x) ∈ H4(Ω)

� Regularity for initial data of the scheme: Vh(t = 0, x) ∈ L2(Ω)
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Uniform convergence in space
� Naive convergence estimate : ||Pεh − Pε||naive ≤ Cε−bhc

� Idea: use triangular inequalities and AP diagram (Jin-Levermore-Golse).

||Pεh − Pε||L2 ≤ min(||Pεh − Pε||naive , ||Pεh − P0
h ||+ ||P

0
h − P0||+ ||Pε − P0||)

ε → 0
P0
h

Pε

h → 0

P0

ε → 0

h → 0

Pε
h

� Intermediary estimations :

� ||Pε − P0|| ≤ Caεa,
� ||P0

h − P0|| ≤ Cdh
d ,

� ||Pεh − P0
h || ≤ Ceεe ,

� d ≤ c, e ≥ a.

� We obtain:
||Pεh − Pε||L2 ≤ C min(ε−bhc , εa + hd + εe))

.

� Comparing ε and εthreshold = h
ac
a+b we obtain the final estimation:

||Pεh − Pε||L2 ≤ h
ac
a+b

.
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Final result
� The discrete estimate ‖ Pεh − P0

h ‖ obtained is not sufficient for the proof (technical
problem).

� We replace the limite diffusion scheme P0
h by another one DAε which gives P0 at the

limit.

Final result:
We assume that the assumptions are verified. There are some constant C > 0 such that

� ||Pε − Pεh ||naive ≤ C0

√
h
ε
‖ p0 ‖H4(Ω),

� ||DAεh − P0|| ≤ C1(h + ε) ‖ p0 ‖H4(Ω),

� ||Pεh − DAεh || ≤ C2

(
h2 + εmax

(
1,
√
εh−1

))
‖ p0 ‖H4(Ω),

� ||Pε − P0|| ≤ C3ε ‖ p0 ‖H4(Ω), 0 < t ≤ T .

‖Vε−Vεh‖L2([0,T ]×Ω) ≤ C min

(√
h

ε
, h2 + εmax

(
1,

√
ε

h

)
+ (h + ε) + ε

)
‖ p0 ‖H4≤ Ch

1
4 .

and for implicit time scheme ‖Vε(tn)− Vεh(tn)‖L2(Ω) ≤ C
(
f (h, ε) + ∆t

1
2

)
‖ p0 ‖H4(Ω) .

� Using εthresh = h
1
2 we prove that the worst case is ‖Vε − Vεh‖ ≤ C2h

1
4 .
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AP scheme vs classical scheme

� Test case: heat fundamental solution. Results for different hyperbolic scheme with
ε = 0.001 on Kershaw mesh.

Diffusion solution Non AP scheme

Standard AP scheme Nodal AP scheme
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Uniform convergence

� ε dependent periodic solution for the acoustic wave model with damping.

� p(t, x) = (α(t) + ε2

σ
α
′
(t)) cos(πx) cos(πy)

� u(t, x) =
(
− ε
σ
α(t) sin(πx) cos(πy), − ε

σ
α(t) sin(πy) cos(πx)

)
� Convergence study for ε = hγ on random mesh.

γ = 1
4

γ = 1
2

� Numerical results show that the error is homogenous to O(hε+ h2).

� Theoretical estimate that we can hope: O((hε)
1
2 + h).

� Non optimal estimation in the intermediary regime.
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Extension to the Euler model
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Euler equation with external forces
� Euler equation with gravity and friction:

∂tρ+
1

εα
div(ρu) = 0,

∂tρu +
1

εα
div(ρu⊗ u) +

1

εα
∇p = −

1

εα
(ρ∇φ+

σ

εβ
ρu),

∂tρe +
1

εα
div(ρue) + div(pu) = −

1

εα
(ρ(∇φ, u) +

σ

εβ
ρ(u, u)).

� with φ the gravity potential, σ the friction coefficient.

Subset of solutions :
� Hydrostatic Steady-state (α = 1, β = 0):{

u = 0,
∇p = −ρ∇φ.

� High friction limit (α = 0, β = 1), no gravity: u = 0

� Diffusion limit (α = 1, β = 1):
∂tρ+ div(ρu) = 0,
∂tρe + div(ρue) + p div u = 0,

u = −
1

σ

(
∇φ+

1

ρ
∇p
)

.
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Design of AP nodal scheme I

Idea :
Modify the Lagrange+remap classical scheme with the Jin-Levermore method

� Classical Lagrange+remap scheme (LP scheme):
| Ωj | ∂tρj + 1

εα

(∑
R+

ujrρj +
∑

R−
ujrρk(r)

)
= 0

| Ωj | ∂tρjuj + 1
εα

(∑
R+

ujr (ρU)j +
∑

R−
ujr (ρU)k(r) +

∑
r pCjr

)
= 0

| Ωj | ∂tρjej + 1
εα

(∑
R+

ujr (ρe)j +
∑

R−
ujr (ρe)k(r) +

∑
r (pCjr , ur )

)
= 0

with Lagrangian fluxes
Gjr = pjCjr + ρjcj α̂jr (uj − ur )∑
j

ρjcj α̂jrur =
∑
j

pjCjr +
∑
j

ρjcj α̂jruj

� Advection fluxes: ujr = (Cjr , ur ), R+ = (r/ujr > 0), R− = (r/ujr < 0) et

ρk(r) =

∑
j/ujr>0 ujrρj∑
j/ujr>0 ujr

.
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Design of AP nodal scheme II

Jin Levermore method:
Plug the relation ∇p + O(ε2) = −ρ∇φ− σ

ε
ρu in the Lagrangian fluxes

� The modified scheme is given by



| Ωj | ∂tρj + 1
εα

(∑
R+

ujrρj +
∑

R−
ujrρk(r)

)
= 0

| Ωj | ∂tρjuj + 1
εα

(∑
R+

ujr (ρu)j +
∑

R−
ujr (ρu)k(r) +

∑
r pCjr

)
= − 1

εα

(∑
r β̂jr (ρ∇φ)r + σ

εβ

∑
r ρr β̂jrur

)
| Ωj | ∂tρj + 1

εα

(∑
R+

ujr (ρe)j +
∑

R−
ujr (ρe)k(r) +

∑
r (pCjr , ur )

)
= − 1

εα

(∑
r (β̂jr (ρ∇φ)r , ur ) + σ

εβ

∑
r ρr (ur , β̂jrur )

)
with the new Lagrangian fluxes

pCjr = pjCjr + ρjcj α̂jr (uj − ur )− β̂jr (ρ∇φ)r −
σ

εβ
ρr β̂jrur∑

j

ρjcj α̂jr +
σ

εβ
ρr
∑
j

β̂jr

 ur =
∑
j

pjCjr +
∑
j

ρjcj α̂jruj − (
∑
j

β̂jr )(ρ∇φ)r

� and (ρ∇φ)r a discretization of ρ∇φ at the interface .

E. Franck WB and AP schemes 21/28

21/28



Properties

Limit diffusion scheme:
If the local matrices are invertible then the LR-AP scheme tends to the following scheme

| Ωj | ∂tρj +
(∑

R+
(Cjr , ur )ρj +

∑
R−

(Cjr , ur )ρk(r)

)
= 0

| Ωj | ∂tρj +
(∑

R+
(Cjr , ur )(ρe)j +

∑
R−

(Cjr , ur )(ρe)k(r) + pj
∑

r (Cjr , ur )
)

= 0

σρr
(∑

j β̂jr

)
ur =

∑
j pjCjr −

(∑
j β̂jr

)
(ρ∇φ)r

� The nodal gradient formula ∇rp =
(∑

j β̂jr

)−1
(
∑

j pjCjr ) is a consistent and

convergent approximation of the gradient on unstructured meshes (Consistency
study+Gronwall’s lemma).

� For p = Kρ, numerically the scheme converge at the first scheme.

� If we use a second order advection scheme for the remap part. The full scheme
converges with the second order.

� Open question: Verify this for a non isothermal pressure law as perfect gas law.
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Well balanced property

Well balanced property
� We define the discrete gradient ∇rp = −(

∑
j β̂jr )−1

∑
j pjCjr and ρr an average of ρj

around xr .

� If the initial data are given by the discrete steady-state ∇rp = −(ρ∇φ)r , ρn+1
j = ρnj ,

un+1
j = un

j and en+1
j = enj ,

� Remark: The spatial error for a steady-state is only governed by the error between
discrete steady-state and the continuous steady-state

High order reconstruction of steady-state
� Aim: Conserve the stability property of the first order scheme, but discretize the

steady-state with a high order accuracy or exactly.

� Method : Design high order discrete steady-state

� The discrete steady-state is given (
∑

j β̂jr )−1
∑

j pjCjr = −ρr (
∑

j β̂jr )−1
∑

j φjCjr .

� If ρr is an arithmetic average around a node r , this discrete steady-state is a second
order approximation of the continuous one.
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High order discretization of the steady-state
� To begin we consider the steady-state ∇p = −ρ∇φ
� we integrate on the dual cell Ω∗r (volume Vr ) to obtain

Vr

(
1

Vr

∫
Ω∗r

∇p(x)

)
= −Vr

(
1

Vr

∫
Ω∗r

ρ(x)∇φ(x)

)
.

� We introduce 3 polynomials ρr (x) (order q), pr (x) and φr (x) (q+1 order) with∫
Ω∗r

ρr (x) =| Ωl | ρl ,
∫

Ω∗r

pr (x) =| Ωl | pl ,
∫

Ω∗r

φr (x) =| Ωl | φl

and l ∈ S(r) (S(r) a subset of cell around the node r).
� Now we incorporate this high-order reconstruction in the scheme. For this we need to

have a pressure gradient which corresponds to the viscosity of the scheme.
� We obtain a q-order steady-state:

−

∑
j

β̂jr

−1∑
j

pjCjr

︸ ︷︷ ︸
∇pr

= −(ρ∇φ)HO
r

with

(ρ∇φ)HOr =
1

Vr

((∫
Ω∗r

∇p(x)

)
+

(∫
Ω∗r

ρ(x)∇φ(x)

))
+

∑
j

β̂jr

−1∑
j

pjCjr
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Numerical result : large opacity

� Test case: sod problem with σ > 0, ε = 1 and ∇φ = 0.

� σ = 1

AP scheme, ρ non-AP scheme, ρ

AP scheme, ε non-AP scheme, ε
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Numerical result : large opacity

� Test case: sod problem with σ > 0, ε = 1 and ∇φ = 0.

� σ = 106

AP scheme, ρ non-AP scheme, ρ
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Result for steady-state
� 1D Steady-state: ρ(t, x) = 3 + 2 sin(2πx), u(t, x) = 0
� p(t, x) = 3 + 3 sin(2πx)− 1

2
cos(4πx) and φ(x) = − sin(2πx). Random 1D Grid.

Schemes LR LR-AP (2) LR-AP (3) LR-AP (4)

cells Err q Err q Err q Err q

20 0.8335 - 0.0102 - 0.0079 - 0.0067 -
40 0.4010 1.05 0.0027 1.91 8.4E-4 3.23 1.5E-4 5.48
80 0.2065 0.96 7.0E-4 1.95 7.7E-5 3.45 4.1E-6 5.19
160 0.1014 1.02 1.7E-4 2.04 7.0E-6 3.46 1.0E-7 5.36

� 2D Steady-state: ρ(t, x) = e−x,g, u(t, x) = 0, p(t, x) = e−x,g ans φ = (x, g).

Cells
LR LR-AP O(2) LR-AP O(3)

Error q Error q Error q
Cartesian
Mesh

16× 16 0.04132 1.07 0.00147 2.34 5.47E-6 3.8
32× 32 0.02013 1.04 3.28E-4 2.16 3.67E-7 3.9
64× 64 0.00993 1.02 7.65E-5 2.1 2.38E-8 3.95

128× 128 0.00493 1.01 1.90E-5 2.1 1.52E-9 3.96
Random
Cartesian
Mesh

16× 16 0.05465 0.86 0.00155 2.7 8.25E-6 3.47
32× 32 0.02940 0.89 3.4E-4 2.18 7.55E-7 3.45
64× 64 0.01488 0.98 7.98E-5 2.09 8.5E-8 3.15

128× 128 0.00742 1.00 2.06E-5 1.95 2.37E-8 1.84
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Result for steady-state
� 1D Steady-state: ρ(t, x) = 3 + 2 sin(2πx), u(t, x) = 0
� p(t, x) = 3 + 3 sin(2πx)− 1

2
cos(4πx) and φ(x) = − sin(2πx). Random 1D Grid.

Schemes LR LR-AP (2) LR-AP (3) LR-AP (4)

cells Err q Err q Err q Err q

20 0.8335 - 0.0102 - 0.0079 - 0.0067 -
40 0.4010 1.05 0.0027 1.91 8.4E-4 3.23 1.5E-4 5.48
80 0.2065 0.96 7.0E-4 1.95 7.7E-5 3.45 4.1E-6 5.19
160 0.1014 1.02 1.7E-4 2.04 7.0E-6 3.46 1.0E-7 5.36

� 2D Steady-state: ρ(t, x) = e−x,g, u(t, x) = 0, p(t, x) = e−x,g ans φ = (x, g).

Cells
LR LR-AP O(2) LR-AP O(3)

Error q Error q Error q
Collela
Mesh

16× 16 0.08902 0.45 0.00197 2.44 2.97E-5 1.9
32× 32 0.05725 0.63 5.9E-4 1.74 5.43E-6 2.45
64× 64 0.03232 0.82 1.6E-4 1.88 5.93E-7 3.19

128× 128 0.01711 0.92 4.5E-5 1.86 4.68E-8 3.66
Kershaw
Mesh

16× 16 0.08376 0.83 3.38E-4 2.36 6.13E-6 3.84
32× 32 0.04253 0.98 7.29E-5 2.24 3.97E-7 3.95
64× 64 0.02060 1.05 7.87E-5 2.13 2.03E-8 4.3

128× 128 0.00988 1.06 4.34E-6 1.9 1.77E-9 3.52
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Conclusion and perspectives

� Conclusion

� P1 model: First AP scheme (time and space) on unstructured meshes (now other
schemes have been developed).

� P1 model: Uniform proof of convergence on unstructured meshes in 1D and 2D.

� An extension for general Friedrichs systems have been also studied.

� Euler model with external force: AP schemes for the high friction regime (for
short and long time).

� Euler model with external force: new high-order reconstruction of the hydrostatic
steady-state.

� Problem for all the schemes : spurious mods in few cases (example: Cartesian
mesh + Dirac Initial data).

� Possible perspectives

� Acoustic wave model: Theoretical study of the explicit and semi-implicit scheme.
� Euler model: Entropy study for the AP-WB scheme.

� Validate on analytic case the convergence of the diffusion scheme for nonlinear
pressure law.

� Find a generic procedure to stabilize the nodal scheme (exist for the Lagrangian
nodal scheme for the Euler equations).
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Thanks

Thank you
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