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Mathematical context and JOREK code
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Physical context : MHD and ELM’s
� In the tokamak some instabilities can appear at the edge

of the plasmas.

� The simulation to these instabilities is an important
subject for ITER.

� Exemple of Edge Instabilities in the tokamak :

� Disruptions: Violent edge instabilities which can
damage seriously the tokamak.

� Edge Localized Modes (ELM’s): Periodic edge
instabilities which can damage the Tokamak.

� These instabilities are described by MHD models like

∂tρ +∇ · (ρu) = 0

ρ∂tu + ρu · ∇u +∇p = J×B−∇ ·Π

1

γ− 1
∂tp +

1

γ− 1
u · ∇p +

γ

γ− 1
p∇ · u +∇ · q

= 1
γ−1

mi
eρ J ·

(
∇pe − γpe

∇ρ
ρ

)
−Π : ∇u + η|J|2

∂tB = −∇×
(
−u×B + ηJ−mi

ρe
∇pe +

mi

ρe
(J×B)

)
µ0∇×B = J, ∇ ·B = 0

� ELM’s Simulation
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Time scheme in JOREK code

� The model is ∂tA(U) = B(U, t)

� For the time stepping we use a Crank Nicholson or Gear scheme :

(1 + ζ)A(Un+1)− ζA(Un) + ζA(Un−1) = θ∆tB(Un+1) + (1− θ)∆tB(Un).

� Defining G (U) = (1 + ζ)A(U)− θ∆tB(U) and

b(Un, Un−1) = (1 + 2ζ)A(Un)− ζA(Un−1) + (1− θ)∆tB(Un)

we obtain the nonlinear problem

G (Un+1) = b(Un, Un−1).

� First order linearization(
∂G (Un)

∂Un

)
δUn = −G (Un) + b(Un, Un−1) = R(Un),

with δUn = Un+1 −Un, and Jn = ∂G (Un)
∂Un the Jacobian matrix of G (Un).

� First order linearization can be replaced by Newton method (more robust).
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Linear Solvers
� Linear solver in JOREK: Preconditioning + GMRES iterative solver.

� Principle of the preconditioning (right) step:

� Replace the problem JkδUk = R(Un) by Pk (P
−1
k Jk )δUk = R(Un).

� Solve the new system with two steps PkδU∗k = R(Un) and (P−1
k Jk )δUk = δU∗k

� If Pk is easier to invert than Jk and Pk ≈ Jk the linear solving step is more robust and
efficient.

� Preconditioning : algorithm to solve Pkx = b.

Physic-based Preconditioning of JOREK

� Extraction of the blocks which are associated with each toroidal harmonic (diagonal
block).

� LU factorization of each block.

� Solve exactly with LU decomposition each subsystem associated with a block.

� Reconstruction of the solution of Pkx = b.

� Physic-based preconditioning interpretation: We neglect in the Jacobian the physical
effects associated with the coupling between the Fourier mods (non diagonal block).
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Advantages and defaults of the JOREK Preconditioning

Advantages of the Physic Based JOREK preconditioning
� Very efficient preconditioning in the linear phase.

� Efficient preconditioning for lot of test cases.

� Nice idea to construct a preconditioning using the knowledge of the physic and the
discretization.

Defaults of the Physic Based JOREK preconditioning
� Preconditioning less efficient for case with strong coupling between Fourier modes).

� Important CPU cost in the nonlinear phase (factorization is computed often).

� Very important memory consumption (storage of LU decomposition and the Jacobian).

� Not independent to the toroidal discretization.

Aim: design a preconditioning which is:
� efficient in the linear phase (less than the previous one) and in the nonlinear phase,

� independent in the principle to the discretization,

� not so greedy in memory (Compatible with free matrix methods),

� adaptable to the difficulty of the test case.
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Physic based preconditioning for Waves equations
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Implicit scheme for Damped waves equations
� Damping wave equation (baby problem used for Inertial fusion confinement)

 ∂tp + c∇ · u = 0

∂tu + c∇p = −cσu
⇐⇒


∂tp +

1

ε
∇ · u = 0

∂tu +
1

ε
∇p = − σ

ε2
u

� with σ opacity, c light speed and ε ≈ 1
c ≈

1
σ

� When ε −→ 0 the model can be approximated by ∂tp −∇ · ( 1
σ∇p) = 0.

� This problem is stiff in time. CFL condition is ∆t ≤ C1εh+ C2ε2.

� Simple way to solve this: implicit scheme but the model is ill-conditioned.
� Two sources of ill-conditioning: the stiff terms (which depend of ε) and the hyperbolic

structure.

We propose a preconditioning (work of L. Chacon) which

� allows to treat the stiffness using operator splitting and reformulation of the equations
(rewritting the hyperbolic system as a second order equation well-conditioned which
can be solved easily),

� can be extend to the nonlinear hyperbolic system as MHD (and resistive MHD with
additional splitting steps).

E. Franck Adaptive Preconditioning 9/1

9/1



Construction of the preconditioning I
� First we implicit the equation

pn+1 + θ
∆t

ε
∇ · un+1 = pn − (1− θ)

∆t

ε
∇ · un

un+1 + θ
∆t

ε
∇pn+1 + θ

∆tσ

ε2
un+1 = un − (1− θ)

∆t

ε
∇pn − (1− θ)

∆tσ

ε2
un

� The implicit system is given by(
M U
L D

)(
pn+1

un+1

)
=

(
Rp

Ru

)

with M = Id , D =

(
Id 0
0 Id

)
, U =

(
θ

∆t

ε
∂x

∆t

ε
∂y

)
and L =

 αθ
∆t

ε
∂x

αθ
∆t

ε
∂y


� The solution of the system is given by(

pn+1

un+1

)
=

(
M U
L D

)−1 (
Rp

Ru

)

=

(
I M−1U
0 I

)(
M−1 0
0 P−1

schur

)(
I 0
−LM−1 I

)(
Rp

Ru

)
with Pschur = D − LM−1U.
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Construction of the preconditioning I
� Secondly we rewrite the equation

pn+1 + θ
∆t

ε
∇ · un+1 = pn − (1− θ)

∆t

ε
∇ · un

un+1 + θ
α∆t

ε
∇pn+1 = αun − (1− θ)

α∆t

ε
∇pn − α(1− θ)

α∆tσ

ε2
un

� with α =
ε2

ε2 + θσ∆t

� The implicit system is given by(
M U
L D

)(
pn+1

un+1

)
=
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Rp

Ru

)
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Id 0
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)
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θ

∆t

ε
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∆t

ε
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)
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ε
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∆t

ε
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Construction of the preconditioning I
� Secondly we rewrite the equation

pn+1 + θ
∆t

ε
∇ · un+1 = pn − (1− θ)

∆t

ε
∇ · un

un+1 + θ
α∆t

ε
∇pn+1 = αun − (1− θ)

α∆t

ε
∇pn − α(1− θ)

α∆tσ

ε2
un

� with α =
ε2

ε2 + θσ∆t
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Principle of the preconditioning II

� Using the previous Schur decomposition we can solve the implicit wave equation with
the algorithm. 

Predictor : Mhp
∗ = Rp

Velocity evolution : Phun+1 = (−Lhp∗ + Ru)
Corrector : Mpn+1 = Mhp

∗ −Uhun+1

� with the matrices:

� Mh the mass matrix which discretize the Identity operator
� Uh discretize the operator U and Lh the discretization of the L operator.
� Ph discretize the positive and symmetric operator :

PSchur = Id − θ2 α∆t2

ε2

(
∂xx ∂xy
∂yx ∂yy

)
� Remark: in this case, there is no approximation in the Schur, but in many cases

(nonlinear models) we must use an approximation.

� The physic based preconditioning PB(x) solves the previous algorithm with :

� The Conjugate Gradient with ε = 10−9 for predictor and correction step.
� The Conjugate Gradient with ε = 10−x for velocity update step.
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Algorithm of the PhyBas Preconditioning step

� Algorithm and implementation of the PB(x) preconditioning:

GMRES method

Call preconditioning

Solve PC(IN: R, OUT: X)

Extraction step

Construction of sub-RHS:
- Rp (pressure term)
-Ru (velocity term)

Solving step

-Predictor CG(9)
-Update CG(x)

-Corrector CG(9)

Reconstruction step

Construction of so-
lution X using:

- xp (pressure sol.)
- xu (velocity sol.)

� In this case we solve the sub-steps with a GC solver.

� We can use also Multi-grid (MG) methods or other methods efficient for symmetric
and diagonal dominant matrix.
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Results for Waves equation

� Comparison between iterative solver for test case in the diffusion limit σ = 1.

Mesh / solvers GC GC-PC GMRES GMRES-PC-Jacobi

Mesh 4*4, ε1
cv 7 7 7 3
iter - - - 27

Mesh 16*16, ε1
cv 7 7 7 3
iter - - - 1.5E+4

Mesh 4*4, ε2
cv 7 7 7 3
iter - - - 21000

Mesh 16*16, ε2
cv 7 7 7 7
iter - - - -

� ε1 = 10−5 and ε2 = 10−10.

� The solver tolerance is 10−10 for convergence and iter max=100000. We compute the
average of ten time iterations.

� The GC solver is unstable and cannot solve this type of problem.

A conclusion
� The results show that it is necessary to use a good preconditioning + robust solver

(for general matrix).
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Results for Waves equation
� Comparison between GMRES method with different preconditioning

Mesh / solvers Jac ILU(0) ILU(4) MG(2) SOR PB

Mesh4*4, ε1
cv 3 3 3 3 3 3
iter 27 11 38 8 1
time 7.2 E-4 1.3E-3 7.7E-3 1.5E-2 1.4E-3 2.1E-3

4*4, ε2
cv 3 3 3 7 3 3
iter 2.1E+4 11 1 - 8 1
time 3.6E-1 1.3E-3 7.7E-3 - 1.5E-3 2.1E-3

16*16, ε1
cv 3 3 3 3 3 3
iter 1.5E+4 18 9 140 20 1
time 5.0E-0 2.3E-2 4.0E-1 5.0E-1 5.0E-2 2.1E-2

16*16, ε2
cv 7 3 3 7 3 3
iter - 18 9 - 20 1
time - 2.3E-2 4.0E-1 - 5.0E-2 2.1E-2

64*64, ε2
cv 7 7 3 7 7 3
iter - - 632 - - 1
time - - 2.0E+1 - - 4.2E-1

� ILU (Incomplete LU), MG (Multi-grids), SSOR, PB (our physic based PC).

A conclusion
� On fine grid our method is the fastest (and the implementation is not optimal).
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Physic based preconditioning for MHD equations
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Current Hole and preconditioning associated

� Current Hole : reduced problem in cartesian coordinates.

� The model  ∂tψ = [ψ, u] + η∆ψ

∂t∆u = [∆u, u] + [ψ, ∆ψ] + ν∆2u

with w = ∆u and j = ∆ψ.

� In this formulation we split evolution and elliptic equations.

� For the time discretization we use a Cranck-Nicholson scheme and linearize the
nonlinear system to obtain(

M U
L D

)(
∆ψn

∆un

)
=

(
Rψ

Ru

)
or Id − ∆tθ[·, un ]− ∆tθ∆ −∆θ[ψn, ·]

−∆tθ[ψn, ∆·]− ∆tθ[·, ∆ψn ] ∆− ∆tθ([∆·, un ] + [·, ∆un ] + ∆2)

( δψn

δun

)
=

(
Rψ

Ru

)
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Design of the preconditioning for reduced MHD

PB-PC for Current Hole
Predictor : Mδψn

p = Rψ

potential update : Pschur δun =
(
−Lδψn

p + Ru)
)

Corrector : Mδψn = Mδψn
p −Uδun

Current update : δznj = ∆δψn

Vorticity update : δwn = ∆δun

� The schur complement is given by Pschur = D − LM−1U

� Two approximations for M−1:
� Slow flow: M−1 = ∆t
� Arbitrary flow: find M∗ such that UM∗ ≈ MU. Consequently

P−1 = (D − LM−1U)−1 ≈ M∗(DM∗ − LU)−1,

we obtain{
potential update I : (DM∗ − LU)δu∗∗ =

(
−Lδψn

p + Ru)
)

potential update II : δun = M∗δu∗∗

� Last question : Computation of the operator LU (second order form of the coupling
hyperbolic operators).
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Approximation of the Schur complement I
� Computation of Schur complement for (slow flow approximation M−1 ≈ ∆t)

Pschur =
∆δu

∆t
+ un · ∇(∆δu) + δu · ∇(∆un)− θν∆2δu − θ2∆tLU

� Operator LU = Bn · ∇(∆(Bn · ∇δu)) + ∂jn

∂ψn Bn
pol · ∇(Bn · ∇δu).

� Bn · ∇δu = −[ψn, δu] and un · ∇δu = −[δu, un ] et δu · ∇un = −[un, δu].

� Remark: the LU operator is the parabolization of coupling hyperbolic terms which
contains only the Alfvén waves (rigorous proof missing).

Properties of LU operator

� We consider the L2 space. The operator LU is not positive for all δu

< LUδu, δu >L2=
∫
|∇(Bn · ∇δu)|2 −

∫
∂jn

∂ψn
(Bn

pol · ∇δu)(Bn · ∇δu)

� The LU operator is not self-adjoint : < LUδu, δv >L2 6=< δu,LUδv >L2

� We propose the following approximation LUapprox = Bn · ∇(∆(Bn · ∇δu)).

� The operator LUapprox is positive and self-adjoint.
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Solving the different steps of the PC

� Question How solve each step ?

� The first simple and efficient solver is to use the Multi-Grids methods (MG) efficient
for second order and advection operators.

� But perhaps it can be more efficient to split some terms in the sub-systems to use the
most adapted solver for each operator.

� Example for the Schur complement (L. Chacon paper) using a splitting and an
approximation:


Schur solver I : ∆δu∗ = RHS

Schur solver II :
(

Id
∆t + un · ∇Id − θν∆

)
δu∗∗ = δu∗

Schur solver III :
(

∆Id
∆t −Bn · ∇(∆(Bn · ∇Id ))

)
δun+1 = δu∗∗

� MG methods are adapted for advection diffusion problems.

� GC is more adapted for symmetric and positive anisotropic operator (smoother for
MG are more complicated for anisotropic problem).

� L. Chacon remark: to replace Bn · ∇(∆(Bn · ∇Id )) by ∆(Bn · ∇(Bn · ∇Id ))
generate noise.
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Algorithm of the PhyBas Preconditioning step

� Algorithm and implementation of the PB(x) preconditioning:

GMRES method

Call preconditioning

Solve PC(IN: R, OUT: X)

Extraction step

Splitting RHS (de-
pend of variables)

Solving step

-Predictor GR-MG
-Update GR-MG

-Corrector GR-MG

Slow Schur 1

- All operators (GR-MG)

Slow Schur 2

- Coupling Operator (GC)
- Advection vorticity (Gr-MG)
-Diffusion vorticity (GR-MG)

Arbitrary Schur 2

- Coupling Operator (GC)
- Advection vorticity (Gr-MG)
-Diffusion vorticity (GR-MG)

-Advection (GR-MG)

Reconstruction step

Construction of so-
lution X using:

- xp (pressure sol.)
- xu (velocity sol.)

� In the future we will replace GRMES-MG by MG solvers.
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Results for Current Hole Model
� Comparison between GMRES method with different preconditioning

� 50 time step in the linear phase (kink instability). tol = 10−8, iter max = 10000.

Mesh / solvers Jac ILU(0) ILU(4) MG(2) SOR PB

Mesh 16*16 dt=0.5
cv 7 3 3 7 3 3
iter - 14 6 - 12 1
time - 1.2E-1 1.4E+0 - 1.8E-1 2.6E+0

Mesh 32*32 dt=1
cv 7 3 3 7 7 3
iter - 26 9 - - 1
time - 6.8E-1 7.2E+0 - - 9.8E+0

� On fine grid our method is robust (on finest grids it it necessary to increase k for
ILU(k) method).

� This is not optimal because :
� The matrices (7 in this case) are assembled one by one and not at the same time.
� The extraction and reconstruction are made one by one.
� The assembly of the matrices in Django are not optimal (PETSC configuration).
� We solve each sub-system with a GMRES-MG(2) and not just a MG solver.

� 90% of the solving time comes from to the construction of the sub-matrices. In the
future we will assume that it is possible to decrease this part by 10 or 20.
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Extension for other MHD Models

� The Preconditioning is extendable to the other MHD problems

Extension to full MHD problem

� The matrix M contains advection and diffusion operators for ρ, T and B

� To treat anisotropic operators splitting technics or adapted MG methods can be used.

� The LU operator (called ideal MHD force operator in the book of Schnack) is given by

(LU)δv = [B×∇×∇× (Id ×B)− J×∇× (Id ×B)−∇(Id · ∇p + γp∇ · Id )] δv

� This positive and self-adjoint operator contains the waves of MHD.

� A possible step to separate the waves can be added to solve easily this operator (work
of S. Jardin)

� Extension of the method for the generalized Ohm’s law is present in the literature.

� The equivalent can be written for reduced MHD models.
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Physic based preconditioning for MHD equations
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Problem of memory and ”Matrix free” GMRES solver

� An important problem of the PC implicit scheme is the memory consumption.

� In the current JOREK version the PC implicit method prevent to use fine resolutions.

� First idea: used Free-Matrix method compatible with the previous PC algorithm.

Free Jacobian method

� In the iterative methods we replace JX (with J the Jacobian of G(Un)) by

G(Un + εX)−G(Un)

ε

� With this method, it is not necessary to compute and store the full matrix.

Remark

� If the iterative method to solve the sub-steps of the PC is not compatible with ”free
Jacobian” method, we must store some sub-matrices of the PC.
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Adaptive PhyBas preconditioning

Idea
� The PhyBas PC is based on physical approximations of the equations. We can also

add approximations of the discretization in space.

� Indeed, we can use a less order approximation in the PC to reduce the size of the
matrices and the storage and keep a good efficiency.

Applications to MHD PC
� We can call the preconditioning with

� poloidal and toroidal orders of the B-Splines smaller than the orders used for the
full model.

� poloidal and toroidal regularity of the B-Splines different than the regularity used
for the full model.

� less Fourier harmonics than for the full model (we keep the coupling terms but
neglect harmonics).

� Some restriction and interpolation operators must be added in the ”extraction” and
”reconstruction” steps.

� Remark: At the end, the user could choose the order and number of Harmonics for the
PC (different that for the model) and adapt these parameters during the simulation.
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Algorithm of the adaptive PhyBas Preconditioning step

� Algorithm and implementation of the APB(x) preconditioning:

GMRES method

Model(n pol order, n tor order)

Call preconditioning

Solve PC(IN: R,m pol order,
m tor order, OUT: X)

Extraction step

Extraction toroidal

if m tor order<n tor order
-Extraction of less
degree coefficients

Extraction poloidal

if m pol order<n pol order
-Extraction of less
degree coefficients

Extraction variables

- Splitting RHS (de-
pend of variables)

Solving step

- Slow flows approx.
- Arbitrary flows approx.

Reconstruction
step

Reconstruction toroidal

if m tor order<n tor order
-Reconstruction of high

degree coeffcients

Reconstruction poloidal

if m pol order<n pol order
-Reconstruction of high

degree coeffcients

Reconstruction variables

-Reconstruction
of full solution

� In the future, it will be important to perform the extraction and reconstruction parts.
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Conclusion
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Conclusion

Conclusion:
� The idea to design a PC is to write the solving step as a suitability of simple operators

(easy to invert) using splitting and reformulation (second order formulation) methods.

� The possible approximations gives the PC algorithm.

� Problem: the proposed method is dependent of the problem and use lot a methods
(CG, MG, GMRES etc) =⇒ lot of work to treat all the models.

Possible approximations:
� Solving approximation: each sub step can be solve with a small accuracy.

� Physical approximation: each subsystem can be simplified to obtain well-conditioned
operators (necessary in the MHD case).

� Discretization approximation: the systems of the PC can be solved with less order
numerical methods or coarser grids (with extraction and reconstruction operator).

� Multi-discretization approximation: the PC models and the model can be discretized
with different methods (finite element for PC and DG for the full system).

Others applications:
� Shallow water equations and ocean flows: Cemracs 2015 Project.

� Radiative transfer: project with CEA (DAM).
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Program of works

Program June-August:
� Add a parallel multigrid solver in DJANGO.

� Optimisation of the PC (big optimization for matrices construction and extraction).

� Implementation of the PhyBas PC for the 2D and 3D cylindrical current Hole.

� Implementation of the JOREK PC for the 3D current Hole and comparison.

Program middle 2015- middle 2016:
� Implementation of the Free-Matrix methods.

� Optimisation and OpenMp parallelization.

� Validation of the 199 model interfacing JOREK and Django with restart files.

� Implementation of the adaptive PC (choice of the discretization can be different
between the PC and the full model).

Program middle 2016 - end of 2017:
� Extension to the model 303 and Diamagnetic MHD.

� Implementation in JOREK (V 3.0 ? )
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Call for help

� 3D Current Hole model :

∂t
1

R2
ψ =

1

R
[ψ, u]− F0

R2
∂φu +

η

R2
j

∇ · (∂t∇polu) =
1

R
[R2w , u] +

1

R
[ψ, j ]− F0

R2
∂φj +∇ · (ν∇polw )

w = ∇ · (∇polu), j = ∆∗ψ

� We want compare the new preconditioning and the preconditioning of JOREK using
one of these model.

Find a test case
� Model: 3D Current Hole or 3D 199 model.

� Initialization : Grad-Safranov with analytical RHS + perturbation toroidal mods.

� Boundary condition : homogeneous Dirichlet.

� Mesh : Circle or D-shape.

� Physic : nonlinear coupling between the modes in the nonlinear phase.
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Call for help
� 3D 199 model:

∂t
1

R2
ψ =

1

R
[ψ, u]− F0

R2
∂φu +

η

R2
j

∇ · (ρ̂∇pol∂tu) =
1

2R
[R2|∇polu|2, ρ̂] +

1

R
[ρ̂R2w , u]− 1

R
[R2, p] +

1

R
[ψ, j ]− F0

R2
∂φj

+∇ · (ν∇polw )

∂tρ = R [ρ, u] + 2ρ∂Zu

∂tT = R [T , u] + 2(γ− 1)T∂Zu

w = ∇ · (∇polu), j = ∆∗ψ

� We want compare the new preconditioning and the preconditioning of JOREK using
one of these model.

Find a test case
� Model: 3D Current Hole or 3D 199 model.

� Initialization : Grad-Safranov with analytical RHS + perturbation toroidal mods.

� Boundary condition : homogeneous Dirichlet.

� Mesh : Circle or D-shape.

� Physic : nonlinear coupling between the modes in the nonlinear phase.
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