Django-Jorek code: a numerical box for MHD discretization and JOREK

A. Ratnani², B. Nkonga³⁵, <u>E. Franck</u>¹, C. Caldini-Queiros²,
 L. Mendoza², G. Latu⁴, V. Grandgirard⁴, E. Sonnendrücker²⁶,
 M. Hölzl², H. Guillard ⁵

16 September 2015

¹INRIA Nancy Grand-Est and IRMA Strasbourg, TONUS team, France ²Max-Planck-Institut für Plasmaphysik, Garching, Germany ³Nice university, Nice, France ⁴CEA/DSM/IRFM, Cadarache, France ⁵INRIA Sophia-Antipolis, CASTOR team, France ⁶TUM center of mathematics, Garching, Germany

Outline

Context and the Django code

Model in Django DJANGO

Spatial discretization and meshes in DJANGO

Preconditioning and solver in DJANGO

Context and the Django code

Physical context : MHD and ELM's

- In the tokamak plasma instabilities can appear.
- The simulation of these instabilities is an important subject for ITER.
- Examples of Instabilities in the tokamak :
 - Disruptions: Violent instabilities which can seriously damage the tokamak.
 - Edge Localized Modes (ELM's): Periodic edge instabilities which can damage wall components due to their extremely high energy transfer rate.
- These instabilities are described by MHD models like

$$\begin{cases} \partial_{t}\rho + \nabla \cdot (\rho \mathbf{u}) = 0 \\ \rho \partial_{t}\mathbf{u} + \rho \mathbf{u} \cdot \nabla \mathbf{u} + \nabla \rho = \mathbf{J} \times \mathbf{B} - \nabla \cdot \overline{\mathbf{n}} \\ \frac{1}{\gamma - 1} \partial_{t}\rho + \frac{1}{\gamma - 1} \mathbf{u} \cdot \nabla \rho + \frac{\gamma}{\gamma - 1} \rho \nabla \cdot \mathbf{u} + \nabla \cdot \mathbf{q} \\ = \frac{1}{\gamma - 1} \frac{m_{i}}{e\rho} \mathbf{J} \cdot \left(\nabla p_{e} - \gamma p_{e} \frac{\nabla \rho}{\rho} \right) - \overline{\mathbf{n}} : \nabla \mathbf{u} + \eta |\mathbf{J}|^{2} \\ \partial_{t}\mathbf{B} = -\nabla \times \left(-\mathbf{u} \times \mathbf{B} + \eta \mathbf{J} - \frac{m_{i}}{\rho e} \nabla p_{e} + \frac{m_{i}}{\rho e} (\mathbf{J} \times \mathbf{B}) \right) \\ \nabla \mu_{0} \nabla \times \mathbf{B} = \mathbf{J}, \quad \nabla \cdot \mathbf{B} = 0 \end{cases}$$

ELM's Simulation

Aim and principle of DJANGO project

Aim of DJANGO project

 Develop a library to test and validate the numerical methods which we use in the MHD codes with

- □ more simple models,
- more simple geometries and meshes,
- more simple cases.
- Validate the future numerical heart for JOREK 3.0

Numerical heart of DJANGO

- **Full and reduced MHD** with bi-fluids and diamagnetic terms.
- Arbitrary high-order and stable Splines on quadrangular and triangular meshes using Bernstein formalism with refinement.
- New toroidal basis or flexible toroidal discretization.
- Adaptive preconditioning and Jacobian-free method.
- Possible coupling with kinetic codes like Selalib.

Models in DJANGO

Models in Django

A model in Django is defined by

- The specific parameters of the model or the scheme.
- The weak forms (which depend also of the time scheme).
- The diagnostics computation (norm, energy, mass).
- The algorithm to solve the problem which can solve successively some operators (initialization, time loop or solving, diagnostics, etc).

Current models implemented in Django

- Elliptic models: 2D-3D Laplacian, 2D Grad-Div operator, 2D Bi-Laplacian and 2D Grad-Shafranov
- **Diffusion models**: 2D diffusion equation, 3D anisotropic diffusion equation.
- Mixed hyperbolic-parabolic models: 2D Cartesian and cylindrical Current Hole, 2D damped wave equations.

Future models to be implemented in Django

- Elliptic models: 2D or 3D stokes and stokes-MHD models.
- Hyperbolic models: 3D Maxwell equations, 2D Euler equations.
- Mixed hyperbolic-parabolic models: 3D full and reduced MHD (199 and 303 version)

Spatial discretization and meshes in DJANGO

Meshes and discretization in DJANGO

3D geometry

- Currently the code allows to use 3D geometries: cylinder or torus.
- Current strategy: Tensor product between 2D poloidal meshes and 1D toroidal uniform meshes.
- **Future strategies**: Tensor product or real 3D triangular or quadrangular meshes.

2D poloidal Meshes

 Triangular or quadrangular meshes generated by CAID (code of A. Ratnani) based on isoparametric and isogeometric approach.

Remarks

- Currently the poloidal and toroidal discretization are separated.
- **future works and researches**: would be realized on the non-singular meshes in the isoparametric or isogeometric context.

Current discretization in DJANGO

Philosophy of the discretization

- Isoparametric and isogeometric approachs: the physical function are represented with the same basis functions of used to represent the geometry.
- These approaches allow to align and adapt the meshes to the physical flows (surfaces aligned mesh).

Current discretization in Django

- Hermite Bezier finite element basis (used in JOREK) with different quadrature rules implemented.
- B-Splines finite element basis with arbitrary order (1 to 5 actually) and regularity (C⁰ to C^{p-1}).
- Remark: the B-Splines on triangles and quadrangles are unified using Bernstein formalism (A. Ratnani)
- Box-Splines finite element: Splines with quasi-interpolation on triangle used also in Selalib for transport problems on Hexagonal meshes (L. Mendoza).

Results for B-Splines and Bezier elements in DJANGO

Convergence of poloidal discretizations.

	Colle	2D laplacian		2D Bi-Laplacian		2D-Wave	
	Cells	Err	Order	Err	Order	Err	Order
	16*16	2.9E-5	-	3.4E-5	-	2.8E-5	-
HBozior	32*32	1.9E-6	3.9	2.1E-6	4.0	1.8E-6	3.95
IDezier	64*64	1.2E-7	4.0	1.6E-7	3.8	1.2E-7	3.9
	16*16	-	-	-	-	-	-
	32*32	-	-	-	-	-	-
D-32 C	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-	-				
	16*16	-	-	-	-	-	-
	32*32	-	-	-	-	-	-
D-32 C	64*64	-	-	-	-	-	-
	16*16	-	-	-	-	-	-
B-S5 c ⁰	32*32	-	-	-	-	-	-
	64*64	-	-	-	-	-	-
	16*16	-	-	-	-	-	-
D CF -4	32*32	-	-	-	-	-	-
D-55 C	64*64	-	-	-	-	-	-

Efficiency and conditioning of poloidal basis (Mesh 64*64).

	Nb	dof	time solving		
	<i>C</i> ⁰	C^{p-1}	C^0	C^{p-1}	
BS p=3	36481	4225	-	-	
BS p=4	65205	4356	-	-	
Hezier	16384	-	4.4E-3	-	

Adaptive Preconditioning

Future poloidal discretization in DJANGO

Aim:

Arbitrary high-order and stable Splines on quadrangular and triangular mesh using the Bernstein formalism with refinement.

Future works with new PhD student:

- B-Splines on quadrangular and triangular mesh using Bernstein formalism (A. Ratnani)
- **Refinement** of the mesh, order and regularity for B-Splines (A. Ratnani, E. Franck + PhD) also to construct low-order and adaptive preconditioning (next section).
- Compatible finite element using the DeRham sequence to obtain a stable discretization for non-coercive problems or for problems with involutive constraints (A. Ratnani, E. Franck, E. Sonnendrücker + PhD).
- Theoretical study of the stability and convergence of these elements (A. Ratnani, E. Franck, E. Sonnendrücker + PhD).

Other works:

Stabilization for convective problems using Petrov-Galerkin methods (B. Nkonga).

Future and current toroidal discretization in DJANGO

Aim:

New toroidal basis or flexible toroidal discretization.

Current toroidal discretization in DJANGO:

- ID B-splines (the 3D basis is obtained by tensor product).
- Classical Fourier expansion.

Future toroidal discretization:

- **Two possibilities**: find the more adapted basis (actually it is not clear) or propose different toroidal discretizations and switch depending on the test case.
- Possible discretizations
 - 3D B-Splines on triangular meshes.
 - □ 3D B-Splines on mixed triangular-quadrangular (aligned ?) meshes.
 - Fourier method. Classical Fourier method (current JOREK method) or Mapped Fourier method (H. Guillard)

Preconditioning and solver in DJANGO

Implicit scheme for wave equation

Damping wave equation (baby problem used for Inertial fusion confinement)

$$\begin{cases} \partial_t p + c\nabla \cdot \mathbf{u} = 0\\ \partial_t \mathbf{u} + c\nabla p = \varepsilon \Delta \mathbf{u} \end{cases}$$

- This problem is stiff in time for fast waves. CFL condition close to $\Delta t \leq C_1 \frac{h}{c}$.
- Simple way to solve this: implicit scheme but the model is ill-conditioned.
- Two sources of ill-conditioning: the stiff terms (which depend of ε) and the hyperbolic structure.

Philosophy : Divide, reformulate, approximate and solve

- Divise: use splitting method to separate the full coupling system between simple operators (advection, diffusion etc).
- □ **Reformulate**: rewrite the coupling terms as second order operator simple to invert.
- □ Approximate: use approximations in the previous step to obtain well-posed and well-conditioning simple operators.
- □ Solve: solve the suitability of sub-systems to obtain an approximation of the solution.

Principle of the preconditioning

The implicit system is given by

$$\begin{pmatrix} M & U \\ L & D \end{pmatrix} \begin{pmatrix} p^{n+1} \\ u^{n+1} \end{pmatrix} = \begin{pmatrix} R_p \\ R_u \end{pmatrix}$$
with $M = I_d$, $D = \begin{pmatrix} I_d - c\theta\epsilon\Delta & 0 \\ 0 & I_d - c\theta\epsilon\Delta \end{pmatrix}$, $L = \begin{pmatrix} \theta c\Delta t\partial_x \\ \theta c\Delta t\partial_y \end{pmatrix}$ and $U = L^t$.
The solution of the system is given by

The solution of the system is given by

$$\left(\begin{array}{c} p^{n+1} \\ \mathbf{u}^{n+1} \end{array}\right) = \left(\begin{array}{cc} I & M^{-1}U \\ 0 & I \end{array}\right) \left(\begin{array}{c} M^{-1} & 0 \\ 0 & P_{schur}^{-1} \end{array}\right) \left(\begin{array}{c} I & 0 \\ -LM^{-1} & I \end{array}\right) \left(\begin{array}{c} R_{p} \\ R_{u} \end{array}\right)$$

with $P_{schur} = D - LM^{-1}U$.

Using the previous Schur decomposition, we can solve the implicit wave equation with the algorithm:

$$\begin{cases} \mathsf{Predictor}: & Mp^* = R_p \\ \mathsf{Velocity evolution}: & P\mathbf{u}^{n+1} = (-Lp^* + R_\mathbf{u}) \\ \mathsf{Corrector}: & Mp^{n+1} = M_hp^* - U\mathbf{u}_{n+1} \end{cases} \end{cases}$$

with the matrices.

P discretize the positive and symmetric operator :

$$P_{Schur} = I_d - c\varepsilon\theta\Delta I_d - \nabla(\nabla \cdot I_d) = I_d - c\theta\varepsilon\Delta I_d - c2\theta^2\Delta t^2 \begin{pmatrix} \partial_{xx} & \partial_{xy} \\ \partial_{yx} & \partial_{yy} \end{pmatrix}$$

Results for the PC with pressure Schur

Results for classical Preconditioning (no diffusion).

	Calls	Jacobi		ILU(2)		ILU(4)		ILU(8)	
	Cells	iter	Err	iter	Err	iter	Err	iter	Err
	16*16	-	-	140	2.8E-1	55	4.8E-1	90	1.4E+0
$c\Delta t=1$	32*32	-	-	-	-	-	-	180	5.E+0
	64*64	-	-	-	-	-	-	-	-
	16*16	-	-	88	2.4E-1	58	4.9E-1	88	1.4E+0
$c\Delta t=100$	32*32	-	-	-	-	-	-	110	5.6E+0
	64*64	-	-	-	-	-	-	2000	8.8E+1

Results for the new preconditioning.

	Cells	PB_p		PB_u	
	Cells	iter	Err	iter	Err
a Å t 1	16*16	4	4.9E-2	3	6.8E-2
$a\Delta t=1$	32*32	2	9.2E-2	1	1.2E-1
	64*64	2	4.2E-1	1	24
-A+-100	16*16	7	1.1E-1	8	4.5E-1
$a\Delta t = 100$	32*32	6	5.3E-1	6	2.8E+0
	64*64	6	1.E+0	-	-

- For each sub-system we use a CG+Jacobi solver.
- Velocity Schur operator (coupled diffusion operator) not easy to invert and generate a large additional cost.
- On fine grid we use CG+MG 2-cycle for velocity Schur operator.

Some remarks

- Schur complement on the velocity since In fluid mechanics and plasma physics the velocity couple all the other equations.
- **Problem** : Schur complement on the velocity not so well-conditioned.
- Wave problem of the hyperbolic problem :
 - □ Pressure and (\mathbf{u}, \mathbf{n}) are propagated at the speed $\pm c$,
 - \Box (**u** × **n**) is propagated at the speed **0**.
- Idea: split the propagation (static and non static waves) in the Schur complement using the vorticity equation:

$$\partial_t \mathbf{u} + c \nabla p = \mathbf{f}_u \Longrightarrow \partial_t (\nabla \times \mathbf{u}) = \nabla \times \mathbf{f}_u$$

 $\left\{ \begin{array}{ll} {\rm Predictor}: & {\cal M}{\cal p}^* = {\cal R}_{\rho} \\ {\rm Vorticity\ evolution}: & {\bf w}^{n+1} = {\cal R}({\cal R}_{\bf u}) \\ {\rm Velocity\ evolution}: & {\cal P}{\bf u}^{n+1} = \left(\alpha {\cal R}({\bf w}^{n+1}) - {\cal L}{\cal p}^* + {\cal R}_{\bf u} \right) \\ {\rm Corrector}: & {\cal M}{\cal p}^{n+1} = {\cal M}_{h}{\cal p}^* - {\cal U}{\bf u}_{n+1} \end{array} \right.$

with R the matrix of the curl operator, $\alpha = c^2 \theta^2 \Delta t^2$ and $P_{Schur} = I_d - (\varepsilon c \theta + \alpha) \Delta$.

Remarks

The method, the propagation properties and the vorticity prediction can be generalized for compressible fluid mechanics.

Future solver in DJANGO

Aim:

Adaptive and efficient preconditioning for mixte hyperbolic-parabolic problems and full or reduced MHD with free-jacobian matrix.

Possible evolution to have more efficiency

- The Mass Lumping: replace the mass matrix (in the PC) by diagonal matrix.
- **Optimization**: algorithm where the matrices are assembled together.
- Jacobian Free: use the jacobian free method for the full matrix and for the subsystems of the PC when it is possible.
- Additional Splitting: If an operator is to complex to invert we can use a operator splitting to invert easier operators.
- **Geometric Multi-grid with B-Splines**: to invert the subsystems in the PC.

Adaptive PC

- Some matrices of the PC cannot be written with Jacobian-Free method.
- **Idea**: use discretization in the PC with a low memory consumption.
- Possible Solution: Adaptive preconditioning where the order and the type of discretization is different between the model and the PC.

Conlusion

Conclusion

- Basic models, discretizations and solvers are present and validated in the code.
- A basic MPI parallelization is present but lot of work must be realized to obtain a efficient code.
- Coupling with JOREK: The following important step is the coupling of Django and JOREK (using restart files) to validate the numerical method on realistic cases.

Peoples on Django for the new year

- An engineer (ADT Nice, 2 years): triangular Powell-Sabin finite element, Mapped Fourier method and parallelization.
- An engineer (Bavarian founding in IPP 6 mouth): Jacobian Free method, parallelization open-ACC.
- An PhD (IPP): Compatible B-Splines for Maxwell and MHD models, physic-based preconditioning and adaptivity.
- An Post-doc (IPP) : On the meshes construction.
- All the current developers and perhaps new peoples if you are interested.

