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Iter Project

Fusion DT: At sufficiently high energies,
deuterium and tritium can fuse to
Helium. A neutron and 17.6 MeV of
free energy are released. At those
energies, the atoms are ionized forming
a plasma.

Plasma: For very high temperature, the
gas are ionized and gives a plasma
which can be controlled by magnetic
and electric fields.

Tokamak: toroidal room where the
plasma is confined using powerful
magnetic fields.

ITER: International project of fusion
nuclear plant to validate the nuclear
fusion as a power source.
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Iter Project

Fusion DT: At sufficiently high energies, [Py Hmetormson sl

deIJterium and tritium can fuse to Poloidal magnetic field Outer Poloidal field coils
Helium. A neutron and 17.6 MeV of _ (for plasma positioning and sha
free energy are released. At those

energies, the atoms are ionized forming

a plasma.

Plasma: For very high temperature, the
gas are ionized and gives a plasma
which can be controlled by magnetic
and electric fields.

Tokamak: toroidal room where the
plasma is confined using powerful
magnetic fields. Resulting Helical Magnetic field Toroidal field coi

Plasma electric current Toroidal magnetic field
(secondary transformer circuit)

ITER: International project of fusion
nuclear plant to validate the nuclear
fusion as a power source. Figure: Tokamak
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Physical context : MHD and ELM's

B |n the tokamak some instabilities can
appear at the edge of the plasmas.

B The simulation to these instabilities is an B ELM'’s simulation
important subject for ITER.

B Exemple of Edge Instabilities in the
tokamak :

Disruptions: Violent edge instabilities
which can damage critically the
tokamak.

Edge Localized Modes (ELMs’):
Periodic edge instabilities which can
damage the Tokamak.

B These instabilities are linked to the very
large gradient of pressure and very large
current at the edge.

B These instabilities are described by fluid
models (MHD resistive and diamagnetic or
extended ).
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Vlasov equation

B First model to describe a plasma : Two species Vlasov-Maxwell kinetic equation.

B We define f;(t,x, v) the distribution function associated with the species s. x € Dx
and v € R3.

Two fluids Vlasov equation

duf+v- Vs + 2= (E+vXB)-Vuf = G = ¥ G,
s t
50,E—V x B =—pol,

9B = -V X,
V-B=0
V~E:£.

B Derivation of two fluid model :
O We apply this operator [gs g(v)(-) on the equation.
O g(v)s = 1, mgv, mg|v|?.
B Using
m] va msvCssdv = 0, va ms|v|? Cssdv = 0,
O va g(v)sCordv + va g(v)¢Csdv = 0.
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Two fluid model

B Computing the moment of the Vlasov equations we obtain the following two fluid
model

Two fluid moments

d¢tns + Vx - (msnsus) = 0, -

9¢(msnsus) + Vi - (msnsus ® ug) + Vyps + Vi Ms =0E+J; xB+R,,
at‘(’nsnses) + Vy (msnsuses + Psus) + Vi (ﬁs ‘Us + qs)
=0sE-us + Qs +Rs - us,

C%atE—Vsz—yoJ,
8tB:—V><E,
V-B=0, V~E=%.

B = va fsdv the particle number , mgnsus = va msvfsdv the momentum, €5 the
energy.

B The isotropic pressure are ps, s the stress tensors and qs the heat fluxes.
B R, and Qs associated with the interspecies collision (force and energy transfer).

B The current is given by J =Y c Js = Y 0sus with 05 = gsns.

(7
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Extended MHD: assumptions and generalized Ohm law

B Taking the electronic density and momentum equations we obtain

me (0t (neue) + V- (neue @ ue)) + Vpe = —encE+Je x B -V e +R.,
B We multiply the previous equation by —e and we define J. = —en.u., we obtain
1 1 = 1
Me @de+V-(Je@ue)) =E+uexB+ — Vpet — V-Me— —Re,

e
e2n, ene ene ene

B Using the quasi neutrality, m¢ << m; and R= —R, = —n%pJ, we obtain
E+uxB=y)-""vV. T+ " yxB-"vp.
pe e pe
B and the the extended MHD:

9tp+ V- (pu) =0, B
pdtu+pu-Vu+Vp=JxB-V- N,

1
7atp +

1 i \Y%
wVer%PV'quV-q:im J'<vpe77p57‘o>

1
71 r-1 y—lep

ST VTV (29) + g1,

3B =—V x <—u>< B+7d— "V Mo — Vpe + (1 x B)>,
pe pe pe

V-B=0, VxB=1J. ﬁ
8
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Reduced MHD: assumptions and principle of derivation

B Aim: Reduce the number of variables and eliminate the fast waves in the reduced
MHD model.
B We consider the cylindrical coordinate (R, Z,¢) € Q) x [0, 27].

Reduced MHD: Assumption

F 1 R
B = ﬁoe(p-i- va Xep u= —RVu x ep + VHB—FT/CE (e4, X Vp)

with u the electrical potential, i the magnetic poloidal flux, v the parallel velocity.

B To avoid high order operators, we introduce the vorticity w = Ao u and the toroidal
current j = A* = R2V - (&5 Vporh).
B Derivation: we plug B and u in the equations + some computations. For the

equations on u and v we use the following projections

ey -V x R?(pd:u+pu-Vu+Vp=J x B+vAu)

and

B (pdtu+pu-Vu+Vp =JxB+vAu).

(5
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Description of the JOREK code

B JOREK: Fortran 90 code, parallel (MPI4-OpenMP)

Main author: Guido Huijmans

B Determine the equilibrium
O Define the boundary of the computational domain
O Compute (R, Z) on a first poloidal grid.

B Compute equilibrium solving Grad-Shafranov equation

9 (13 %y g2 _ OF
oR \ ROR 072 P oY
B Computation of aligned grid
O Identification of the magnetic flux surfaces
O Create the aligned grid (with X-point)
U Interpolate ¥(R, Z) in the new grid and recompute the
equilibrium
H Perturbation of the equilibrium (small perturbations of non
principal harmonics).
B Time-stepping (full implicit) Figure: unaligned grid
U Poloidal discretization: 2D Cubic Bezier finite elements.
O Toroidal discretization: Fourier expansion. r\
1
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O Define the boundary of the computational domain
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O Create the aligned grid (with X-point)
U Interpolate ¥(R, Z) in the new grid and recompute the

equilibrium

H Perturbation of the equilibrium (small perturbations of non

principal harmonics).
B Time-stepping (full implicit) Figure: Aligned grid

U Poloidal discretization: 2D Cubic Bezier finite elements.

O Toroidal discretization: Fourier expansion. r\
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==
Sources of stiffness

Stiffness for explicit scheme

0 Fast magneto-sonic waves (for full MHD problems),
O Diffusion operators (anisotropic diffusion and viscous tensor),
U Waves associated to generalized Ohm law,

O low density cases.

B Since the models are stiff we proposed toi use implicit scheme (an alternative is the
semi-implicit schemes)

[ll-conditioning for implicit scheme

U Ratio between the waves
O Anisotropic Diffusion operators,
O Nonlinear Hyperbolic structure,

O low density cases.

B The exact solvers are not a good option now because there are so greedy for large
cases. Since the problem is ill-conditioned we will need to preconditioning for iterative

solvers.
1

1
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Results for Waves equation

B Comparison between iterative solver for test case in the diffusion limit o = 1.

Mesh / solvers GC | GC-PC | Gmres | Gmres-PC-Jacobi
% cv X X X v
Mesh 4*4, ¢4 ier | - B ! 07
N v | X X X v/
Mesh 16¥16, €1 | jrer | = | - - 15E-+4
% cv X X X v
Mesh 4%, &2 | jer | - | - - 21000
Mesh 16*16, ¢, | < | X | X x x
iter | - - - -

B ¢ =10% and g, = 10710,

B The solver tolerance is 10710 for convergence and iter_max=100000. We compute the
average on ten time iterations.

B The GC solver is iunstable and cannot solve this type of problem.

B The results show that it is necessary to use a good preconditioning + robust solver
(for general matrix).

2/
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==
Linear Solvers

B We solve a nonlinear problem G(U"*1) = b(U", U™~ 1),
B First order linearization

(agﬁin)) 0U" = —G(U") + b(U", U™ ) = R(U"),

with 6U" = U™ —U", and J, = a%&f’") the Jacobian matrix of G(U").

Linear solver in JOREK: Left Preconditioning + GMRES iterative solver.
Principle of the preconditioning step:

0 Replace the problem Ji6U, = R(U") by Pk(P;le)zSUk = R(U").
O Solve the new system with two steps PydU} = R(U") and (P, 1Jy)dUx = dU;
[

If Py is easier to invert than J, and P, =~ J the linear solving step is more robust and
efficient.

Physic-based Preconditioning of JOREK

B Extraction of the blocks which are associated with each toroidal harmonic.

B Solve exactly with LU decomposition each subsystem associated with a block
B Reconstruction of the solution of P,x = b

B Principle of Physic-based preconditioning: \We neglect in the Jacobian the physical

effect associated to the coupling between the Fourier mods (non diagonal block). r-\
1
E. Franck
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JOREK-DJANGO

B JOREK is a large code of physics with complicate geometry, models and test cases.
To validate the numeric tools is not a good code.

B JOREK-DJANGO : simplified version of JOREK for numerical studies.

B Developers : A. Ratnani (IPP), E. F., C Caldini-Queiros (IPP), L. Mendoza (IPP), B.
Nkonga (Uni Nice)

B Future users and developers : E. Sonnendriicker (IPP), H. Guillard (INRIA), V.
Grandgirard (CEA), G. Latu (CEA)

Main properties

O Implicit Finite element code in toroidal geometry.

0 Generic Splines in quadrangles and triangles (poloidal plane) and Fourier and Splines
for Toroidal direction.

O Linear solvers and preconditioning based on PETSC and SPM (interface for spare
Matrices).

U Models : 2D and 3d elliptic problems, 2D wave and diffusion equations, 2D and 3D
current Hole, 2D Grad Safranov equation and 3D anisotropic diffusion.

0 Possible coupling (not finish) with Selalib
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Physic based preconditioning for Waves equations
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EEEEEEEEEEEEEEEEEERERRlRREEEE——
Implicit scheme for Damped waves equations

Philosophy : Divise, reformulate, approximate and rule

Damping wave equation (baby problem used for Inertial fusion confinement)
1
dtp+cV-u=0 atp-l—gv-u:O

dtu+cVp = —cou atu+le=f%u
€ €

~ =

1.1
c I

with o opacity, c light speed and ¢ ~
When ¢ — 0 the model can be approximated by d;p — V - (%Vp) =0.
This problem is stiff in time. CFL condition is At < Cieh+ Co€?.

Simple way to solve this: implicit scheme but the model is ill-conditioned.
Two sources of ill-conditioning: the stiff terms (which depend of €) and the hyperbolic
structure.

Divise: use splitting technic to separate the full coupling system between simple
operators (advection, diffusion etc).

Reformulate: rewrite the coupling terms as second order operator simple to invert.

Approximate: use approximations in the previous step to obtain well-posed and
ii-conditioning simple operators.

Rule: solve the suitable of sub-systems to obtain an approximation of the solution. / \

E. Franck Adaptive Preconditioning \ /38‘



R R R R R R R RERERRERERREEE———SS———————
Construction of the preconditioning |

B First we implicit the equation

At At
pt +9?V Mt =pn (1 9)?V -u”

At At At At
w4 0=V p +eg—2"u"+1 —u = (1-0) 2 Vp - (1 79)£—2‘7u"

B The implicit system is given by

(2 ¢)(z)-(%)

P

withm=1, D= ' O ) u=( 62 Bty YandL= e
0 Iy 7 i At

B

B The solution of the system is given
=ik
pn+1 _ M U RP
untl L D Ry
(1 MU M-t 0 / 0 Ry
“\o 1 0 B —LM=t Ry
with Py = D — LM™1U. r'\
17/3g
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R R R R R RRRRRERERREEEEE———=—————————
Principle of the preconditioning Il

B Using the previous Schur decomposition we can solve the implicit wave equation with
the algorithm.

Predictor :  Mpp* =R,
Velocity evolution :  Ppu"™! = (—=Lpp* + Ry)
Corrector :  Myp"t1 = Myp* — Upupi1

B with the matrices:
O My, the mass matrix which discretize the Identity operator
L Up discretize the operator U and L, the discretization of the L operator.
O Py, discretize the positive and symmetric operator :

A (9 O
_ _ ) — _p2 XX xy
Pschur = lg = V(V - ) = Iy — 62— ( o )

B The physic based preconditioning PB(x) solves the previous algorithm with
Conjugate-Gradient with to/ = 107 and Jacobi PC

E. Franck Adaptive Preconditioning \ y



Algorithm of the PhyBas Preconditioning step

B Algorithm and implementation of the PB(x) preconditioning:

GMRES method

Call preconditioning

Solve_PC(IN: R, OUT: X)

Reconstruction step

Construction of so-
lution X using:

- Xp (pressl:lre sol.)

- xy (velocity sol.)

Extraction step

Construction of sub-RHS:
- Rp (pressure term)
-Ry (velocity term)

Solving step

-Predictor CG(9)
-Update CG(x)
~Corrector CG(9)

B |n this case we solve the sub-steps with a GC solver

B We can use also Multi-grid (MG) methods or other methods efficient for symmetric
and diagonal dominant matrix.

‘19/38‘
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Results for Waves equation

B Comparison between GMRES method with different preconditioning

Mesh / solvers Jac ILU(0) | ILU(4) MG(2) | SOR PB
" cv v v v v v v/
Mesha*4, e | jier | 27 11 38 8 1
time | 7.2 E-4 | 1.3E-3 | 7.7E-3 | 1.5E-2 | 1.4E-3 | 2.1E-3
a*a s cv 4 4 v X v v
1 e2 iter | 2.1E4+4 | 11 1 - 8 1
time | 3.6E-1 | 1.3E-3 | 7.7E-3 | - 1.5E-3 | 2.1E-3
% cv v v v X v v
16%16, &1 iter | 1.5E+4 | 18 9 140 20 1
time | 5.0E-0 | 2.3E-2 | 4.0E-1 | 5.0E-1 | 5.0E-2 | 2.1E-2
" cv X v/ v/ X v v
LR iter | - 18 9 - 20 1
time | - 2.3E-2 | 40E-1 | - 5.0E-2 | 2.1E-2
" cv X X v/ X X X
64764, £ iter | - - 632 - N 1
time | - . 2.0E+1 | - - 4.2E-1

B |LU (Incomplete LU), MG (Multi-grids), SOR, PB (our physic based PC).

\ /38
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==
Future numerical works for waves

B To obtain the more robust and performing algorithm we must optimize and study
some substeps

Preconditioning for sub step

O The Schur is solved with a CG preconditioned. To optimize the resolution of this step
we propose to construct a Geometric MG based on the properties of B-Splines (useful
also for the nonlinear case).

U The Mass-Matrix for the B-Splines is ill conditioned. We propose an adapted PC
based on Mpp ~ ) ; Mip; ® Nip ;. The PC will be construct using 1D solving.

Adaptivity

O It is not necessary to solve the subsystems of the PC with the same accuracy to the
full problem.

[ Consequently to reduce the size of the sub-matrices we can use B-Splines with less
order or different regularity between the model and the PC.

0 Regularity of the B-Splines : if the regularity is high we have less accuracy but
smaller matrices with better conditioning.

E. Franck Adaptive Preconditioning \ y




Algorithm of the adaptive PhyBas Preconditioning step

B Algorithm and implementation of the APB(x) preconditioning:

. 3 N
Reconstruction variables ( GMRES method ) Extraction variables
-Reconstruction lModeI(n,pclﬁrder, n,tor,order)J = Epifiain (RS (k-

pend of variables)

of full solution

A\ 4
[ Call preconditioning ]

- )
Extraction poloidal
Solve_PC(IN: R,m_pol_order, wi
m_tor_order, OUT: X) if m_pol_order<n_pol_order
-Extraction of less

degree coefficients

Reconstruction poloidal

if m_pol_order<n_pol_order
-Reconstruction of high
degree coeffcients

Extraction step

Reconstruction
step

3 5 Extraction toroidal
Reconstruction toroidal

if m_tor_order<n_tor_order
-Extraction of less
degree coefficients

if m_tor_order<'n_tor_order
-Reconstruction of high
degree coeffcients

Solving step

- Slow flows approx.
- Arbitrary flows approx.

B |n the future it is important to perform the extraction and reconstruction parts.

‘22/38‘
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==
Future theoretical works for waves

B Now we propose to study the discretization of the problem Py, ,u = R.

B The weak form associated is given by ap(u,v) = I(v) with
u,v € Ho(div, Q) N Ho(curl, Q), I(v) = [, Rv and

ap(u,v) = /Q(u v)+92 Af:2/Q (V-u)(V-v)

B A classical estimation is || V-u [|2, + || V xu |22 > C [l u [|2,. Using this
estimation we remark that we obtain

a2 a°
ap(u,v) > (1+ C92€—2At2) [ w2 792£—2At2 |V xul

B |n the limit regime u = —eVp, consequently V X u = 0, the problem is coercive.

When ¢ is close to one the coercivity is not sure.

[ Study the existence and uniqueness of the solutions using mixed-formulation and
inf-sup condition.

0 Study the discrete problem using same framework and discrete H(div) and H(curl)
spaces for B-splines

E. Franck Adaptive Preconditioning k




Physic based preconditioning for MHD equations
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Current Hole and preconditioning associated

B Current Hole : reduced problem in cartesian coordinates.

B The model

ot = [, u] + Ay
9:Au = [Au, u] + [, Ap] + vA2u

with w = Au and j = Ayp.

B |n this formulation we split evolution and elliptic equations.

B For the time discretization we use a Cranck-Nicholson scheme and linearized the
nonlinear system to obtain

(7 5)(ah)=(%)

or

Iy — At[, u"] — AtA —A0[yp", -] syn R
[ o e ) ()= (%)
—AO[Y", A] — AtO[-, AP"] A — AtO([A-, u"] + [, Au”] + A2)

0’1""1 E. Franck Adaptive Preconditioning



Design of the preconditioning for reduced MHD

PB-PC for Current Hole

Predictor :  Mdpp = Ry

potential update :  Pecpyrdu” = (—LoYp + Ry))
Corrector :  Moy" = Méyy — Usu"”

Current update : 6z = Ady"

Vorticity update : Jdw"” = Adu”

B The schur complement is given by Pecp, = D — LM~1U

B Two approximations for M~

O Slow flow: M~ = At
U Arbitrary flow: find M* such that UM* ~ MU. Consequently

Pl=(D-LM*U)"t = M*(DM* - LU)™,

we obtain

potential update | :  (DM* — LU)éu™* = (—Loyp + Ry))
potential update Il :  du" = M*6u™*

B Last question : Computation of the operator LU (second order form of the coupling

hyperbolic operators). /\
2

6
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Approximation of the Schur complement |

B Computation of Schur complement for (slow flow approximation M~! ~ At)

Pschur = % +u" - V(Adu) +du- V(Au") — GvA25u — 2 AtLU

® Operator LU = B - V(A(B" - Véu)) + 2Bl - V(B" - Vou).
B B".Véu=—[¢", éu] and u" - Viéu = —[du, u"] et bu-Vu" = —[u",du].

B Remark: the LU operator is the parabolization of coupling hyperbolic terms which
contains only the Alfvén waves (rigorous proof missing).

Properties of LU operator

O We consider the L2 space. The operator LU is not self adjoint and not positive for all

ou
aj"

oY

O We propose the following approximation LUPP™< = B" - V(A(B" - Véu)).

< LUSU,Bu > o= / IV(B" - Véu)|? — (Bl - Vou)(B" - Vou)

U The operator LU3PP is positive and self-adjoint.

B There are different methods to solve the Schur complement using splitting to solve

smaller and more simple operators. r‘\
2
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Solving the different steps of the PC

B Question How solve each step ?

B The first simple and efficient solver is to use the Multi-Grids methods (MG) efficient
for second order and advection operators.

B But perhaps it can be more efficient to split some terms in the sub-systems to use the
most adapted solver for each operator.

B Example for the Schur complement (L. Chacon paper) using a splitting and an
approximation:

A
Schur solver | : Adu* = RHS
Schur solver Il : (% +u”- Vi — GVA) ou™ = du*

Schur solver 111 : (% —B"-V(A(B"- Vld))) Sumtl = gu

B MG methods are adapted for advection diffusion problems.

B GC is more adapted for symmetric and positive anisotropic operator (smoother for MG
are more complicated for anisotropic problem).

B |. Chacon remark: to replace B" - V(A(B" - Vly)) by A(B"-V(B"-VI;)) generate

noise.

G

8
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Results for Current Hole Model

B Comparison between GMRES method with different preconditioning
B 50 time step in the linear phase (kink instability ?). tol = 1078, iter_max = 10000.

Mesh / solvers Jac | ILU(0) ILU(4) MG | SOR PB(6) PB(4)
e o | X |V 7 X |7 7 7
16¥16 dt=05 | 4 | - 14 6 - 12 1 1
time | - 1.2E-1 1.4E40 | - 1.8E-1 | 2.6E4+0 | 2.3E+0
o o | X |7 7 X | X 7 7
32%32 di=1 iter - 26 9 - - 1 1
time | - 6.8E-1 7.2E40 | - - 9.8E4+0 | 8.9E+0
o o | X |7 7 X | X 7 7
FRlEOCE: iter - 404 84 - - 1 1
time | - 24E+4+1 | 3.9E+1 | - - 3.9E+1 | 3.8E+1

B On fine grid our method is the more robust and competitive

B This is not optimal because :
O The matrices (7 in this case) are assembled one by one and not at the same time.
' The extraction and reconstruction are made one by one.
O The assembly of the matrices in Django are not optimal (PETSC configuration).
O We solve each sub-system with a GMRES-MG(2) and not just a MG solver.

B 75% of the solving time comes from to the construction of the sub-matrices. In the

future we will assume that it is possible to decrease this part by 5-6.
29
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Futur work on the PC for MHD problem

PC Full MHD

£ The matrix M contains advection and diffusion operators for p, T and B

O To treat anisotropic operators splitting technics or adapted MG methods can be used.

0 The LU operator (called ideal MHD force operator in the book of Schnack) is given by
(LU)ov =BXxV XV X (ly xB)=JIXV X (Il xB)=V(lg-Vp+ypV - 1ly)] ov

O Extension to bi-fluid (or extended) MHD is possible.

Discretization for Full MHD
0 Compatible discretization for full MHD (DeRham Diagram for Splines)

U Study of the problem associated with the LU operator: existence, uniqueness,
discretization compatible and stable.

O Discretization adapted to treat low density problem.

4
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Other projects
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Cemracs project |

B Project: " Adaptive physic based preconditioning for a linearized Discontinuous
Galerkin Shallow water scheme”, E.F, Philippe Helluy and Hervé Guillard.

B Exner equations for sedimentation
0th+ V- (hu) =0
dthu+V - (hu®u) +Vp = hVb
0:b+CV-Q=0

with h the height, u the velocity, Q = Q(u) and { a constant which depend to the
sediment coefficient porosity.

time scales:

O time step dt: gives by gravity waves = /hg.

U simulation time T : gives by the sedimentation behavior.

B dt << Tf consequently we propose to use implicit scheme.
B The hyperbolic system discretized with High-Order methods are ill-conditioned.

B Aim : Design efficient and robust less order preconditioning for Linearized Shallow

water and Exner equations With DG schemes. r-\
3
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Cemracs project |l

B SCHNAPS a 2D and 3D DG code using macro-cells method and Gauss-Lobatto point.
B PARALUTION a library of iterative linear solvers (GRMES, MG, CG etc).

B Write an implicit version of Linearized Shallow water and Exner equations in
SCHNAPS

B Write and study the physic preconditioning for these equations (question for the best
extension to Exner).

B Use a continuous Galerkin method with the same degree of freedom for second order
operators.

B Study and validate the less-order preconditioning.
w
Other possible works

B Find a way to assure positivity and stability (hyper-viscosity or flux-limiter).

B |mplicit scheme and PC "well-balanced” for steady states.

B Newton method and problem and positivity.

63 /\
\
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Radiative transfert |

B Project: "implicit scheme with lower order PC for P, models” with Xavier Blanc,
Emmanuel Labourasse + Master student ?

Transport equation (photonics neuronic):

Btf+cQ~Vf:ca(/52fdef)

with € the direction, c the light speed and o the opacity.

B Important regimes:
O Free transport regime (0 — 0) : exact transport of the solution
O Diffusion regime (0 — o) : the solution can be approximated by

WE—V- (iVE) —0, with E:/ Q.
30 S2

P, models:

0 The kinetic equations are approximated by linear hyperbolic P, systems (expend the
distribution on the spherical harmonics basis)

9tU + cA0xU + cA,9,U + cA,07U = —coRU

34 /
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Radiative transfert |l

B Typical simulation for IFC: we use P;5 model. The regime is close to free transport
regime at the beginning of the simulation and in the diffusion regime after.

B Problems for explicit scheme : Very large and stiff hyperbolic system. Stiff hyperbolic
CFL for Explicit schemes, Stiff hyperbolic + parabolic CFL condition for AP schemes.

¥ Problems for implicit scheme : large hyperbolic system (bad structure) and large ratio
between wave velocities ({Agc, ..., Apc} with Ag =~ 0 and A; ~ 1).

B We must add a preconditioning.

B For the previous model the velocity equation couple all the others equations
consequently the Schur (parabolization of coupling terms) is write on the velocity.

B For the P, model the coupling is more complicate.

Physic Based PC for P, model

B Find how decompose the matrix to write the Schur decomposition.
B Write the parabolic form associated (SP, models).
B Study the limits (diffusion and free transport regimes) of the Preconditioning operator.

B Use less spherical harmonics in the PC.

E. Franck Adaptive Preconditioning \ y



Conclusion

E. Franck

Adaptive Preconditioning



Conclusion

B The idea to design a PC is to write the solving step as a suitability of simple operators
(easy to invert) using splitting and reformulation (second order formulation) methods.

B The possible approximations gives the PC algorithm.

B Problem: the proposed method is dependent of the problem and use a lot of methods
(CG, MG, GMRES etc) = lot of work to treat all the models.

Possible approximations:

Solving approximation: each sub step can be solved with a small accuracy.

Physical approximation: each subsystem can be simplified to obtain well-conditioned
operators (necessary in the MHD case).

Discretization approximation: the systems associated with the PC can be solved with
less order numerical methods or coarser grids.

Multi-discretization approximation: the PC models and the model can be discretized
with different methods (finite element for PC and DG for the full system).

G/ 38
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Perspectives

Middle term:

B Study of weak form for wave problem and Schur for wave equations.

Geometric multi-grids and PC for mass Matrix with tensor product property.

Extension to 3D current Hole in toroidal geometry and study Schur Splitting.
Directional splitting (toroidal and poloidal) for the PC in the 3D case.
Extension to the reduced MHD model with pressure and density.

CEMRACS

B Extension the full MHD and extended MHD with compatible discretization.

Study of weak form and compatible discretization for the Schur decomposition.

B Adaptivity of the discretization (order, regularity) between PC and model.

B Extension to radiative P, model.
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