Physic-Based Preconditioning for stiff hyperbolic systems

E. Franck¹, A. Ratnani², E. Sonnendrücker², M. Hölzl²

27 may 2015

¹INRIA Nancy Grand-Est and IRMA Strasbourg, TONUS team, France ²Max-Planck-Institut für Plasmaphysik, Garching, Germany

E. Franck

Adaptive Preconditioning

Outline

Mathematical context and JOREK code

Physic based preconditioning for Waves equations

Physic based preconditioning for MHD equations

Other projects

Conclusion

Mathematical context and JOREK code

Adaptive Preconditioning

Iter Project

- Fusion DT: At sufficiently high energies, deuterium and tritium can fuse to Helium. A neutron and 17.6 MeV of free energy are released. At those energies, the atoms are ionized forming a plasma.
- Plasma: For very high temperature, the gas are ionized and gives a plasma which can be controlled by magnetic and electric fields.
- **Tokamak**: toroidal room where the plasma is confined using powerful magnetic fields.
- ITER: International project of fusion nuclear plant to validate the nuclear fusion as a power source.

Iter Project

- Fusion DT: At sufficiently high energies, deuterium and tritium can fuse to Helium. A neutron and 17.6 MeV of free energy are released. At those energies, the atoms are ionized forming a plasma.
- Plasma: For very high temperature, the gas are ionized and gives a plasma which can be controlled by magnetic and electric fields.
- Tokamak: toroidal room where the plasma is confined using powerful magnetic fields.
- ITER: International project of fusion nuclear plant to validate the nuclear fusion as a power source.

- In the tokamak some instabilities can appear at the edge of the plasmas.
- The simulation to these instabilities is an important subject for ITER.
- Exemple of Edge Instabilities in the tokamak :
 - Disruptions: Violent edge instabilities which can damage critically the tokamak.
 - Edge Localized Modes (ELMs'): Periodic edge instabilities which can damage the Tokamak.
- These instabilities are linked to the very large gradient of pressure and very large current at the edge.
- These instabilities are described by fluid models (MHD resistive and diamagnetic or extended).

- In the tokamak some instabilities can appear at the edge of the plasmas.
- The simulation to these instabilities is an important subject for ITER.
- Exemple of Edge Instabilities in the tokamak :
 - Disruptions: Violent edge instabilities which can damage critically the tokamak.
 - Edge Localized Modes (ELMs'): Periodic edge instabilities which can damage the Tokamak.
- These instabilities are linked to the very large gradient of pressure and very large current at the edge.
- These instabilities are described by fluid models (MHD resistive and diamagnetic or extended).

- In the tokamak some instabilities can appear at the edge of the plasmas.
- The simulation to these instabilities is an important subject for ITER.
- Exemple of Edge Instabilities in the tokamak :
 - Disruptions: Violent edge instabilities which can damage critically the tokamak.
 - Edge Localized Modes (ELMs'): Periodic edge instabilities which can damage the Tokamak.
- These instabilities are linked to the very large gradient of pressure and very large current at the edge.
- These instabilities are described by fluid models (MHD resistive and diamagnetic or extended).

Adaptive Preconditioning

- In the tokamak some instabilities can appear at the edge of the plasmas.
- The simulation to these instabilities is an important subject for ITER.
- Exemple of Edge Instabilities in the tokamak :
 - Disruptions: Violent edge instabilities which can damage critically the tokamak.
 - Edge Localized Modes (ELMs'): Periodic edge instabilities which can damage the Tokamak.
- These instabilities are linked to the very large gradient of pressure and very large current at the edge.
- These instabilities are described by fluid models (MHD resistive and diamagnetic or extended).

- In the tokamak some instabilities can appear at the edge of the plasmas.
- The simulation to these instabilities is an important subject for ITER.
- Exemple of Edge Instabilities in the tokamak :
 - Disruptions: Violent edge instabilities which can damage critically the tokamak.
 - Edge Localized Modes (ELMs'): Periodic edge instabilities which can damage the Tokamak.
- These instabilities are linked to the very large gradient of pressure and very large current at the edge.
- These instabilities are described by fluid models (MHD resistive and diamagnetic or extended).

- In the tokamak some instabilities can appear at the edge of the plasmas.
- The simulation to these instabilities is an important subject for ITER.
- Exemple of Edge Instabilities in the tokamak :
 - Disruptions: Violent edge instabilities which can damage critically the tokamak.
 - Edge Localized Modes (ELMs'): Periodic edge instabilities which can damage the Tokamak.
- These instabilities are linked to the very large gradient of pressure and very large current at the edge.
- These instabilities are described by fluid models (MHD resistive and diamagnetic or extended).

Vlasov equation

- First model to describe a plasma : Two species Vlasov-Maxwell kinetic equation.
- We define $f_s(t, \mathbf{x}, \mathbf{v})$ the distribution function associated with the species s. $\mathbf{x} \in D_{\mathbf{x}}$ and $\mathbf{v} \in R^3$.

Two fluids Vlasov equation

$$\begin{cases} \partial_t f_s + \mathbf{v} \cdot \nabla_{\mathbf{x}} f_s + \frac{q_s}{m_s} \left(\mathbf{E} + \mathbf{v} \times \mathbf{B} \right) \cdot \nabla_{\mathbf{v}} f_s = C_s = \sum_t C_{st}, \\ \frac{1}{c^2} \partial_t \mathbf{E} - \nabla \times \mathbf{B} = -\mu_0 \mathbf{J}, \\ \partial_t \mathbf{B} = -\nabla \times \mathbf{E}, \\ \nabla \cdot \mathbf{B} = \mathbf{0} \\ \nabla \cdot \mathbf{E} = \frac{\sigma}{\varepsilon_0}. \end{cases}$$

Derivation of two fluid model :

□ We apply this operator $\int_{R^3} g(\mathbf{v})(\cdot)$ on the equation. □ $g(\mathbf{v})_s = 1, m_s \mathbf{v}, m_s |\mathbf{v}|^2$.

Using

$$\begin{array}{l} \Box \quad \int_{D_{\mathbf{v}}} m_{\mathbf{s}} \mathbf{v} C_{ss} d\mathbf{v} = 0, \quad \int_{D_{\mathbf{v}}} m_{s} |\mathbf{v}|^{2} C_{ss} d\mathbf{v} = 0, \\ \Box \quad \int_{D_{\mathbf{v}}} g(\mathbf{v})_{s} C_{st} d\mathbf{v} + \int_{D_{\mathbf{v}}} g(\mathbf{v})_{t} C_{ts} d\mathbf{v} = 0. \end{array}$$

Two fluid model

 Computing the moment of the Vlasov equations we obtain the following two fluid model

Two fluid moments

$$\begin{array}{l} \partial_t n_s + \nabla_{\mathbf{x}} \cdot (m_s n_s \mathbf{u}_s) = \mathbf{0}, \\ \partial_t (m_s n_s \mathbf{u}_s) + \nabla_{\mathbf{x}} \cdot (m_s n_s \mathbf{u}_s \otimes \mathbf{u}_s) + \nabla_{\mathbf{x}} p_s + \nabla_{\mathbf{x}} \cdot \overline{\overline{\mathbf{n}}}_s = \sigma_s \mathbf{E} + \mathbf{J}_s \times \mathbf{B} + \mathbf{R}_s, \\ \partial_t (m_s n_s \varepsilon_s) + \nabla_{\mathbf{x}} \cdot (m_s n_s \mathbf{u}_s \varepsilon_s + p_s \mathbf{u}_s) + \nabla_{\mathbf{x}} \cdot \left(\overline{\overline{\mathbf{n}}}_s \cdot \mathbf{u}_s + \mathbf{q}_s\right) \\ = \sigma_s \mathbf{E} \cdot \mathbf{u}_s + \mathbf{Q}_s + \mathbf{R}_s \cdot \mathbf{u}_s, \\ \frac{1}{c^2} \partial_t \mathbf{E} - \nabla \times \mathbf{B} = -\mu_0 \mathbf{J}, \\ \partial_t \mathbf{B} = -\nabla \times \mathbf{E}, \\ \nabla \cdot \mathbf{B} = 0, \quad \nabla \cdot \mathbf{E} = \frac{\sigma}{\varepsilon_0}. \end{array}$$

- $n_s = \int_{D_v} f_s dv$ the particle number , $m_s n_s \mathbf{u}_s = \int_{D_v} m_s v f_s dv$ the momentum, ϵ_s the energy.
- The isotropic pressure are p_s , $\overline{\overline{\Pi}}_s$ the stress tensors and \mathbf{q}_s the heat fluxes.
- **R**_s and *Q*_s associated with the interspecies collision (force and energy transfer).
- The current is given by $\mathbf{J} = \sum_{s} \mathbf{J}_{s} = \sum_{s} \sigma_{s} \mathbf{u}_{s}$ with $\sigma_{s} = q_{s} n_{s}$.

Extended MHD: assumptions and generalized Ohm law

Taking the electronic density and momentum equations we obtain

$$m_e\left(\partial_t(n_e\mathbf{u}_e)+\nabla\cdot(n_e\mathbf{u}_e\otimes\mathbf{u}_e)\right)+\nabla p_e=-en_e\mathbf{E}+\mathbf{J}_e\times\mathbf{B}-\nabla\cdot\overline{\mathbf{\Pi}}_e+\mathbf{R}_e,$$

• We multiply the previous equation by -e and we define $J_e = -en_e u_e$, we obtain

$$\frac{m_e}{e^2 n_e} \left(\partial_t \mathbf{J}_e + \nabla \cdot \left(\mathbf{J}_e \otimes \mathbf{u}_e \right) \right) = \mathbf{E} + \mathbf{u}_e \times \mathbf{B} + \frac{1}{e n_e} \nabla p_e + \frac{1}{e n_e} \nabla \cdot \overline{\overline{\mathbf{\Pi}}}_e - \frac{1}{e n_e} \mathbf{R}_e,$$

• Using the quasi neutrality, $m_e << m_i$ and ${f R} = -{f R}_e = -\eta {e\over m_i}
ho {f J}$, we obtain

$$\mathbf{E} + \mathbf{u} \times \mathbf{B} = \eta \mathbf{J} - \frac{m_i}{\rho e} \nabla \cdot \overline{\overline{\mathbf{n}}}_e + \frac{m_i}{\rho e} \mathbf{J} \times \mathbf{B} - \frac{m_i}{\rho e} \nabla \rho_e.$$

and the the extended MHD:

$$\begin{array}{l} \partial_{t}\rho + \nabla \cdot (\rho \mathbf{u}) = 0, \\ \rho \partial_{t}\mathbf{u} + \rho \mathbf{u} \cdot \nabla \mathbf{u} + \nabla \rho = \mathbf{J} \times \mathbf{B} - \nabla \cdot \overline{\mathbf{n}}, \\ \\ \frac{1}{\gamma - 1} \partial_{t}\rho + \frac{1}{\gamma - 1} \mathbf{u} \cdot \nabla \rho + \frac{\gamma}{\gamma - 1} \rho \nabla \cdot \mathbf{u} + \nabla \cdot \mathbf{q} = \frac{1}{\gamma - 1} \frac{m_{i}}{e_{\rho}} \mathbf{J} \cdot \left(\nabla p_{e} - \gamma p_{e} \frac{\nabla \rho}{\rho} \right) \\ -\overline{\mathbf{n}} : \nabla \mathbf{u} + \overline{\mathbf{n}}_{e} : \nabla \left(\frac{m_{i}}{e_{\rho}} \mathbf{J} \right) + \eta |\mathbf{J}|^{2}, \\ \\ \partial_{t}\mathbf{B} = -\nabla \times \left(-\mathbf{u} \times \mathbf{B} + \eta \mathbf{J} - \frac{m_{i}}{\rho e} \nabla \cdot \overline{\mathbf{n}}_{e} - \frac{m_{i}}{\rho e} \nabla p_{e} + \frac{m_{i}}{\rho e} (\mathbf{J} \times \mathbf{B}) \right), \\ \nabla \cdot \mathbf{B} = 0, \quad \nabla \times \mathbf{B} = \mathbf{J}. \end{array}$$

Reduced MHD: assumptions and principle of derivation

- Aim: Reduce the number of variables and eliminate the fast waves in the reduced MHD model.
- We consider the cylindrical coordinate $(R, Z, \phi) \in \Omega \times [0, 2\pi]$.

Reduced MHD: Assumption

$$\mathbf{B} = \frac{F_0}{R} \mathbf{e}_{\phi} + \frac{1}{R} \nabla \boldsymbol{\psi} \times \mathbf{e}_{\phi} \quad \mathbf{u} = -R \nabla \boldsymbol{u} \times \mathbf{e}_{\phi} + \mathbf{v}_{||} \mathbf{B} + \tau_{\mathsf{IC}} \frac{R}{\rho} \left(\mathbf{e}_{\phi} \times \nabla \boldsymbol{p} \right)$$

with u the electrical potential, ψ the magnetic poloidal flux, $v_{||}$ the parallel velocity.

- To avoid high order operators, we introduce the vorticity $w = \Delta_{pol} u$ and the toroidal current $\mathbf{j} = \Delta^* \psi = R^2 \nabla \cdot (\frac{1}{R^2} \nabla_{pol} \psi)$.
- Derivation: we plug **B** and **u** in the equations + some computations. For the equations on u and $v_{||}$ we use the following projections

$$\mathbf{e}_{\phi} \cdot \nabla \times \mathbf{R}^{2} \left(\rho \partial_{t} \mathbf{u} + \rho \mathbf{u} \cdot \nabla \mathbf{u} + \nabla \mathbf{p} = \mathbf{J} \times \mathbf{B} + \nu \Delta \mathbf{u} \right)$$

and

$$\mathbf{B} \cdot (\rho \partial_t \mathbf{u} + \rho \mathbf{u} \cdot \nabla \mathbf{u} + \nabla p = \mathbf{J} \times \mathbf{B} + \nu \Delta \mathbf{u}).$$

Description of the JOREK code

- JOREK: Fortran 90 code, parallel (MPI+OpenMP)
- Main author: Guido Huijmans
- Determine the equilibrium
 - Define the boundary of the computational domain
 - □ Compute $\psi(R, Z)$ on a first poloidal grid.
- Compute equilibrium solving Grad-Shafranov equation

$$R\frac{\partial}{\partial R}\left(\frac{1}{R}\frac{\partial\psi}{\partial R}\right) + \frac{\partial^{2}\psi}{\partial Z^{2}} = -R^{2}\frac{\partial p}{\partial\psi} - F\frac{\partial F}{\partial\psi}$$

- Computation of aligned grid
 - $\hfill\square$ Identification of the magnetic flux surfaces
 - □ Create the aligned grid (with X-point)
 - $\hfill\square$ Interpolate $\psi(R,Z)$ in the new grid and recompute the equilibrium
- Perturbation of the equilibrium (small perturbations of non principal harmonics).
- Time-stepping (full implicit)
 - □ Poloidal discretization: 2D Cubic Bezier finite elements.
 - Toroidal discretization: Fourier expansion.

Figure: unaligned grid

Description of the JOREK code

- JOREK: Fortran 90 code, parallel (MPI+OpenMP)
- Main author: Guido Huijmans
- Determine the equilibrium
 - Define the boundary of the computational domain
 - □ Compute $\psi(R, Z)$ on a first poloidal grid.
- Compute equilibrium solving Grad-Shafranov equation

$$R\frac{\partial}{\partial R}\left(\frac{1}{R}\frac{\partial\psi}{\partial R}\right) + \frac{\partial^{2}\psi}{\partial Z^{2}} = -R^{2}\frac{\partial p}{\partial\psi} - F\frac{\partial F}{\partial\psi}$$

- Computation of aligned grid
 - Identification of the magnetic flux surfaces
 - □ Create the aligned grid (with X-point)
 - $\hfill\square$ Interpolate $\psi(R,Z)$ in the new grid and recompute the equilibrium
- Perturbation of the equilibrium (small perturbations of non principal harmonics).
- Time-stepping (full implicit)
 - Poloidal discretization: 2D Cubic Bezier finite elements.
 - **Toroidal discretization**: Fourier expansion.

Figure: Aligned grid

Sources of stiffness

Stiffness for explicit scheme

- Fast magneto-sonic waves (for full MHD problems),
- Diffusion operators (anisotropic diffusion and viscous tensor),
- Waves associated to generalized Ohm law,
- Iow density cases.
- Since the models are stiff we proposed toi use implicit scheme (an alternative is the semi-implicit schemes)

Ill-conditioning for implicit scheme

- Ratio between the waves
- Anisotropic Diffusion operators,
- Nonlinear Hyperbolic structure,
- Iow density cases.
- The exact solvers are not a good option now because there are so greedy for large cases. Since the problem is ill-conditioned we will need to preconditioning for iterative solvers.

Results for Waves equation

Comparison between iterative solver for test case in the diffusion limit $\sigma = 1$.

Mesh / solvers		GC	GC-PC	Gmres	Gmres-PC-Jacobi
Mech /*/ 51	cv	X	X	X	1
	iter	-	-	-	27
Mesh 16*16, ε_1	cv	X	X	X	1
	iter	-	-	-	1.5E+4
Mach 1*1	cv	X	X	X	1
Wesh 4 4, 22	iter	-	-	-	21000
Mesh 16*16, ε_2	cv	X	X	X	X
	iter	-	-	-	-

• $\varepsilon_1 = 10^{-5}$ and $\varepsilon_2 = 10^{-10}$.

- The solver tolerance is 10⁻¹⁰ for convergence and iter_max=100000. We compute the average on ten time iterations.
- The GC solver is iunstable and cannot solve this type of problem.

A conclusion

The results show that it is necessary to use a good preconditioning + robust solver (for general matrix).

Linear Solvers

- We solve a nonlinear problem $G(\mathbf{U}^{n+1}) = b(\mathbf{U}^n, \mathbf{U}^{n-1})$.
- First order linearization

$$\left(\frac{\partial G(\mathbf{U}^n)}{\partial \mathbf{U}^n}\right)\delta\mathbf{U}^n = -G(\mathbf{U}^n) + b(\mathbf{U}^n,\mathbf{U}^{n-1}) = R(\mathbf{U}^n),$$

with $\delta \mathbf{U}^n = \mathbf{U}^{n+1} - \mathbf{U}^n$, and $J_n = \frac{\partial G(\mathbf{U}^n)}{\partial \mathbf{U}^n}$ the Jacobian matrix of $G(\mathbf{U}^n)$.

- Linear solver in JOREK: Left Preconditioning + GMRES iterative solver.
- Principle of the preconditioning step:
 - □ Replace the problem $J_k \delta \mathbf{U}_k = R(\mathbf{U}^n)$ by $P_k(P_k^{-1}J_k)\delta \mathbf{U}_k = R(\mathbf{U}^n)$.
 - □ Solve the new system with two steps $P_k \delta \mathbf{U}_k^* = R(\mathbf{U}^n)$ and $(P_k^{-1} J_k) \delta \mathbf{U}_k = \delta \mathbf{U}_k^*$
- If P_k is easier to invert than J_k and $P_k \approx J_k$ the linear solving step is more robust and efficient.

Physic-based Preconditioning of JOREK

- Extraction of the blocks which are associated with each toroidal harmonic.
- Solve exactly with LU decomposition each subsystem associated with a block
- Reconstruction of the solution of $P_k \mathbf{x} = \mathbf{b}$
- Principle of Physic-based preconditioning: We neglect in the Jacobian the physical effect associated to the coupling between the Fourier mods (non diagonal block).

JOREK-DJANGO

- JOREK is a large code of physics with complicate geometry, models and test cases. To validate the numeric tools is not a good code.
- **JOREK-DJANGO** : simplified version of JOREK for numerical studies.
- Developers : A. Ratnani (IPP), E. F., C Caldini-Queiros (IPP), L. Mendoza (IPP), B. Nkonga (Uni Nice)
- Future users and developers : E. Sonnendrücker (IPP), H. Guillard (INRIA), V. Grandgirard (CEA), G. Latu (CEA)

Main properties

- Implicit Finite element code in toroidal geometry.
- □ Generic Splines in quadrangles and triangles (poloidal plane) and Fourier and Splines for Toroidal direction.
- Linear solvers and preconditioning based on PETSC and SPM (interface for spare Matrices).
- Models : 2D and 3d elliptic problems, 2D wave and diffusion equations, 2D and 3D current Hole, 2D Grad Safranov equation and 3D anisotropic diffusion.
- Possible coupling (not finish) with Selalib

Physic based preconditioning for Waves equations

Implicit scheme for Damped waves equations

Damping wave equation (baby problem used for Inertial fusion confinement)

$$\begin{cases} \partial_t p + c \nabla \cdot \mathbf{u} = 0 \\ \partial_t \mathbf{u} + c \nabla p = -c \sigma \mathbf{u} \end{cases} \iff \begin{cases} \partial_t p + \frac{1}{\varepsilon} \nabla \cdot \mathbf{u} = 0 \\ \partial_t \mathbf{u} + \frac{1}{\varepsilon} \nabla p = -\frac{\sigma}{\varepsilon^2} \mathbf{u} \end{cases}$$

- with σ opacity, c light speed and $\varepsilon \approx \frac{1}{c} \approx \frac{1}{\sigma}$
- When $\varepsilon \longrightarrow 0$ the model can be approximated by $\partial_t p \nabla \cdot (\frac{1}{\sigma} \nabla p) = 0$.
- This problem is stiff in time. CFL condition is $\Delta t \leq C_1 \varepsilon h + C_2 \varepsilon^2$.
- Simple way to solve this: implicit scheme but the model is ill-conditioned.
- Two sources of ill-conditioning: the stiff terms (which depend of ε) and the hyperbolic structure.

Philosophy : Divise, reformulate, approximate and rule

- Divise: use splitting technic to separate the full coupling system between simple operators (advection, diffusion etc).
- □ **Reformulate**: rewrite the coupling terms as second order operator simple to invert.
- □ Approximate: use approximations in the previous step to obtain well-posed and ii-conditioning simple operators.
- □ Rule: solve the suitable of sub-systems to obtain an approximation of the solution.

Construction of the preconditioning I

First we implicit the equation

$$\begin{pmatrix} p^{n+1} + \theta \frac{\Delta t}{\varepsilon} \nabla \cdot \mathbf{u}^{n+1} = p^n - (1-\theta) \frac{\Delta t}{\varepsilon} \nabla \cdot \mathbf{u}^n \\ \mathbf{u}^{n+1} + \theta \frac{\Delta t}{\varepsilon} \nabla p^{n+1} + \theta \frac{\Delta t\sigma}{\varepsilon^2} \mathbf{u}^{n+1} = \mathbf{u}^n - (1-\theta) \frac{\Delta t}{\varepsilon} \nabla p^n - (1-\theta) \frac{\Delta t\sigma}{\varepsilon^2} \mathbf{u}^n$$

The implicit system is given by

$$\left(\begin{array}{cc} M & U \\ L & D \end{array}\right) \left(\begin{array}{c} p^{n+1} \\ \mathbf{u}^{n+1} \end{array}\right) = \left(\begin{array}{c} R_p \\ R_u \end{array}\right)$$

with
$$M = I_d$$
, $D = \begin{pmatrix} I_d & 0\\ 0 & I_d \end{pmatrix}$, $U = \begin{pmatrix} \theta \frac{\Delta t}{\varepsilon} \partial_x & \frac{\Delta t}{\varepsilon} \partial_y \end{pmatrix}$ and $L = \begin{pmatrix} \theta \frac{\Delta t}{\varepsilon} \partial_x \\ \theta \frac{\Delta t}{\varepsilon} \partial_y \end{pmatrix}$

The solution of the system is given

$$\begin{pmatrix} P^{n+1} \\ \mathbf{u}^{n+1} \end{pmatrix} = \begin{pmatrix} M & U \\ L & D \end{pmatrix}^{-1} \begin{pmatrix} R_p \\ R_u \end{pmatrix}$$
$$= \begin{pmatrix} I & M^{-1}U \\ 0 & I \end{pmatrix} \begin{pmatrix} M^{-1} & 0 \\ 0 & P^{-1}_{schur} \end{pmatrix} \begin{pmatrix} I & 0 \\ -LM^{-1} & I \end{pmatrix} \begin{pmatrix} R_p \\ R_u \end{pmatrix}$$

with $P_{schur} = D - LM^{-1}U$.

Principle of the preconditioning II

- Using the previous Schur decomposition we can solve the implicit wave equation with the algorithm.
 - $\begin{cases} \text{Predictor}: \quad M_h p^* = R_p \\ \text{Velocity evolution}: \quad P_h \mathbf{u}^{n+1} = (-L_h p^* + R_u) \\ \text{Corrector}: \quad M_h p^{n+1} = M_h p^* U_h \mathbf{u}_{n+1} \end{cases}$
- with the matrices:
 - M_h the mass matrix which discretize the Identity operator
 - \Box U_h discretize the operator U and L_h the discretization of the L operator.
 - \square P_h discretize the positive and symmetric operator :

$$P_{Schur} = I_d - \nabla (\nabla \cdot I_d) = I_d - \theta^2 \frac{\Delta t^2}{\varepsilon^2} \begin{pmatrix} \partial_{xx} & \partial_{xy} \\ \partial_{yx} & \partial_{yy} \end{pmatrix}$$

The physic based preconditioning PB(x) solves the previous algorithm with Conjugate-Gradient with $tol = 10^{-x}$ and Jacobi PC

Algorithm of the PhyBas Preconditioning step

• Algorithm and implementation of the PB(x) preconditioning:

- In this case we solve the sub-steps with a GC solver
- We can use also Multi-grid (MG) methods or other methods efficient for symmetric and diagonal dominant matrix.

38

Results for Waves equation

Comparison between GMRES method with different preconditioning

Mesh / solvers		Jac	ILU(0)	ILU(4)	MG(2)	SOR	PB
Mesh4*4, ε_1	cv	1	1	1	1	1	✓
	iter	27	11		38	8	1
	time	7.2 E-4	1.3E-3	7.7E-3	1.5E-2	1.4E-3	2.1E-3
4*4 , ε ₂	cv	1	1	1	X	1	 Image: A set of the set of the
	iter	2.1E+4	11	1	-	8	1
	time	3.6E-1	1.3E-3	7.7E-3	-	1.5E-3	2.1E-3
16*16, ε ₁	cv	1	1	1	X	1	 Image: A set of the set of the
	iter	1.5E+4	18	9	140	20	1
	time	5.0E-0	2.3E-2	4.0E-1	5.0E-1	5.0E-2	2.1E-2
16*16, ε ₂	cv	X	1	1	X	1	 Image: A second s
	iter	-	18	9	-	20	1
	time	-	2.3E-2	4.0E-1	-	5.0E-2	2.1E-2
64*64, ε ₂	cv	X	X	1	X	X	х
	iter	-	-	632	-	-	1
	time	-	-	2.0E+1	-	-	4.2E-1

ILU (Incomplete LU), MG (Multi-grids), SOR, PB (our physic based PC).

A conclusion

On fine grid our method is the fastest (and the current implementation is not optimal)

Adaptive Preconditioning

Future numerical works for waves

 To obtain the more robust and performing algorithm we must optimize and study some substeps

Preconditioning for sub step

- The Schur is solved with a CG preconditioned. To optimize the resolution of this step we propose to construct a Geometric MG based on the properties of B-Splines (useful also for the nonlinear case).
- □ The Mass-Matrix for the B-Splines is ill conditioned. We propose an adapted PC based on $M_{2D} \approx \sum_{j} M_{1D,i} \otimes N_{1D,i}$. The PC will be construct using 1D solving.

Adaptivity

- □ It is not necessary to solve the subsystems of the PC with the same accuracy to the full problem.
- Consequently to reduce the size of the sub-matrices we can use B-Splines with less order or different regularity between the model and the PC.
- Regularity of the B-Splines : if the regularity is high we have less accuracy but smaller matrices with better conditioning.

Algorithm of the adaptive PhyBas Preconditioning step

Algorithm and implementation of the APB(x) preconditioning:

In the future it is important to perform the extraction and reconstruction parts.

Future theoretical works for waves

- Now we propose to study the discretization of the problem $P_{schur}u = R$.
- The weak form associated is given by $a_p(\mathbf{u}, \mathbf{v}) = l(\mathbf{v})$ with $\mathbf{u}, \mathbf{v} \in H_0(div, \Omega) \cap H_0(curl, \Omega), \ l(\mathbf{v}) = \int_{\Omega} Rv$ and

$$\mathbf{a}_{p}(\mathbf{u},\mathbf{v}) = \int_{\Omega} (\mathbf{u},\mathbf{v}) + \theta^{2} \frac{\mathbf{a}^{2}}{\varepsilon^{2}} \Delta t^{2} \int_{\Omega} \left(\nabla \cdot \mathbf{u} \right) \left(\nabla \cdot \mathbf{v} \right)$$

• A classical estimation is $\| \nabla \cdot \mathbf{u} \|_{L^2}^2 + \| \nabla \times \mathbf{u} \|_{L^2} 2 \ge C \| \mathbf{u} \|_{L^2}^2$. Using this estimation we remark that we obtain

$$\mathsf{a}_{\mathsf{P}}(\mathsf{u},\mathsf{v}) \geq (1 + \mathcal{C}\theta^2\frac{\mathsf{a}^2}{\varepsilon^2}\Delta t^2) \parallel \mathsf{u} \parallel_{L^2}^2 - \theta^2\frac{\mathsf{a}^2}{\varepsilon^2}\Delta t^2 \parallel \nabla \times \mathsf{u} \parallel_{L^2}^2$$

In the limit regime u = -ε∇p, consequently ∇ × u = 0, the problem is coercive.
 When ε is close to one the coercivity is not sure.

Future works

- □ Study the existence and uniqueness of the solutions using mixed-formulation and inf-sup condition.
- Study the discrete problem using same framework and discrete H(div) and H(curl) spaces for B-splines

Physic based preconditioning for MHD equations

Adaptive Preconditioning

Current Hole and preconditioning associated

- Current Hole : reduced problem in cartesian coordinates.
- The model

$$\begin{cases} \partial_t \psi = [\psi, u] + \eta \Delta \psi \\\\ \partial_t \Delta u = [\Delta u, u] + [\psi, \Delta \psi] + \nu \Delta^2 u \end{cases}$$

with $w = \Delta u$ and $j = \Delta \psi$.

- In this formulation we split evolution and elliptic equations.
- For the time discretization we use a Cranck-Nicholson scheme and linearized the nonlinear system to obtain

$$\left(\begin{array}{cc} M & U \\ L & D \end{array}\right) \left(\begin{array}{c} \Delta \psi^n \\ \Delta u^n \end{array}\right) = \left(\begin{array}{c} R_{\psi} \\ R_{u} \end{array}\right)$$

or

$$\begin{pmatrix} I_d - \Delta t \theta[\cdot, u^n] - \Delta t \theta \Delta & -\Delta \theta[\psi^n, \cdot] \\ -\Delta t \theta[\psi^n, \Delta \cdot] - \Delta t \theta[\cdot, \Delta \psi^n] & \Delta - \Delta t \theta([\Delta \cdot, u^n] + [\cdot, \Delta u^n] + \Delta^2) \end{pmatrix} \begin{pmatrix} \delta \psi^n \\ \delta u^n \end{pmatrix} = \begin{pmatrix} R_{\psi} \\ R_{u} \end{pmatrix}$$

Design of the preconditioning for reduced MHD

PB-PC for Current Hole

$$\begin{array}{lll} \mbox{Predictor}: & M\delta\psi_p^n = R_\psi \\ \mbox{potential update}: & P_{schur}\delta u^n = \left(-L\delta\psi_p^n + R_u\right)\right) \\ \mbox{Corrector}: & M\delta\psi^n = M\delta\psi_p^n - U\delta u^n \\ \mbox{Current update}: & \delta z_j^n = \Delta\delta\psi^n \\ \mbox{Vorticity update}: & \delta w^n = \Delta\delta u^n \end{array}$$

- The schur complement is given by $P_{schur} = D LM^{-1}U$
- Two approximations for M⁻¹:
 - □ Slow flow: $M^{-1} = \Delta t$
 - □ Arbitrary flow: find M^* such that $UM^* \approx MU$. Consequently

$$P^{-1} = (D - LM^{-1}U)^{-1} \approx M^* (DM^* - LU)^{-1}$$
,

we obtain

$$\left[\begin{array}{l} \text{potential update I}: \quad (DM^* - LU)\delta u^{**} = \left(-L\delta\psi_p^n + R_u \right) \right) \\ \text{potential update II}: \quad \delta u^n = M^*\delta u^{**} \end{array} \right]$$

Last question : Computation of the operator *LU* (second order form of the coupling hyperbolic operators).

Approximation of the Schur complement I

Computation of Schur complement for (slow flow approximation $M^{-1} \approx \Delta t$)

$$P_{schur} = \frac{\Delta \delta u}{\Delta t} + \mathbf{u}^n \cdot \nabla (\Delta \delta u) + \delta \mathbf{u} \cdot \nabla (\Delta u^n) - \theta v \Delta^2 \delta u - \theta^2 \Delta t L U$$

• Operator
$$LU = \mathbf{B}^n \cdot \nabla (\Delta (\mathbf{B}^n \cdot \nabla \delta u)) + \frac{\partial j^n}{\partial \psi^n} \mathbf{B}^n_{pol} \cdot \nabla (\mathbf{B}^n \cdot \nabla \delta u).$$

B^{*n*}
$$\cdot \nabla \delta u = -[\psi^n, \delta u]$$
 and $\mathbf{u}^n \cdot \nabla \delta u = -[\delta u, u^n]$ et $\delta \mathbf{u} \cdot \nabla u^n = -[u^n, \delta u]$.

Remark: the LU operator is the parabolization of coupling hyperbolic terms which contains only the Alfvén waves (rigorous proof missing).

Properties of LU operator

□ We consider the L^2 space. The operator LU is not self adjoint and not positive for all δu

$$< LU\delta u, \delta u >_{L^2} = \int |\nabla (\mathbf{B}^n \cdot \nabla \delta u)|^2 - \int \frac{\partial j^n}{\partial \psi^n} (\mathbf{B}^n_{\rho ol} \cdot \nabla \delta u) (\mathbf{B}^n \cdot \nabla \delta u)$$

- □ We propose the following approximation $LU^{approx} = \mathbf{B}^n \cdot \nabla(\Delta(\mathbf{B}^n \cdot \nabla \delta u)).$
- □ The operator LU^{approx} is positive and self-adjoint.

There are different methods to solve the Schur complement using splitting to solve smaller and more simple operators.

Solving the different steps of the PC

- Question How solve each step ?
- The first simple and efficient solver is to use the Multi-Grids methods (MG) efficient for second order and advection operators.
- But perhaps it can be more efficient to split some terms in the sub-systems to use the most adapted solver for each operator.
- Example for the Schur complement (L. Chacon paper) using a splitting and an approximation:

 $\begin{array}{l} \text{Schur solver I} : \Delta \delta u^* = RHS \\ \text{Schur solver II} : \left(\frac{I_d}{\Delta t} + \mathbf{u}^n \cdot \nabla I_d - \theta \nu \Delta \right) \delta u^{**} = \delta u^* \\ \text{Schur solver III} : \left(\frac{\Delta I_d}{\Delta t} - \mathbf{B}^n \cdot \nabla (\Delta (\mathbf{B}^n \cdot \nabla I_d)) \right) \delta u^{n+1} = \delta u^{**} \end{array}$

- MG methods are adapted for advection diffusion problems.
- GC is more adapted for symmetric and positive anisotropic operator (smoother for MG are more complicated for anisotropic problem).
- L. Chacon remark: to replace $\mathbf{B}^n \cdot \nabla(\Delta(\mathbf{B}^n \cdot \nabla I_d))$ by $\Delta(\mathbf{B}^n \cdot \nabla(\mathbf{B}^n \cdot \nabla I_d))$ generate noise.

Results for Current Hole Model

Comparison between GMRES method with different preconditioning

50 time step in the linear phase (kink instability ?). $tol = 10^{-8}$, $iter_max = 10000$.

Mesh / solvers		Jac	ILU(0)	ILU(4)	MG	SOR	PB(6)	PB(4)
16*16 dt=0.5	cv	X	 ✓ 	1	X	1	1	 Image: A set of the set of the
	iter	-	14	6	-	12	1	1
	time	-	1.2E-1	1.4E+0	-	1.8E-1	2.6E+0	2.3E+0
32*32 dt=1	cv	X	1	1	X	X	1	1
	iter	-	26	9	-	-	1	1
	time	-	6.8E-1	7.2E+0	-	-	9.8E+0	8.9E+0
64*64 dt=4	cv	X	1	1	X	X	1	1
	iter	-	404	84	-	-	1	1
	time	-	2.4E+1	3.9E+1	-	-	3.9E+1	3.8E+1

• On fine grid our method is the more robust and competitive

- This is not optimal because :
 - $\hfill\square$ The matrices (7 in this case) are assembled one by one and not at the same time.
 - $\hfill\square$ The extraction and reconstruction are made one by one.
 - □ The assembly of the matrices in Django are not optimal (PETSC configuration).
 - \Box We solve each sub-system with a GMRES-MG(2) and not just a MG solver.
- 75% of the solving time comes from to the construction of the sub-matrices. In the future we will assume that it is possible to decrease this part by 5-6.

Futur work on the PC for MHD problem

PC Full MHD

- \square The matrix *M* contains advection and diffusion operators for ρ , *T* and **B**
- □ To treat anisotropic operators splitting technics or adapted MG methods can be used.
- □ The *LU* operator (called ideal MHD force operator in the book of Schnack) is given by

 $(LU)\delta\mathbf{v} = [\mathbf{B}\times\nabla\times\nabla\times(\mathbf{I}_d\times\mathbf{B}) - \mathbf{J}\times\nabla\times(\mathbf{I}_d\times\mathbf{B}) - \nabla(\mathbf{I}_d\cdot\nabla\mathbf{p} + \gamma\mathbf{p}\nabla\cdot\mathbf{I}_d)]\,\delta\mathbf{v}$

Extension to bi-fluid (or extended) MHD is possible.

Discretization for Full MHD

- □ Compatible discretization for full MHD (DeRham Diagram for Splines)
- □ Study of the problem associated with the *LU* operator: existence, uniqueness, discretization compatible and stable.
- Discretization adapted to treat low density problem.

Other projects

Cemracs project I

 Project: "Adaptive physic based preconditioning for a linearized Discontinuous Galerkin Shallow water scheme", E.F, Philippe Helluy and Hervé Guillard.

Exner equations for sedimentation

$$\begin{cases} \partial_t h + \nabla \cdot (h\mathbf{u}) = 0\\\\ \partial_t h\mathbf{u} + \nabla \cdot (h\mathbf{u} \otimes \mathbf{u}) + \nabla p = h\nabla b\\\\ \partial_t b + \zeta \nabla \cdot \mathbf{Q} = 0 \end{cases}$$

with *h* the height, **u** the velocity, $\mathbf{Q} = \mathbf{Q}(\mathbf{u})$ and ζ a constant which depend to the sediment coefficient porosity.

time scales:

- □ time step *dt*: gives by gravity waves = \sqrt{hg} .
- \Box simulation time T_f : gives by the sedimentation behavior.
- $dt \ll T_f$ consequently we propose to use implicit scheme.
- The hyperbolic system discretized with High-Order methods are ill-conditioned.
- Aim : Design efficient and robust less order preconditioning for Linearized Shallow water and Exner equations With DG schemes.

Cemracs project II

Code

- SCHNAPS a 2D and 3D DG code using macro-cells method and Gauss-Lobatto point.
- PARALUTION a library of iterative linear solvers (GRMES, MG, CG etc).

Aim

- Write an implicit version of Linearized Shallow water and Exner equations in SCHNAPS
- Write and study the physic preconditioning for these equations (question for the best extension to Exner).
- Use a continuous Galerkin method with the same degree of freedom for second order operators.
- Study and validate the less-order preconditioning.

Other possible works

- Find a way to assure positivity and stability (hyper-viscosity or flux-limiter).
- Implicit scheme and PC "well-balanced" for steady states.
- Newton method and problem and positivity.

Radiative transfert I

Project: "implicit scheme with lower order PC for *P_n* models" with Xavier Blanc, Emmanuel Labourasse + Master student ?

Transport equation (photonics neuronic):

$$\partial_t f + c \mathbf{\Omega} \cdot \nabla f = c \sigma \left(\int_{S^2} f d \mathbf{\Omega} - f \right)$$

with ${\boldsymbol \Omega}$ the direction, c the light speed and σ the opacity.

- Important regimes:
 - \Box Free transport regime ($\sigma \rightarrow 0$) : exact transport of the solution
 - \Box Diffusion regime $(\sigma
 ightarrow \infty)$: the solution can be approximated by

$$\partial_t E - \nabla \cdot \left(\frac{1}{3\sigma} \nabla E\right) = 0, \quad \text{with } E = \int_{S^2} f d\Omega.$$

P_n models:

 \Box The kinetic equations are approximated by linear hyperbolic P_n systems (expend the distribution on the spherical harmonics basis)

$$\partial_t \mathbf{U} + c A_x \partial_x \mathbf{U} + c A_y \partial_y \mathbf{U} + c A_z \partial_Z \mathbf{U} = -c \sigma R \mathbf{U}$$

Radiative transfert II

- **Typical simulation for IFC**: we use P_{15} model. The regime is close to free transport regime at the beginning of the simulation and in the diffusion regime after.
- Problems for explicit scheme : Very large and stiff hyperbolic system. Stiff hyperbolic CFL for Explicit schemes, Stiff hyperbolic + parabolic CFL condition for AP schemes.
- **Problems for implicit scheme** : large hyperbolic system (bad structure) and large ratio between wave velocities $(\{\lambda_0 c, ..., \lambda_p c\}$ with $\lambda_0 \approx 0$ and $\lambda_1 \approx 1$).
- We must add a preconditioning.
- For the previous model the velocity equation couple all the others equations consequently the Schur (parabolization of coupling terms) is write on the velocity.
- For the *P_n* model the coupling is more complicate.

Physic Based PC for P_n model

- Find how decompose the matrix to write the Schur decomposition.
- Write the parabolic form associated (*SP_n* models).
- Study the limits (diffusion and free transport regimes) of the Preconditioning operator.
- Use less spherical harmonics in the PC.

Conclusion

Conclusion

Conclusion:

- The idea to design a PC is to write the solving step as a suitability of simple operators (easy to invert) using splitting and reformulation (second order formulation) methods.
- The possible approximations gives the PC algorithm.
- **Problem**: the proposed method is dependent of the problem and use a lot of methods (CG, MG, GMRES etc) ⇒ lot of work to treat all the models.

Possible approximations:

- Solving approximation: each sub step can be solved with a small accuracy.
- Physical approximation: each subsystem can be simplified to obtain well-conditioned operators (necessary in the MHD case).
- Discretization approximation: the systems associated with the PC can be solved with less order numerical methods or coarser grids.
- Multi-discretization approximation: the PC models and the model can be discretized with different methods (finite element for PC and DG for the full system).

Perspectives

Middle term:

- Study of weak form for wave problem and Schur for wave equations.
- Geometric multi-grids and PC for mass Matrix with tensor product property.
- Extension to 3D current Hole in toroidal geometry and study Schur Splitting.
- Directional splitting (toroidal and poloidal) for the PC in the 3D case.
- Extension to the reduced MHD model with pressure and density.
- CEMRACS

Long term:

- Extension the full MHD and extended MHD with compatible discretization.
- Study of weak form and compatible discretization for the Schur decomposition.
- Adaptivity of the discretization (order, regularity) between PC and model.
- Extension to radiative P_n model.

