Preconditioned implicit DG schemes for hyperbolic systems. Application to linear and nonlinear wave problems.

<u>C. Courtès</u>³, E. Franck¹, H. Guillard², M. Gutnic¹, P. Helluy¹, <u>H. Oberlin</u>⁴

August 25, 2015

¹INRIA Nancy Grand-Est and IRMA Strasbourg, TONUS team, France ²INRIA Sophia-Antipolis, CASTOR team, France ³University Paris 11 Orsay, France ⁴IPP, Garching bei München, Germany

Courtès, Oberlin, Franck

Physic-Based Preconditioning

Summary

Introduction and motivations

Wave equation Discrete formulation Preconditioning and Schur complement Results on preconditioning for Wave equation

Shallow water equation

Properties of the system $\theta\text{-scheme}$ for Shallow Water and preconditioning Wave propagation by $P_{\rm schur}$

Multi-scale problems

Time Multi-scale problems:

- Models: hyperbolic systems able to model complex physics through nonlinear conservation laws
- Properties propagation: hyperbolic systems have finite propagation speed given by the wave velocities (eigenvalues of the Jacobian).
- **Stability**: the time step is constrained by the fastest waves.
- Multi-scale problem: $V_{max} \ll V_{min}$ and $T_f = O(V_{min})$.
- Morphodynamics flows: caused by the movement of a fluid in contact with the topography.
- Shallow Water + Exner equations:

$$\begin{cases} \partial_t h + \nabla \cdot (h \boldsymbol{u}) = 0\\ \partial_t h \boldsymbol{u} + \nabla \cdot (h \boldsymbol{u} \otimes \boldsymbol{u}) + \nabla \boldsymbol{p} = -gh\nabla b\\ \partial_t b + \nabla \cdot \boldsymbol{Q} = 0 \end{cases}$$

where h is the height, \boldsymbol{u} the velocity, b the topography, and $\boldsymbol{Q} = \boldsymbol{Q}(\boldsymbol{u})$.

time scales:

- □ time step Δt : given by gravity waves' speeds $\lambda = \sqrt{hg}$.
- □ simulation time $T_f >> \Delta t$: given by the sedimentation behavior.

Project

Implicit scheme:

- To treat this problem, one good option: implicit scheme.
- In the case of implicit schemes we must invert a linear system. Two solutions:
 - □ exact solvers: too greedy for fine 2D or 3D problems.
 - iterative solvers: the stiff or multi-scale hyperbolic systems are ill-conditioned.
- For iterative solvers, we need to find a robust and efficient preconditioning.

Aim :

To design efficient and robust preconditioned implicit algorithm for hyperbolic systems with DG high-order method on complex geometries.

Objectives:

- Write implicit method (based on GMRES+ Free Jacobian method) for one macro-cell.
- Design and study the physics based preconditioning (based on physical or numerical approximations).
- Full model in Discontinuous Galerkin and preconditioning in Continuous Galerkin.
- Validate the methods on Wave and Shallow Water equations.

Schnaps code: DG method for hyperbolic scheme

DG schemes:

- High order method adapted to the discretization of hyperbolic systems.
- Principle: we discretize in each cell the weak form without enforcing continuity between the cells.
- Reduction CPU: quadrature using Gauss Lobatto points (diagonal mass matrix).
- □ **Conditioning**: High-order methods are ill-conditioned.

Complex geometries:

- Idea: we decompose the domain between curved macro-cells (GMSH).
- Macro-cell: Cartesian in the interior.

Physic-Based Preconditioning

General discretization method

We consider systems of equation of the following shape:

$$\partial_t \boldsymbol{U} + F(\boldsymbol{U}) = \boldsymbol{S},$$

with $U \in R^N$ our unknowns, F a function acting on U and S source terms independent of U.

Discretization in space : Discontinuous Galerkin

- Polynomial approximation of the solution U in each cell,
- $\square \text{ Weak formulation}: \partial_t (\boldsymbol{U}, \varphi)_{L^2} + (f(\boldsymbol{U}), \varphi)_{L^2} = (\boldsymbol{S}, \varphi)_{L^2}, \quad \forall \varphi \text{ basis function},$
- Discontinuous basis functions,

$$\varphi_i^+(x_j) = \begin{cases} 1, & \text{if } j = i^+, \\ 0, & \text{if } j \neq i^+, \end{cases}$$

where x_i is a Gauss-Lobatto point.

Discretization in time : θ -scheme

$$\boldsymbol{U}^{n+1} + \Delta t \boldsymbol{\theta} \boldsymbol{F}(\boldsymbol{U}^{n+1}) = \boldsymbol{U}^n - \Delta t (1-\boldsymbol{\theta}) \boldsymbol{F}(\boldsymbol{U}^n) + \Delta t \boldsymbol{\theta} \boldsymbol{S}^{n+1} + \Delta t (1-\boldsymbol{\theta}) \boldsymbol{S}^n$$

Second-order and unconditionally-stable for $\theta = 0.5$ (Crank-Nicholson).

Courtès, Oberlin, Franck

Wave equation Discrete formulation

Preconditioning and Schur complement Results on preconditioning for Wave equation

Shallow water equation

Properties of the system $\theta\text{-scheme}$ for Shallow Water and preconditioning Wave propagation by $P_{\rm schur}$

Wave equation

Acoustic wave equations :

$$\begin{cases} \partial_t \boldsymbol{p} + \boldsymbol{c} \nabla \cdot \boldsymbol{u} = \boldsymbol{S}_{\boldsymbol{p}}, \\ \partial_t \boldsymbol{u} + \boldsymbol{c} \nabla \boldsymbol{p} = \boldsymbol{S}_{\boldsymbol{u}}. \end{cases}$$

with \boldsymbol{u} the velocity, p the pressure and c the speed wave.

• We use the previously described discretization with

$$\boldsymbol{U} = \begin{pmatrix} \boldsymbol{p} \\ \boldsymbol{u} \end{pmatrix}, \quad \boldsymbol{F}(\boldsymbol{U}) = \begin{pmatrix} \boldsymbol{c} \nabla \cdot \boldsymbol{u} \\ \boldsymbol{c} \nabla \boldsymbol{p} \end{pmatrix}, \quad \boldsymbol{S} = \begin{pmatrix} \boldsymbol{S}_{\boldsymbol{p}} \\ \boldsymbol{S}_{\boldsymbol{u}} \end{pmatrix}$$

Linear hyperbolic system.

Wave propagation :

- □ Study of solutions given by an equilibrium state and an irrotational perturbation $p = p_0 + \delta p$ and $u = u_0 + \delta u$.
- ^{\Box} Propagation of the perturbation at the velocity $\pm c$.

Matrix equation

The weak formulation leads to the matrix equation

$$\begin{pmatrix} M & c\theta\Delta tU_1 & c\theta\Delta tU_2 \\ c\theta\Delta tL_1 & M & 0 \\ c\theta\Delta tL_2 & 0 & M \end{pmatrix} \begin{pmatrix} p^{n+1} \\ u^{n+1} \\ v^{n+1} \end{pmatrix} \\ &= \begin{pmatrix} M & -c(1-\theta)\Delta tU_1 & -c(1-\theta)\Delta tU_2 \\ -c(1-\theta)\Delta tL_1 & M & 0 \\ -c(1-\theta)\Delta tL_2 & 0 & M \end{pmatrix} \begin{pmatrix} p^n \\ u^n \\ v^n \end{pmatrix},$$

with

$$\begin{split} M &= \left(\int_{\Omega} \varphi_{i} \varphi_{j} d\mathbf{x}\right)_{(i,j) \in \llbracket 1, N \rrbracket^{2}}, & \text{the mass matrix} \\ U_{1} &= \left(\int_{\Omega} \partial_{x} \varphi_{j} \varphi_{i}\right)_{(i,j) \in \llbracket 1, N \rrbracket^{2}}, & U_{2} &= \left(\int_{\Omega} \partial_{y} \varphi_{j} \varphi_{i}\right)_{(i,j) \in \llbracket 1, N \rrbracket^{2}}, \\ L_{1} &= \left(\int_{\Omega} \partial_{x} \varphi_{j} \varphi_{i}\right)_{(i,j) \in \llbracket 1, N \rrbracket^{2}}, & L_{2} &= \left(\int_{\Omega} \partial_{y} \varphi_{j} \varphi_{i}\right)_{(i,j) \in \llbracket 1, N \rrbracket^{2}}. \end{split}$$

Aim

Preconditioning of the Jacobian matrix thanks to the Schur theory.

Inia

Courtès, Oberlin, Franck

Physic-Based Preconditioning

,

/ 26

9

Wave equation

Discrete formulation Preconditioning and Schur complement

Results on preconditioning for Wave equation

Shallow water equation

Properties of the system $\theta\text{-scheme}$ for Shallow Water and preconditioning Wave propagation by $P_{\rm schur}$

Schur complement

Property (Schur decomposition)

Let ${\mathscr A}$ be a matrix defined by blocks

$$\mathscr{A} = \begin{pmatrix} \mathsf{A} & \mathsf{B} \\ \mathsf{C} & \mathsf{D} \end{pmatrix}$$

with A invertible. Assume A, B, C, D are respectively $p \times p$, $p \times q$, $q \times p$ and $q \times q$ matrices, one has

$$\mathscr{A} = \begin{pmatrix} I_p & 0\\ CA^{-1} & I_q \end{pmatrix} \begin{pmatrix} A & 0\\ 0 & D - CA^{-1}B \end{pmatrix} \begin{pmatrix} I_p & A^{-1}B\\ 0 & I_q \end{pmatrix}$$

where I_p is the $p \times p$ identity matrix.

Definition (Schur complement)

If \mathscr{A} is a matrix defined by blocks as in the previous property, the Schur complement of \mathscr{A} is $D-CA^{-1}B$

Preconditioning for Wave equation

Applying this decomposition to our system yields

$$\begin{pmatrix} M & c\theta\Delta t U_1 & c\theta\Delta t U_2 \\ c\theta\Delta t L_1 & M & 0 \\ c\theta\Delta t L_2 & 0 & M \end{pmatrix} =$$

$$\begin{pmatrix} I_N & 0\\ c\theta\Delta tLM^{-1} & I_{N^2} \end{pmatrix} \begin{pmatrix} M & 0\\ 0 & M - c^2\theta^2\Delta t^2LM^{-1}U \end{pmatrix} \begin{pmatrix} I_N & c\theta\Delta tM^{-1}U\\ 0 & I_{N^2} \end{pmatrix}$$

with

$$\boldsymbol{M} = \begin{pmatrix} M & 0 \\ 0 & M \end{pmatrix}$$
, $\boldsymbol{L} = \begin{pmatrix} L_1 \\ L_2 \end{pmatrix}$, $\boldsymbol{U} = \begin{pmatrix} U_1 & U_2 \end{pmatrix}$,

and

$$P_{\rm schur} = \boldsymbol{M} - c^2 \theta^2 \Delta t^2 L M^{-1} U.$$

Preconditioning for Wave equation

Applying this decomposition to our system yields

$$\begin{pmatrix} M & c\theta \Delta t U_1 & c\theta \Delta t U_2 \\ c\theta \Delta t L_1 & M & 0 \\ c\theta \Delta t L_2 & 0 & M \end{pmatrix} =$$

$$\begin{pmatrix} I_N & 0\\ c\theta\Delta tLM^{-1} & I_{N^2} \end{pmatrix} \begin{pmatrix} M & 0\\ 0 & M - c^2\theta^2\Delta t^2LM^{-1}U \end{pmatrix} \begin{pmatrix} I_N & c\theta\Delta tM^{-1}U\\ 0 & I_{N^2} \end{pmatrix}$$

with

$$\boldsymbol{M} = \begin{pmatrix} M & 0 \\ 0 & M \end{pmatrix}$$
, $\boldsymbol{L} = \begin{pmatrix} L_1 \\ L_2 \end{pmatrix}$, $\boldsymbol{U} = \begin{pmatrix} U_1 & U_2 \end{pmatrix}$,

and

 $P_{
m schur} = \boldsymbol{M} - \boldsymbol{c}^2 \theta^2 \Delta t^2 L M^{-1} U.$

Hence, the preconditioning for the wave problem unfolds as the following splitting

$$\begin{cases} Mp^* = Mp^n - c(1-\theta)\Delta tMU\begin{pmatrix} u^n\\v^n \end{pmatrix}, & \text{prediction step,} \end{cases} \\ P_{\text{schur}}\begin{pmatrix} u^{n+1}\\v^{n+1} \end{pmatrix} = M\begin{pmatrix} u^n\\v^n \end{pmatrix} - c(1-\theta)\Delta tMLp^n - c\theta\Delta tLp^*, & \text{propagation step,} \end{cases} \\ Mp^{n+1} = -c\theta\Delta tU\begin{pmatrix} u^{n+1}\\v^{n+1} \end{pmatrix} + Mp^*, & \text{correction step.} \end{cases}$$

Properties of P_{schur}

- To retrieve from those systems of equations the underlying physics, preconditioning has to follow some properties.
- The splitted system should keep as most physical properties from the original problem as possible.

•
$$P_{\rm schur} \equiv I_2 - c^2 \theta^2 \nabla (\nabla \cdot I_2)$$

Properties of P_{schur}

- P_{schur} should be easy to invert,
- P_{schur} is self adjoint,
- P_{schur} propagates an irrotational perturbation with the same speed $\pm c$ as the original problem.

Proof. $P_{\rm schur}$ is the discretization of the motion equation

$$\partial_{tt} \boldsymbol{\xi} - c^2 \theta^2 \nabla \left(\nabla \cdot \boldsymbol{\xi}
ight) = 0$$
,

where $\boldsymbol{u} = \partial_t \boldsymbol{\xi}$.

Remark : The preconditioning has the same propagation speed as the full model, which is equivalent at the spectral level.

Wave equation

Discrete formulation Preconditioning and Schur complement Results on preconditioning for Wave equation

Shallow water equation

Properties of the system $\theta\text{-scheme}$ for Shallow Water and preconditioning Wave propagation by $P_{\rm schur}$

Results

Here, we compile some results on different test-cases in Discontinuous Galerkin of fourth order for the acoustic wave equations.

Δt	Type of preconditioning	Mesh	Number of iteration / time-step
0.01	GMRES	20 imes 20	103
	GMRES-PC	20 imes 20	3
	GMRES	40 imes 40	224
	GMRES-PC	40 imes 40	3
0.05	GMRES	20 imes 20	762
	GMRES-PC	20 imes 20	14
	GMRES	40 imes 40	1594
	GMRES-PC	40 imes 40	20

Table: Results for a steady state.

Δt	Type of preconditioning	Mesh	Number of iteration / time-step
0.01	GMRES	30 imes 30	150
	GMRES-PC	30 imes 30	11
	GMRES	40 imes 40	220
	GMRES-PC	40 imes 40	12

Table: Results for a periodic wave problem.

Ave equation Discrete formulation Preconditioning and Schur complement Results on preconditioning for Wave equ

Shallow water equation

Properties of the system

 $\theta\text{-scheme}$ for Shallow Water and preconditioning Wave propagation by $P_{\rm schur}$

Shallow water equation

Shallow Water equation :

$$\begin{cases} \partial_t h + \nabla \cdot (h \boldsymbol{u}) = 0 \\\\ \partial_t h \boldsymbol{u} + \nabla \cdot (h \boldsymbol{u} \otimes \boldsymbol{u}) + \nabla \boldsymbol{p} = -gh\nabla b \end{cases}$$

with *h* the height, *u* the velocity, and the pressure $p = \frac{gh^2}{2}$.

- We can diagonalize the system to obtain the eigenvalues : $(u, n) \pm c$ and (u, n), with $c = \sqrt{hg}$ the sound speed
- Linearized Shallow Water Homogeneous equation: we consider that the solutions are given by an equilibrium and a perturbation $h = h_0 + \delta h$ and $u = u_0 + \delta u$.
- The linearized system propagates these perturbations at the velocity $(\boldsymbol{u}_0, \boldsymbol{n}) \pm \sqrt{h_0 g}$ and $(\boldsymbol{u}_0, \boldsymbol{n})$.

Aim of the Physic-Based Preconditioner:

To obtain a simpler operator (well-conditioned) which propagates the perturbations with velocities close to the original problem.

Vave equation Discrete formulation Preconditioning and Schur complement Results on preconditioning for Wave equation

Shallow water equation

Properties of the system θ -scheme for Shallow Water and preconditioning Wave propagation by P_{scheme}

θ -scheme and free Jacobian method (I)

 $\theta\text{-scheme}$ applied on Shallow Water equation yields

$$\begin{pmatrix} h^{n+1} + \theta \Delta t \nabla \cdot (h^{n+1} \boldsymbol{u}^{n+1}) = h^n - \Delta t (1-\theta) \nabla \cdot (h^n \boldsymbol{u}^n), \\ h^{n+1} \boldsymbol{u}^{n+1} + \theta \Delta t h^{n+1} (\boldsymbol{u}^{n+1} \cdot \nabla) \boldsymbol{u}^{n+1} + \theta \Delta t h^{n+1} g \nabla h^{n+1} + \theta \Delta t g h^{n+1} \nabla b \\ = h^n \boldsymbol{u}^n - \Delta t (1-\theta) h^n (\boldsymbol{u}^n \cdot \nabla) \boldsymbol{u}^n - \Delta t (1-\theta) g h^n \nabla h^n - (1-\theta) \Delta t g h^n \nabla b.$$

This system can be rewritten in the form

$$G\begin{pmatrix}h^{n+1}\\\boldsymbol{u}^{n+1}\end{pmatrix}=B\begin{pmatrix}h^n\\\boldsymbol{u}^n\end{pmatrix},$$

with

$$G: \begin{pmatrix} h \\ \boldsymbol{u} \end{pmatrix} \mapsto \begin{pmatrix} h + \theta \Delta t \nabla \cdot (h\boldsymbol{u}) \\ h\boldsymbol{u} + \theta \Delta t h (\boldsymbol{u} \cdot \nabla) \boldsymbol{u} + \theta \Delta t h g \nabla h + \theta \Delta t g h \nabla b \end{pmatrix},$$

and

$$B: \begin{pmatrix} h \\ u \end{pmatrix} \mapsto \begin{pmatrix} h - \Delta t(1-\theta)\nabla \cdot (hu) \\ hu - \Delta t(1-\theta)h(u \cdot \nabla) u - \Delta t(1-\theta)hg\nabla h - (1-\theta)\Delta tgh\nabla b \end{pmatrix}$$

θ -scheme and free Jacobian method (II)

A linearization of G gives

$$Jac_{G}^{n}\begin{pmatrix}\delta h^{n}\\\delta u^{n}\end{pmatrix}=B\begin{pmatrix}h^{n}\\u^{n}\end{pmatrix}-G\begin{pmatrix}h^{n}\\u^{n}\end{pmatrix},$$

with $\delta h^n = h^{n+1} - h^n$, $\delta u^n = u^{n+1} - u^n$ and Jac_G^n the Jacobian matrix of G at $\begin{pmatrix} h^n \\ u^n \end{pmatrix}$,

$$Jac_{G}^{n} = \begin{pmatrix} D_{1} & U \\ L & D_{2} \end{pmatrix}$$

with

$$D_{1} = I_{1} + \theta \Delta t \nabla \cdot (\boldsymbol{u}^{n} I_{1}), \quad U = \theta t \nabla \cdot (h^{n} I_{2}),$$

$$L = \boldsymbol{u}^{n} I_{1} + \theta \Delta t \boldsymbol{g} \nabla (h^{n} I_{1}) + \theta \Delta t I_{1} (\boldsymbol{u}^{n} \cdot \nabla) \boldsymbol{u}^{n} + \theta \boldsymbol{g} I_{1} \Delta t \nabla b,$$

$$D_{2} = h^{n} I_{2} + \theta \Delta t h^{n} (\boldsymbol{u}^{n} \cdot \nabla) I_{2} + \theta \Delta t h^{n} (I_{2} \cdot \nabla) \boldsymbol{u}^{n}.$$

Free Jacobian

The full jacobian matrix is not stored, on the contrary, the jacobian matrix is approximated by the relation

$$Jac_{G}^{n}X \approx rac{G\left(\binom{h^{n}}{u^{n}}+\epsilon X\right)-G\binom{h^{n}}{u^{n}}}{\epsilon}$$

which requires the computation of G only.

Preconditioning Algorithm based on P_{schur}

The Schur decomposition gives the following algorithm

while its complement for the Shallow Water system is

$$P_{\rm schur}=D_2-LD_1^{-1}U.$$

Different flows

We want to study different Schur approximations introduced by L. Chacón for MHD flows:

- slow flow,
- arbitrary flow,

in order to compute the linear wave propagation of $P_{\rm schur}$.

L. Chacón: An optimal, parallel, fully implicit Newton-Krylov solver for three-dimensional viscoresistive magnetohydrodynamics, Physics of plasmas 2008.

Courtès, Oberlin, Franck

Physic-Based Preconditioning

Wave equation

Discrete formulation Preconditioning and Schur complement Results on preconditioning for Wave equation

Shallow water equation

Properties of the system θ -scheme for Shallow Water and preconditioning Wave propagation by $P_{\rm schur}$

Slow flow approximation of the Schur complement

Slow flow hypothesis

We assume that the flow is small, consequently $\Delta t |\boldsymbol{u}^n| << 1$. Consequently we obtain that $D_1 \approx I_1$ in this regime.

For a constant velocity \boldsymbol{u}^n , P_{schur} becomes

$$P_{\text{schur}} = D_2 - L I_1 U = h^n I_2 + \theta t h^n \left(\boldsymbol{u}^n \cdot \nabla \right) I_2 + \theta \Delta t h^n \left(I_2 \cdot \nabla \right) \boldsymbol{u}^n - L U,$$

and

 $LU = \theta \Delta t \left(\boldsymbol{u}^{n} + \theta \Delta t \left(\boldsymbol{u}^{n} \cdot \nabla \right) \boldsymbol{u}^{n} \right) \nabla \cdot \left(\boldsymbol{h}^{n} \boldsymbol{l}_{2} \right) + \theta^{2} \Delta t^{2} \nabla \left[\boldsymbol{l}_{2} \cdot \nabla \boldsymbol{p}^{n} + 2 \boldsymbol{p}^{n} \nabla \cdot \boldsymbol{l}_{2} \right].$

Slow flow approximation of the Schur complement

Slow flow hypothesis

We assume that the flow is small, consequently $\Delta t |\boldsymbol{u}^n| << 1$. Consequently we obtain that $D_1 \approx I_1$ in this regime.

For a constant velocity \boldsymbol{u}^n , P_{schur} becomes

$$P_{\text{schur}} = D_2 - L I_1 U = h^n I_2 + \theta t h^n \left(\boldsymbol{u}^n \cdot \nabla \right) I_2 + \theta \Delta t h^n \left(I_2 \cdot \nabla \right) \boldsymbol{u}^n - L U,$$

and

$$LU = \theta \Delta t \left(\mathbf{u}^{n} + \theta \Delta t \left(\mathbf{u}^{n} \cdot \nabla \right) \mathbf{u}^{n} \right) \nabla \cdot \left(\mathbf{h}^{n} \mathbf{l}_{2} \right) + \theta^{2} \Delta t^{2} \nabla \left[\mathbf{l}_{2} \cdot \nabla p^{n} + 2p^{n} \nabla \cdot \mathbf{l}_{2} \right].$$

Hypothesis 1. We neglect the advection term in LU, to obtain the dispersion relation

$$\omega = \left(\theta \frac{\boldsymbol{u}^n \cdot \boldsymbol{n}}{2} \pm \theta \sqrt{h^n g - \frac{(\boldsymbol{u}^n \cdot \boldsymbol{n})^2}{4}}\right) ||\boldsymbol{k}||.$$

Hypthesis 2. We consider now the full LU operator, and we obtain

$$\omega = \pm \theta \sqrt{gh^n} ||\mathbf{k}||.$$

Proof. To prove those two results, we write the motion equation on ξ with $\partial_t \xi = u$ and inject an irrotational linear plane wave.

Courtès, Oberlin, Franck

Arbitrary flow approximation of the Schur

Arbitrary flow hypothesis

The approximation $D_1 \approx l_1$ is not valid anymore, we have to consider D_1^{-1} in P_{schur} .

We introduce the construction of an operator M such that $UM \approx D_1 U$ consequently we obtain that

 $P_{\rm schur} = (D_2 M - L U) M^{-1}.$

The solution of the equation $P_{schur}\delta u = 0$ is given by

$$\begin{cases} (D_2 M - LU)\delta u^* = 0, \\ \delta u = M\delta u^*. \end{cases}$$

We choose

$$M = I_2 + \theta \Delta t \boldsymbol{u}^n \, (\nabla \cdot I_2).$$

For a constant velocity \boldsymbol{u}^n ,

Hypothesis 1. We neglect advection terms in LU to obtain the dispersion relation

 $\omega = \pm \theta \sqrt{gh^n} ||\mathbf{k}||.$

Hypothesis 2. We consider each term of the LU operator to obtain the following dispersion relation

$$\omega = \left(-\theta \frac{\boldsymbol{u}^n \cdot \boldsymbol{n}}{2} \pm \theta \sqrt{h^n g - \frac{3}{4} (\boldsymbol{u}^n \cdot \boldsymbol{n})^2}\right) ||\boldsymbol{k}||.$$

Courtès, Oberlin, Franck

Physic-Based Preconditioning

Perspectives

Theoretical perspectives

- Propose two new approximations of the Schur that are
 - non-negative,
 - partly or fully symmetric,
 - $\label{eq:spectrally close in the fast-flow regime:} \begin{minipage}{0.5 cm} {\pmb u} \cdot {\pmb n} \pm c \mbox{ for the first approximation, and } \pm ({\pmb u} \cdot {\pmb n} + c) \mbox{ for the second one.} \end{minipage}$

Numerical perspectives

- Optimize preconditioning for the wave system,
- Validation of the Shallow Water preconditioning with Jacobian free method,
- Variation of the approximation degrees between the preconditioned and the full model.

We are grateful to our supervisors for their continuous support !

Thank you for your attention

