Uniform asymptotic preserving and well-balanced schemes for stiff hyperbolic systems in diffusion regime

E. Franck¹, C. Buet², B. Després ³ T.Leroy²

Workshop ABPDE 2 , Lille University

17 June 2016

¹INRIA Nancy Grand-Est and IRMA Strasbourg, TONUS team, France ²CEA DAM, Arpajon, France ³LJLL, UPMC, France

Outline

Mathematical and physical context

AP scheme and Uniform convergence in 1D

2D AP scheme on unstructured meshes

WB and AP schemes

Mathematic and physical context

Stiff hyperbolic systems

Stiff hyperbolic system with source terms:

$$\partial_t \mathbf{U} + \frac{1}{\varepsilon} \partial_x F(\mathbf{U}) + \frac{1}{\varepsilon} \partial_y G(\mathbf{U}) = \frac{1}{\varepsilon} S(\mathbf{U}) - \frac{\sigma}{\varepsilon^2} R(\mathbf{U}), \mathbf{U} \in \mathbb{R}^n$$

with $\varepsilon \in]0,1]$ et $\sigma > 0$.

Subset of solutions given by the balance between the source terms and the convective part:

□ **Diffusion solutions** for $\varepsilon \to 0$ and $S(\mathbf{U}) = 0$:

$$\partial_t \mathbf{V} - \operatorname{div} (K(\nabla \mathbf{V}, \sigma)) = 0, \quad \mathbf{V} \in \operatorname{Ker} R.$$

Steady-state for $\sigma = 0$ et $\varepsilon \rightarrow 0$:

$$\partial_x F(\mathbf{U}) + \partial_y G(\mathbf{U}) = S(\mathbf{U}).$$

Applications: biology, neutron transport, fluid mechanics, plasma physics, Radiative hydrodynamic (hydrodynamic + linear transport of photon).

Notion of WB and AP schemes

Acoustic equation with damping and gravity:

$$\begin{cases} \partial_t p + \frac{1}{\varepsilon} \partial_x u = 0, \\ \partial_t u + \frac{1}{\varepsilon} \partial_x p = -\frac{1}{\varepsilon} g - \frac{\sigma}{\varepsilon^2} u, \end{cases}$$

Steady-state:
$$u = C$$
, $\partial_x p = -g - \frac{\sigma}{\varepsilon}C$.

- **Godunov-type** schemes give an error homogeneous to $O(\Delta x)$.
- For nearly uniform flows, spurious velocities larger that physical velocity.
- Important deviation of the steady-state.
- WB scheme: discretize the steady-state exactly of with high accuracy.
- Ref: S. Jin, A steady-state capturing method for hyperbolic method with geometrical source terms.

$$\longrightarrow \partial_t p - \partial_x \left(\frac{1}{\sigma} (\partial_x p + g) \right) = 0.$$

- Consistency of **Godunov-type** schemes: $O(\frac{\Delta x}{\varepsilon} + \Delta t)$.
- CFL condition: $\Delta t (\frac{1}{\Delta x \varepsilon} + \frac{\sigma}{\varepsilon^2}) \leq 1.$
- Consistency of AP schemes: $O(\Delta x + \Delta t)$.
- CFL condition: degenerate on parabolic CFL at the limit.
- Ref: S. Jin, D. Levermore Numerical schemes for hyperbolic conservation laws with stiff relaxation.
- To construct WB and AP schemes: incorporate the source in the fluxes to capture the balance between source and convective terms.

AP scheme and Uniform convergence in 1D

Jin-Levermore scheme

Jin-Levermore scheme. Plug the balance law $\partial_x p = -\frac{\sigma}{\varepsilon} u + O(\varepsilon^2)$ in the fluxes. We write

$$p(x_j) = p(x_{j+\frac{1}{2}}) + (x_j - x_{j+\frac{1}{2}})\partial_x p(x_{j+\frac{1}{2}})$$

Coupling the previous relation (and the same for x_{j+1}) with the fluxes

$$\begin{cases} u_{j} + p_{j} = u_{j+\frac{1}{2}} + p_{j+\frac{1}{2}} + \frac{\sigma_{j+\frac{1}{2}}\Delta x_{j}}{2\varepsilon} u_{j+\frac{1}{2}}, \\ u_{j+1} - p_{j+1} = u_{j+\frac{1}{2}} - p_{j+\frac{1}{2}} + \frac{\sigma_{j+\frac{1}{2}}\Delta x_{j+1}}{2\varepsilon} u_{j+\frac{1}{2}}. \end{cases}$$

Jin-Levermore scheme:

$$\begin{array}{l} \frac{p_j^{n+1}-p_j^n}{\Delta t}+\frac{M_{j+\frac{1}{2}}u_{j+\frac{1}{2}}^n-M_{j-\frac{1}{2}}u_{j-\frac{1}{2}}^n}{\varepsilon\Delta x_j}\\ \frac{u_j^{n+1}-u_j^n}{\Delta t}+\frac{p_{j+\frac{1}{2}}^n-p_j^n}{\varepsilon\Delta x_j}+\frac{\sigma}{\varepsilon^2}u_j^n=0, \end{array}$$

with

$$\begin{pmatrix} u_{j+\frac{1}{2}} = \frac{u_j + u_{j+1}}{2} + \frac{p_j - p_{j+1}}{2} \\ p_{j+\frac{1}{2}} = \frac{p_j + p_{j+1}}{2} + \frac{u_j - u_{j+1}}{2} \end{pmatrix}$$

and $M_{j+\frac{1}{2}} = \frac{2\varepsilon}{2\varepsilon + \sigma_{j+\frac{1}{2}}\Delta x_{j+\frac{1}{2}}}$.

/30

Jin-Levermore scheme

Jin-Levermore scheme. Plug the balance law $\partial_x p = -\frac{\sigma}{\varepsilon} u + O(\varepsilon^2)$ in the fluxes. We write

$$p(x_j) = p(x_{j+\frac{1}{2}}) - (x_j - x_{j+\frac{1}{2}})\frac{\sigma}{\varepsilon}u(x_{j+\frac{1}{2}})$$

Coupling the previous relation (and the same for x_{j+1}) with the fluxes

$$\begin{cases} u_{j} + p_{j} = u_{j+\frac{1}{2}} + p_{j+\frac{1}{2}} + \frac{\sigma_{j+\frac{1}{2}}\Delta x_{j}}{2\varepsilon} u_{j+\frac{1}{2}}, \\ u_{j+1} - p_{j+1} = u_{j+\frac{1}{2}} - p_{j+\frac{1}{2}} + \frac{\sigma_{j+\frac{1}{2}}\Delta x_{j+1}}{2\varepsilon} u_{j+\frac{1}{2}}. \end{cases}$$

Jin-Levermore scheme:

$$\frac{p_j^{n+1} - p_j^n}{\Delta t} + \frac{M_{j+\frac{1}{2}} u_{j+\frac{1}{2}}^n - M_{j-\frac{1}{2}} u_{j-\frac{1}{2}}^n}{\varepsilon \Delta x_j}$$
$$\frac{u_j^{n+1} - u_j^n}{\Delta t} + \frac{p_{j+\frac{1}{2}}^n - p_{j-\frac{1}{2}}^n}{\varepsilon \Delta x_j} + \frac{\sigma}{\varepsilon^2} u_j^n = 0,$$

with

$$\begin{pmatrix} u_{j+\frac{1}{2}} = \frac{u_j + u_{j+1}}{2} + \frac{p_j - p_{j+1}}{2} \\ p_{j+\frac{1}{2}} = \frac{p_j + p_{j+1}}{2} + \frac{u_j - u_{j+1}}{2} \end{pmatrix}$$

and $M_{j+rac{1}{2}} = rac{2arepsilon}{2arepsilon+\sigma_{j+rac{1}{2}}\Delta x_{j+rac{1}{2}}}.$

/ 30

Jin-Levermore scheme II

Consistency error of the Jin-Levermore scheme and classical scheme (uniform mesh):

- □ First equation: $O(\Delta x + \Delta t)$ (ref $\left(\frac{\Delta x}{\varepsilon} + \Delta t\right)$ for the classical scheme)
- $\Box \text{ Second equation: } O\left(\frac{\Delta x^2}{\varepsilon} + \Delta t\right) \left(\text{ref}\left(\frac{\Delta x^2}{\varepsilon} + \Delta t\right) \text{ for the classical scheme}\right)$

Time discretization:

- $\Box \quad \text{Explicit CFL: } \Delta t \left(\frac{1}{\Delta x \varepsilon + \varepsilon} \right) \leq 1$
- $\Box \quad \text{Semi-implicit CFL} : \Delta t \left(\frac{1}{\Delta x \varepsilon} \right) \leq 1.$

Well-balanced property:

- □ Uniform mesh: the scheme is WB,
- $\hfill\square$ Non-uniform mesh: the scheme is not WB.

Gosse-Toscani scheme

- Classical strategy: Localization of the source at the interface and the Riemann problem associated.
- Other solution: we take the following source term $\frac{1}{2}(u_{j+\frac{1}{2}} + u_{j-\frac{1}{2}})$ with the JL scheme.

Gosse-Toscani scheme:

$$\begin{cases} \frac{p_{j}^{n+1}-p_{j}^{n}}{\Delta t} + \frac{M_{j+\frac{1}{2}}u_{j+\frac{1}{2}}-M_{j-\frac{1}{2}}u_{j-\frac{1}{2}}}{\varepsilon\Delta x_{j}} \\ \frac{u_{j}^{n+1}-u_{j}^{n}}{\Delta t} + \frac{M_{j+\frac{1}{2}}p_{j+\frac{1}{2}}-M_{j-\frac{1}{2}}p_{j-\frac{1}{2}}}{\varepsilon\Delta x_{j}} - \frac{M_{j+\frac{1}{2}}-M_{j-\frac{1}{2}}}{\Delta x_{j}\varepsilon}p_{j}^{n} + \left(\frac{\sigma_{j+\frac{1}{2}}\Delta x_{j+\frac{1}{2}}}{2\varepsilon^{2}\Delta_{j}} + \frac{\sigma_{j-\frac{1}{2}}\Delta x_{j-\frac{1}{2}}}{2\varepsilon^{2}\Delta_{j}}\right)u_{j}^{n} = 0\end{cases}$$

with

$$u_{j+\frac{1}{2}} = \frac{u_j^n + u_{j+1}^n}{2} + \frac{p_j^n - p_{j+1}^n}{2}, \qquad p_{j+\frac{1}{2}} = \frac{p_j^n + p_{j+1}^n}{2} + \frac{u_j^n - u_{j+1}^n}{2}$$

and $M_{j+\frac{1}{2}} = \frac{2\varepsilon}{2\varepsilon + \sigma_{j+\frac{1}{2}}\Delta x_{j+\frac{1}{2}}}$.

- **Consistency error** of the Gosse-Toscani (uniform mesh): $O(\Delta x + \Delta t)$
- Time discretization:
 - $\Box \quad \text{Explicit CFL: } \Delta t\left(\frac{1}{\Delta x \varepsilon}\right) \leq 1, \quad \text{Semi-implicit CFL: } \Delta t\left(\frac{1}{\Delta x \varepsilon + \Delta x^2}\right) \leq 1.$
- Well-balanced property: WB scheme on all meshes.

Numerical example

Validation test for the AP scheme: the data are p(0, x) = G(x) with G(x) a Gaussian u(0, x) = 0 and $\sigma = 1$, $\varepsilon = 0.001$.

Scheme	L ² error	CPU time
Godunov, 10000 cells	0.0376	505 sec
Godunov, 500 cells	0.42	5.31 sec
AP-JL, 500 cells	4.3E-3	5.42 sec
AP-JL, 50 cells	0.012	0.46 sec
AP-GT, 500 cells	1.3E-4	2.38 sec
AP-GT, 50 cells	0.012	0.013 sec

30

Numerical example

Validation test for the AP scheme: the data are p(0, x) = G(x) with G(x) a Gaussian u(0, x) = 0 and $\sigma = 1$, $\varepsilon = 0.001$.

Scheme	L ² error	CPU time
Godunov, 10000 cells	0.0376	505 sec
Godunov, 500 cells	0.42	5.31 sec
AP-JL, 500 cells	4.3E-3	5.42 sec
AP-JL, 50 cells	0.012	0.46 sec
AP-GT, 500 cells	1.3E-4	2.38 sec
AP-GT, 50 cells	0.012	0.013 sec

30

Test for Well-Balanced property

- We propose to validate the Well-Balanced property.
- For this, we initialize the scheme with a steady state and simulate with a large final time $(T_f=20)$.
- Steady state:

$$\begin{cases} u(t,x) = C_1 \\ p(t,x) = -(g + \frac{\sigma}{\varepsilon}C_1)x + C_2 \end{cases}$$

Scheme/mesh	Uniform Mesh	Random Mesh
Godunov, 100 cells	0.0	2.83E-3
Godunov, 1000 cells	5.0E-17	2.7E-4
AP-JL, 100 cells	0.0	3.3E-3
AP-JL, 1000 cells	6.3E-17	3.9E-4
AP-GT, 100 cells	3.1E-16	3.1E-16
AP-GT, 1000 cells	3.0E-16	2.8E-15

Test for uniform convergence in 1D

 ε dependent periodic solution for the P_1 model.

$$p(t,x) = (\alpha(t) + \frac{\varepsilon^2}{\sigma} \alpha'(t)) \cos(\pi x), \quad u(t,x) = \left(-\frac{\varepsilon}{\sigma} \alpha(t) \sin(\pi x)\right)$$

Convergence study for $\varepsilon = h^{\gamma}$ on random mesh.

- The GT scheme and the JL scheme (only on uniform mesh) are uniform AP with the error $O(h\varepsilon + h^2)$.
- On Random mesh the JL scheme is not an uniform AP scheme.

Test for uniform convergence in 1D

- ε dependent periodic solution for the P_1 model.
- $P(t,x) = (\alpha(t) + \frac{\varepsilon^2}{\sigma} \alpha'(t)) \cos(\pi x), \quad u(t,x) = \left(-\frac{\varepsilon}{\sigma} \alpha(t) \sin(\pi x)\right)$
- Convergence study for $\varepsilon = h^{\gamma}$ on random mesh.

- The GT scheme and the JL scheme (only on uniform mesh) are uniform AP with the error $O(h\varepsilon + h^2)$.
- On Random mesh the JL scheme is not an uniform AP scheme.

Analysis of AP schemes: modified equations

- To understand the behavior of the scheme, we use the modified equations method.
- The modified equation associated with the Upwind scheme is

$$\begin{array}{l} \partial_t p + \frac{1}{\varepsilon} \partial_x u - \frac{\Delta x}{2\varepsilon} \partial_{xx} p = 0, \\ \partial_t u + \frac{1}{\varepsilon} \partial_x p - \frac{\Delta x}{2\varepsilon} \partial_{xx} u = -\frac{\sigma}{\varepsilon^2} u. \end{array}$$

Plugging $\varepsilon \partial_x p + O(\varepsilon^2) = -\sigma u$ in the first equation, we obtain the diffusion limit

$$\partial_t p - \frac{1}{\sigma} \partial_{xx} p - \frac{\Delta x}{2\varepsilon} \partial_{xx} p = 0.$$

Conclusion: the regime is captured only on fine grids.

The modified equation associated to the Gosse-Toscani scheme is

$$\begin{cases} \partial_t p + \frac{M_t^2}{2\varepsilon} \partial_x u - \frac{M_{2\varepsilon}^{\Delta x}}{2\varepsilon} \partial_{xx} p = 0, \\ \partial_t u + \frac{M_t^2}{\varepsilon} \partial_x p - \frac{M_{2\varepsilon}^{\Delta x}}{2\varepsilon} \partial_{xx} u = -M_{\varepsilon^2}^{\sigma} u. \end{cases}$$

Plugging $M\varepsilon\partial_x p + O(\varepsilon^2) = -M\sigma u$ in the first equation, we obtain the diffusion limit

$$\partial_t p - \frac{M}{\sigma} \partial_{xx} p - \frac{1-M}{\sigma} \partial_{xx} p = 0$$

• **Conclusion**: the regime is captured on all grids.

Conclusion of the Uniform convergence

AP schemes on uniform grids

- AP schemes modify the numerical diffusion to correct the classical scheme on coarse grid.
- Generally these schemes are uniformly AP on uniform grids.

AP schemes on non-uniform grids

- On non-uniform grids the situation is more complex.
- For example the JL scheme does not converge in the intermediary regimes.
- Possible Explanation: since the linear steady states are not preserved the limit diffusion scheme in these regimes does not converge.

Open question

Link between AP and Well-Balanced schemes for linear steady states. Sufficient condition ? Necessary condition ?

Uniform convergence in space

- Naive convergence estimate : $||P_h^{\varepsilon} P^{\varepsilon}||_{naive} \leq C \varepsilon^{-b} h^c$
- **Idea**: use triangular inequalities and AP diagram (Jin-Levermore-Golse).

$$||P_h^{\varepsilon} - P^{\varepsilon}||_{L^2} \leq \min(||P_h^{\varepsilon} - P^{\varepsilon}||_{\textit{naive}}, ||P_h^{\varepsilon} - P_h^0|| + ||P_h^0 - P^0|| + ||P^{\varepsilon} - P^0||)$$

We using $\min(x, y + z) \le \min(x, y) + \min(x, z)$ and $d \ge c$, $e \ge a$ to obtain

$$P_h^{\varepsilon} - P^{\varepsilon}||_{L^2} \le C\left(\min(\varepsilon^{-b}h^c, \varepsilon^e) + h^d + \min(\varepsilon^{-b}h^c, \varepsilon^a)\right) \le 2C\left(h^d + \min(\varepsilon^{-b}h^c, \varepsilon^a)\right)$$

Defining
$$\varepsilon_{threshold}^{-b}h^c = \varepsilon_{threshold}^a$$
 we obtain $\min(\varepsilon^{-b}h^c, \varepsilon^a) \le \varepsilon_{threshold}^a = h^{\frac{ac}{a+b}}$ and

$$||P_h^{\varepsilon} - P^{\varepsilon}||_{L^2} \le h^{\frac{ac}{a+b}}$$

Uniform convergence for the Gosse-Toscani scheme

Space result:

We assume that $\|\mathbf{V}^{\varepsilon}(0) - \mathbf{V}_{h}^{\varepsilon}(0)\|_{L^{2}(\Omega)} \leq Ch \| p(0) \|_{H^{2}}$ and $C_{1}h < \Delta x_{j} < C_{2}h \quad \forall j$. There exist C(T) > 0 such that:

$$\|\mathbf{V}^{\varepsilon}-\mathbf{V}_{h}^{\varepsilon}\|_{L^{2}([0,T]\times\Omega)} \leq C\min\left(\sqrt{\frac{h}{\varepsilon}},h+2\varepsilon\right) \|p_{0}\|_{H^{3}(\Omega)} \leq Ch^{\frac{1}{3}} \|p_{0}\|_{H^{3}(\Omega)}$$

- Proof: we prove all the intermediary estimates. We use the triangular inequality and we conclude.
- **Time discretization**: Using a abstract formulation of implicit scheme (B. Després) we obtain

Final result:

We assume that $\|\mathbf{V}^{\varepsilon}(0) - \mathbf{V}_{h}^{\varepsilon}(0)\|_{L^{2}(\Omega)} \leq Ch \| p(0) \|_{H^{2}}$ and $C_{1}h < \Delta x_{j} < C_{2}h \quad \forall j$. There exist C(T) > 0 such that:

$$\|\mathbf{V}^{\varepsilon}(n\Delta t) - \mathbf{V}^{\varepsilon}_{h}(n\Delta t)\|_{L^{2}(\Omega)} \leq C(h^{\frac{1}{3}} + \Delta t^{\frac{1}{2}}) \parallel p_{0} \parallel_{H^{3}(\Omega)}$$

2D AP scheme on unstructured meshes

Schémas "Asymptotic preserving" 2D

Classical extension in 2D of the Jin-Levermore scheme : modify the upwind fluxes (1D fluxes write in the normal direction) plugging the steady-state in the fluxes.

I_{jk} and \mathbf{n}_{jk} the normal and length associated with the edge $\partial \Omega_{jk}$.

Asymptotic limit of the hyperbolic scheme:

$$\mid \Omega_j \mid \partial_t p_j(t) - rac{1}{\sigma} \sum_k l_{jk} rac{p_k^n - p_j^n}{d(\mathbf{x}_j, \mathbf{x}_k)} = 0.$$

- $||P_h^0 P_h|| \rightarrow 0$ only on strong geometrical conditions.
- Additional difficulty in 2D: The basic extension of AP schemes do not converge on 2D general meshes $\forall \epsilon$.

E. Franck

Nodal scheme : linear case

Linear case: *P*₁ model

$$\begin{cases} \partial_t p + \frac{1}{\varepsilon} \operatorname{div}(\mathbf{u}) = 0, \\ \partial_t \mathbf{u} + \frac{1}{\varepsilon} \nabla p = -\frac{\sigma}{\varepsilon^2} \mathbf{u}. \end{cases} \longrightarrow \partial_t p - \operatorname{div}\left(\frac{1}{\sigma} \nabla p\right) = 0. \end{cases}$$

Idea:

Nodal finite volume methods for P_1 model + AP and WB method.

Nodal schemes:

The fluxes are localized at the nodes of the mesh (for the classical scheme this is at the edge).

Nodal geometrical quantities $\mathbf{C}_{jr} = \nabla_{\mathbf{x}_r} |\Omega_j|$.

30

2D AP schemes

Nodal AP schemes

$$|\Omega_j| \partial_t \mathbf{p}_j(t) + \frac{1}{\varepsilon} \sum_r (\mathbf{u}_r, \mathbf{C}_{jr}) = 0,$$

$$|\Omega_j| \partial_t \mathbf{u}_j(t) + \frac{1}{\varepsilon} \sum_r \mathbf{p} \mathbf{c}_{jr} = \mathbf{S}_j.$$

Classical nodal fluxes:

$$\left\{ \begin{array}{l} \mathbf{p}\mathbf{c}_{jr} - \rho_j \mathbf{C}_{jr} = \widehat{\alpha}_{jr} (\mathbf{u}_j - \mathbf{u}_r), \\ \sum_j \mathbf{p}\mathbf{c}_{jr} = \mathbf{0}, \end{array} \right.$$

with $\widehat{\alpha}_{jr} = \frac{\mathbf{C}_{jr} \otimes \mathbf{C}_{jr}}{\|\mathbf{C}_{jr}\|}.$

New fluxes obtained plugging steady-state $\nabla p = -\frac{\sigma}{\varepsilon} \mathbf{u}$ in the fluxes:

$$\begin{cases} \mathbf{p}\mathbf{c}_{jr} - p_j\mathbf{C}_{jr} = \widehat{\alpha}_{jr}(\mathbf{u}_j - \mathbf{u}_r) - \frac{\sigma}{\varepsilon}\widehat{\beta}_{jr}\mathbf{u}_r, \\ \left(\sum_j \widehat{\alpha}_{jr} + \frac{\sigma}{\varepsilon}\sum_j \widehat{\beta}_{jr}\right)\mathbf{u}_r = \sum_j p_j\mathbf{C}_{jr} + \sum_j \widehat{\alpha}_{jr}\mathbf{u}_j \end{cases}$$

with $\widehat{\beta}_{jr} = \mathbf{C}_{jr} \otimes (\mathbf{x}_r - \mathbf{x}_j).$

- Source term: (1) $\mathbf{S}_j = -\frac{\sigma}{\varepsilon^2} | \Omega_j | \mathbf{u}_j$ ou (2) $\mathbf{S}_j = -\frac{\sigma}{\varepsilon^2} \sum_r \widehat{\beta}_{jr} \mathbf{u}_r$, $\sum_r \widehat{\beta}_{jr} = \widehat{l}_d |\Omega_j|$.
- Using the second source term and rewriting the scheme we obtain an local semi implicit scheme with a CFL independent of ε .

Diffusion scheme

Limit diffusion scheme (P_h^0)

$$\begin{cases} \mid \Omega_{j} \mid \partial_{t} p_{j}(t) - \sum_{r} (\mathbf{u}_{r}, \mathbf{C}_{jr}) = 0, \\ \sum_{r} \hat{\alpha}_{jr} \mathbf{u}_{j} = \sum_{r} \hat{\alpha}_{jr} \mathbf{u}_{r}, \\ \sigma A_{r} \mathbf{u}_{r} = \sum_{j} p_{j} \mathbf{C}_{jr}, \quad A_{r} = -\sum_{j} \mathbf{C}_{jr} \otimes (\mathbf{x}_{r} - \mathbf{x}_{j}). \end{cases}$$

- **Problem**: estimate $||P_h^{\varepsilon} P_h^0||$.
- In practice, we have obtained $||P_h^{\varepsilon} P_h^{0}|| \le C \frac{\varepsilon}{h}.$

Condition H:

The discrete Hessian of P_h^0 can be bounded or the error estimate $||P_h^{\varepsilon} - P_h^0||$ can be obtained independently of the discrete Hessian.

WB and AP schemes

30

Diffusion scheme

Limit diffusion scheme (P_h^0)

$$\begin{cases} \mid \Omega_j \mid \partial_t p_j(t) - \sum_r (\mathbf{u}_r, \mathbf{C}_{jr}) = 0, \\ \sum_r \hat{\alpha}_{jr} \mathbf{u}_j = \sum_r \hat{\alpha}_{jr} \mathbf{u}_r, \\ \sigma A_r \mathbf{u}_r = \sum_j p_j \mathbf{C}_{jr}, \quad A_r = -\sum_j \mathbf{C}_{jr} \otimes (\mathbf{x}_r - \mathbf{x}_j). \end{cases}$$

- **Problem**: estimate $||P_h^{\varepsilon} P_h^0||$.
- In practice, we have obtained $||P_h^{\varepsilon} P_h^{0}|| \le C \frac{\varepsilon}{h}.$
- Introduction of an intermediary diffusion scheme DA_h^{ε} .

• DA_h^{ε} : P_h^{ε} scheme with $\partial_t \mathbf{F}_j = \mathbf{0}$.

In the previous estimation we replace P_h^0 by DA_h^{ε} .

30

Condition H:

The discrete Hessian of P_h^0 can be bounded or the error estimate $||P_h^{\varepsilon} - P_h^0||$ can be obtained independently of the discrete Hessian.

WB and AP schemes

Final results

Space result:

We assume that the meshes and the data are regular and the initial datas well-preraped. There exist C(T) > 0 such that:

$$\|\mathbf{V}^arepsilon - \mathbf{V}^arepsilon_h\|_{L^2([0,T] imes \Omega)} \leq C f(h,arepsilon) \parallel p_0 \parallel_{H^4(\Omega)} \leq C h^rac{1}{4} \parallel p_0 \parallel_{H^4(\Omega)}$$

with

$$f(h,\varepsilon) = \min\left(\sqrt{\frac{h}{\varepsilon}}, \varepsilon \max\left(1, \sqrt{\frac{\varepsilon}{h}}\right) + h + (h + \varepsilon) + \varepsilon\right)$$

Introducing $\varepsilon_{thresh} = h^{\frac{1}{2}}$ we prove that the worst case is $\|\mathbf{V}^{\varepsilon} - \mathbf{V}_{h}^{\varepsilon}\| \le C_{2}h^{\frac{1}{4}}$.

Space-time result:

Wa assume that the assumptions are verified. There exist C > 0 such that:

$$\|\mathbf{V}^{\varepsilon}(t_n) - \mathbf{V}^{\varepsilon}_h(t_n)\|_{L^2(\Omega)} \leq C\left(f(h,\varepsilon) + \Delta t^{\frac{1}{2}}\right) \parallel p_0 \parallel_{H^4(\Omega)}$$

Remark: The condition H is not satisfied. The diffusion scheme used is DA_{ε} .

Intermediary results I

Estimation of $||\mathbf{V}^{\varepsilon} - \mathbf{V}_{h}^{\varepsilon}||$:

We assume that assumptions are verified. There exist C > 0 such that:

$$\|\mathbf{V}_{h}^{\varepsilon}-\mathbf{V}^{\varepsilon}\|_{L^{\infty}((0,T):L^{2}(\Omega))}\leq C\sqrt{\frac{h}{\varepsilon}}.$$

- Principle of proof:
 - \Box Control the stability of the discrete quantities \mathbf{u}_r and \mathbf{u}_j by ε
 - □ We define the error $E(t) = ||\mathbf{V}^{\varepsilon} \mathbf{V}_{h}^{\varepsilon}||_{L^{2}}$ and we estimate E'(t) using Young and Cauchy-Schwartz inequalities, stability estimates and integration in time.

Estimation of $||DA_h^{\varepsilon} - P^0||$:

Wa assume that the assumptions are verified. There exist $C_1 > 0$ such that:

$$||\mathbf{V}_h^0 - \mathbf{V}^0||_{L^2(\Omega)} \leq C_1(T)(h + \varepsilon), \qquad 0 < t \leq T.$$

Principle of proof:

- □ Control the stability of the discrete quantities $\nabla_r p$ and p_j .
- $\hfill\square$ Consistance study of Div and Grad discrete operators.
- \Box L² estimate using consistency error and Gronwall lemma.

Intermediary results II

Estimate $||P_h^{\varepsilon} - DA_h^{\varepsilon}||$:

We assume that the assumptions are verified. There exist $C_2(T) > 0$ such that:

$$\|\mathbf{V}_h^{\varepsilon} - \mathbf{V}_h\|_{L^2(\Omega)} \le C_2(T)\varepsilon \max\left(1,\sqrt{\varepsilon h^{-1}}\right) + Ch, \qquad 0 < t \le T.$$

Estimate $||P^{\varepsilon} - P^{0}||$:

We assume that the assumptions are verified. There exist $C_3(T) > 0$ such that:

$$||\mathbf{V}^{\varepsilon} - \mathbf{V}^{0}||_{L^{2}(\Omega)} \leq C_{3}(T)\varepsilon, \qquad 0 < t \leq T.$$

Principe of proof:

- □ Write $P^0 = P^{\varepsilon} + R$ (resp $DA_h^{\varepsilon} = P_h^{\varepsilon} + R$) with R a residue.
- \Box Find a bound with ε of the residue.
- $\hfill\square\hfill\hf$

AP scheme vs classical scheme

Diffusion solution

Test case: heat fundamental solution. Results for different hyperbolic scheme with $\varepsilon = 0.001$ on Kershaw mesh.

Non AP scheme

1.5

0.5

0

1.5 3 2

0.5

2

2

-1 -2

Uniform convergence

 ε dependent periodic solution for the P_1 model.

•
$$p(t, \mathbf{x}) = (\alpha(t) + \frac{\varepsilon^2}{\sigma} \alpha'(t)) \cos(\pi x) \cos(\pi y)$$

 $u(t, \mathbf{x}) = \left(-\frac{\varepsilon}{\sigma}\alpha(t)\sin(\pi x)\cos(\pi y), -\frac{\varepsilon}{\sigma}\alpha(t)\sin(\pi y)\cos(\pi x)\right)$

• Convergence study for $\varepsilon = h^{\gamma}$ on random mesh.

- Numerical results show that the error is homogenous to $O(h\varepsilon + h^2)$.
- Theoretical estimate that we can hope: $O((h\varepsilon)^{\frac{1}{2}} + h)$.
- Non optimal estimation in the intermediary regime.

30

Uniform convergence

 ε dependent periodic solution for the P_1 model.

•
$$p(t, \mathbf{x}) = (\alpha(t) + \frac{\varepsilon^2}{\sigma} \alpha'(t)) \cos(\pi x) \cos(\pi y)$$

• $\mathbf{u}(t, \mathbf{x}) = \left(-\frac{\varepsilon}{\sigma}\alpha(t)\sin(\pi x)\cos(\pi y), -\frac{\varepsilon}{\sigma}\alpha(t)\sin(\pi y)\cos(\pi x)\right)$

Convergence study for $\varepsilon = h^{\gamma}$ on random mesh.

- Numerical results show that the error is homogenous to $O(h\varepsilon + h^2)$.
- Theoretical estimate that we can hope: $O((h\varepsilon)^{\frac{1}{2}} + h)$.
- Non optimal estimation in the intermediary regime.

30

Conclusion of the 2D case

AP schemes on unstructured grids

- Contrary the classical scheme the nodal scheme allows to obtain the uniform AP property
- However there are spurious mods for non smooth datas (possible stabilization).
- Other scheme: MPFA-AP scheme without spurious mods but the uniform convergence is an open question.

Extension

- We propose AP schemes for Friedrich's systems using a particular splitting between the P₁ model and a rest (close to micro-macro decomposition).
- The nodal scheme is also use to construct an AP scheme for Euler with friction and the M_1 model.

Reduced bibliography

- 1D asymptotic preserving schemes
 - □ S. Jin, D. Levermore, Numerical schemes for hyperbolic conservation laws with stiff relaxation terms, (1996).
 - C. Berthon, R. Turpault, Asymptotic preserving HLL schemes, (2011).
 - □ L. Gosse, G. Toscani, An asymptotic-preserving well-balanced scheme for the hyperbolic heat equations, (2002).
 - □ C. Berthon, P. Charrier and B. Dubroca, An HLLC scheme to solve the M₁ model of radiative transfer in two space dimensions, (2007).
 - □ C. Chalons, M. Girardin, S. Kokh, Large time step asymptotic preserving numerical schemes for the gas dynamics equations with source terms, (2013).

Well balanced schemes

- □ R. Natalini and M. Ribot, An asymptotic high order mass-preserving scheme for a hyperbolic model of chemotaxis, (2012).
- □ V. Desveaux, M. Zenk, C. Berthon, C. Klingenberg, A well-balanced scheme to capture non-explicit steady states in the Euler equations with gravity, (2015).
- □ J. Greenberg, A. Y. Leroux, A well balanced scheme for the numerical processing of source terms in hyperbolic equations, (1996).
- 2D asymptotic preserving schemes
 - □ A. Duran, F. Marche, R.Turpault, C. Berthon, *Asymptotic preserving scheme for the shallow water equations with source terms on unstructured meshes*, (2015).
 - C. Berthon, G. Moebs, C. Sarazin-Desbois and R. Turpault, An AP scheme for systems of conservation laws with source terms on 2D unstructured meshes, (2014).

