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Derivation and study of Fluid models
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Hierarchy of Models

� Microscopic model: N-Body model. We write the dynamical Newton equation for
each particle: {

dγmv i
dt = ∑j q(E j + v i ×B j )

dx i
dt = v i

� Unrealistic approach: we must solve N coupled equations with N ≈ 1016 − 1020.

� Mesoscopic model: Kinetic Vlasov model. Taking the limit of the N-Body model we
obtain an equation on the distribution of the particles:

∂t f (t, x , v ) + v · ∇f + F ext · ∇v f = Q(f , f )

with F ext the external force (gravity, Lorentz force, etc).

� Macroscopic model: Fluid models (moment models). If we are close to the
equilibrium, taking the three first moments of the distribution function we obtain:

∂tU +∇ · F (U) + ε∇ · (D(∇U)) = 0

� Examples : hyperbolic models (Euler, Euler-Lorentz, ideal MHD), parabolic models
(Navier-Stokes, Resistive MHD).
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Vlasov equations and equilibrium
� First model to describe a plasma : Two species Vlasov-Maxwell kinetic equation.

� We define fs (t, x, v) the distribution function associated with the species s.

Two-species Vlasov equation
∂t fs + v · ∇xfs +

qs
ms

(E + v×B) · ∇vfs = Cs = ∑
t

Cst ,

1
c2 ∂tE −∇×B = −µ0J,

∂tB = −∇× E ,
∇ ·B = 0, ∇ · E = σ

ε0
.

Energy conservation

d

dt

(
1

2 ∑
s

∫
ms fs | v |2 dxdv +

1

2µ0c2

∫
| E |2 dx +

1

2µ0

∫
| B |2 dx

)
= 0.

� Properties of the collision operator

� For each species:
∫
R3 msvCssdv = 0,

∫
R3

1
2ms | v |2 Cssdv = 0,

� No conversion of particles:
∫
R3 msvCs1s2dv = 0

� Global momentum and energy conservation:
∫
R3 g (v)sCstdv +

∫
R3 g (v)tCtsdv = 0

with g (v) = msv or g (v) = ms
1
2 | v |2
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Two-fluid model
� Computing the moments of the Vlasov equation we obtain the following model

Two fluid moments

∂tns +∇x · (msnsus ) = 0,

∂t (msnsus ) +∇x · (msnsus ⊗ us ) +∇xps +∇x ·Πs = σsE + Js ×B + Rs ,

∂t (msnsεs ) +∇x · (msnsusεs + psus ) +∇x ·
(

Πs · us + qs

)
= σsE · us +Qs + Rs · us ,

1
c2 ∂tE −∇×B = −µ0J,

∂tB = −∇× E ,
∇ ·B = 0, ∇ · E = σ

ε0
.

� ns =
∫
R3 fsdv the particle number , msnsus =

∫
R3 msvfsdv the momentum, εs the

total energy and ρs = msns the density.

� The isotropic pressures are ps , the stress tensors Πs and the heat fluxes qs .
� Rs and Qs are associated with the interspecies collision (force and energy transfer).
� The current is given by J = ∑s Js = ∑s σsus with σs = qsns .

Energy conservation

d

dt

(∫
Dx

(ρe εe + ρi ε i ) +
1

2µ0c2

∫
Dx

| E |2 dx +
1

2µ0

∫
Dx

| B |2 dx

)
= 0
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MHD: assumptions and generalized Ohm’s law

MHD: assumptions
� quasi neutrality assumption: ni = ne =⇒ ρ ≈ mini +O(me

mi
), u ≈ u i +O(me

mi
)

� Magneto-static assumption : ∇×B = µ0J +O( V0
c ).

� We define ρ = ρi + ρe and u = ρiu i+ρeue
ρ .

Velocity relation

� Consequence of the quasi-neutrality:

ue = u − mi

eρ
J +O

(
me

mi

)

� Summing the mass and moment equation for the two species we obtain:

∂tρ +∇ · (ρu) = 0

ρ∂tu + ρu · ∇u +∇p = J ×B−∇ ·Π +O

(
me

mi

)
� For the pressure equation, we replace the electronic velocity by full velocity using the

previous relation.
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MHD: derivation
� Ohm law: Relation between the electric field and the other variables.

� Taking the electron density and momentum equations we obtain

me (∂t (neue ) +∇ · (neue ⊗ ue )) +∇pe = −eneE + Je ×B −∇ ·Πe + Re ,

� We multiply the previous equation by −e and we define Je = −eneue , we obtain

me

e2ne
(∂tJe +∇ · (Je ⊗ ue )) = E + ue ×B +

1

ene
∇pe +

1

ene
∇ ·Πe −

1

ene
Re ,

� Using the quasi neutrality Re = η e
mi

ρJ and ue = u − mi
eρ J we obtain

Generalized Ohm’s law

E + u ×B︸ ︷︷ ︸
drift velocity

= ηJ︸︷︷︸
resistivity

+
mi

ρe
J ×B︸ ︷︷ ︸

hall term

−mi

ρe
∇pe −

mi

ρe
∇ ·Πe︸ ︷︷ ︸

pressure term

+O

(
me

mi

)
.

Final simplification (
me

mi

)
<< 1

(
V0

c

)
<< 1
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Extended MHD: model

Extended MHD



∂tρ +∇ · (ρu) = 0,

ρ∂tu + ρu · ∇u +∇p = J ×B−∇ ·Π,

1

γ− 1
∂tpi +

1

γ− 1
u · ∇pi +

γ

γ− 1
pi∇ · u +∇ · qi = −Πi : ∇u,

1

γ− 1
∂tpe +

1

γ− 1
u · ∇pe +

γ

γ− 1
pe∇ · u +∇ · qe =

1

γ− 1

mi

eρ
J ·
(
∇pe − γpe

∇ρ

ρ

)
−Πe : ∇u + Πe : ∇

(
mi
eρ J

)
+ η|J |2,

∂tB = −∇×
(
−u ×B + ηJ−mi

ρe
∇ ·Πe −

mi

ρe
∇pe +

mi

ρe
(J ×B)

)
,

∇ ·B = 0, ∇×B = J.

� Remark: We can write easily the equation on the total pressure pe + pi .

� In Black: ideal MHD. In Black and blue: Viscous-resistive MHD. All the term: Extended
MHD.
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MHD Invariants

MHD Invariants

� The mass ρ the momentum ρu and the total energy E = ρ |u|
2

2 + |B |2
2 + 1

γ−1p with

p = ρT are conserved in time.

Sketch of proof
� Mass and momentum conservation: divergence form + the flux-divergence theorem +

null BC.

� Total energy: multiply the first equation by |u|
2

2 the second by u and the last one by
B we obtain

∂tE +∇ ·
[
u
(

ρ
|u|2

2
+

γ

γ− 1
p

)
− (u ×B)×B

]
+∇ · q +∇ · (Π · u) + η∇ · (J ×B)

+∇ ·
[
mi

ρe

(
(J ×B)×B −∇pe ×B −∇ ·Πe ×B − γ

γ− 1
peJ − J ·Πe

)]
= 0

with Π = Πi + Πe and q = qi + qe .

� We conclude with the divergence-flux theorem + BC null.
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Closure

Stress tensor and heat flux

� Closure: Write the dependency of Π and q with the variables p, u and ρ.

Π = Π(W, b, p) q = q(T , b), with W = ∇u +∇uT − 2

3
∇ · u

� Total Stress tensor Π = Πi + Πe ≈ Πi since |Πe |
|Πi |

= O(me
mi

).

� Stress tensor expansion Π = Π‖ + δ2Πgv + δ4Π⊥ =⇒ Π ≈ Π‖ + δ2Πgv .

� ∇ ·Π‖ dissipate energy, not ∇ ·Πgv (indeed Πgv : ∇u = 0)

� qi ,e = −ni ,e
(

χi ,e
‖ (b · ∇Ti ,e )b + χi ,e

c b×∇Ti ,e + χi ,e
⊥ b× (b×∇Ti ,e )

)

Simplification of the velocity
� Velocity expansion of is used in JOREK

‖ B ‖2 u = (u, B)B︸ ︷︷ ︸
u‖

+ (E ×B)︸ ︷︷ ︸
uE

+
mi

ρe
(B ×∇pi )︸ ︷︷ ︸

ui

+O(δ)
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Reduction in the JOREK model
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Full MHD simplification

Full MHD simplification I
� Parallel viscous heating: is neglected,

� Parallel stress tensor: ∇ ·Π‖ ≈ ∆uE + ∆u∗i ,

� Pressure equation: the following terms are neglected

1

γ− 1

mi

eρ
J ·
(
∇pe − γpe

∇ρ

ρ

)
+ η|J |2,

� Momentum equation: gyro-viscous cancelation

ρ∂tu∗i + ρ(uE + u∗i + u‖) · ∇u∗i +∇ ·Π
gv
≈ ∇χ− ρu∗i · ∇u‖ with ∇χ << ∇p.

� Momentum equation: Perp momentum equation only on uE with the gv cancelation.

Projection for parallel and poloidal velocity

eφ · ∇ × R2 (ρ∂tu + ρu · ∇u +∇p = J ×B + ν4u)

and
B · (ρ∂tu + ρu · ∇u +∇p = J ×B + ν4u) .
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MHD simplification II

Reduced MHD simplification
� Magnetic field:

B = Bφ +Bpol =
F0

R
eφ +

1

R
∇ψ× eφ

� Pressure: Pe = P
1+Ti /Te

� Parallel velocity: u‖ ≈
(u,B)B
‖Bφ‖2

� Perpendicular velocity:

uE + u∗i ≈
(E ×Bφ)

‖ Bφ ‖2
+

mi

ρe

(Bφ ×∇pi )
‖ Bφ ‖2

= −R∇u × eφ + τIC
R

ρ

(
eφ ×∇P

)
� Viscous term: ∆uE ≈ ∆w

Full model
� Without the diamagnetic and neoclassical terms, the model of JOREK [1]-[2] dissipate

the total energy if we add some small terms [3].

� Problem: With diamagnetic terms we don’t have an energy estimate signed.
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New model proposed
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Full MHD simplification

Closure

� The closure are detailed in [4].

� No gyro-viscous cancelation and no neglect terms in the pressure equation.

� Parallel stress tensor:

∇ ·Π‖ = Gb · ∇b− 1

3
∇G + b · ∇G , Π‖ : ∇u = − 1

3η0
G2

with G = −η0(2b · ∇v‖ − ((b · ∇b) · u⊥)).

� Gyro-viscous stress tensor:

∇ ·Πgv = −ρu∗i · ∇u + pi

(
∇× mib

e ‖ B ‖

)
· ∇u + Res

Res = ∇⊥
(

mipi
2e ‖ B ‖∇ · b× u

)
+ b×∇

(
mipi

2e ‖ B ‖∇⊥ · u
)

� Open question: full magnetic field for the reduced perpendicular velocity and
projection parallel - perpendicular ?
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Reduced velocities and operators
� JOREK terms in Black. Potential new term in red.

B, current and velocity after reduction

� | B |2= 1

R2

(
F 2

0 + | ∇ψ |2
)
≈ F 2

0

R2
, J = jφeφ + Jpol = −

(
1

R
∆∗ψeφ −

1

R2
∇pol (∂φψ)

)
� uE = R∂RueZ − R∂ZueR +

(
1

F0

(
R(∇polu,∇polψ)eφ − ∂φu∇polψ

))
� u∗i =

mi

eρ
(R∂RpieZ − R∂ZpieR ) +

(
mi

F0eρ

(
R(∇polpi ,∇polψ)eφ − ∂φpi∇polψ

))

advection operator

� B · ∇f =
F0

R2
∂φf −

1

R
[ψ, f ] and u‖ · ∇f =

B
| B | · ∇f

� uE · ∇f = R [u, f ] +

(
1

F0

(
(∇polu,∇polψ)∂φf − ∂φu(∇polψ,∇pol f )

))
� u∗i · ∇f =

F0τ

Rρ
[pi , f ] +

(
τ

Rρ

(
(∇polpi ,∇polψ)∂φf − ∂φpi (∇polψ,∇pol f )

))
� Wa have also new term for the other operator like divergence of he velocities fields.

E. Franck reduced MHD model with energy 17/21

17/21



Induction equation
� We take the equation

∂tB = −∇× E =⇒ ∂tA = −E − F0∇u
� Using A = ψeφ we obtain

∂t

(
ψ

R2
eφ

)
= −E − F0∇u

� To conclude we use the Ohm law and we project

Induction equation (projection in parallel direction)

∂t

(
ψ

R2

)
=

τ

ρ
B · ∇pe +

η

R2
∆∗ψ−B · ∇u +Rψ,j

with new small term Rψ,j = −
η

R3

([
∂φψ, ψ

])
Induction equation (projection in toroidal direction)

∂t

(
ψ

R2

)
=

1

R
[ψ, u]− F0

R2
∂φu−

τ

R
[ψ, pi ] + τ

F0

R2
∂φ(pi + pe ) +

η

R2
∆∗ψ +Rψ,j

with new small term Rψ,j = −O(τJ ×B)
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Density and pressure equations
��� The structure of the density equation does not change. We have new term if we keep

the new term in the perp velocity field.

Pressure equation

∂t
1

γ− 1
p +

1

γ− 1

(
v‖B + uE + u∗i

)
· ∇p +

γ

γ− 1

(
B · ∇v‖ +∇ · uE +∇ · u∗i

)
p

+∇ ·
(
(k‖ − k⊥)

B
| B |2 (B · ∇T ) + k⊥∇T

)
= R1

p,j + R2
p,j + Rp,u

with

R1
p,j =

η

R2
|∆∗ψ|2 + 1

γ− 1

τ

Rρ
∆∗ψ

(
∂φpe − γpe

∂φρ

ρ

)

R2
p,j =

η

R4
| ∇pol (∂φψ) |2 + 1

γ− 1

τ

R2ρ
∇pol (∂φψ) ·

(
∇polpe − γpe

∇polρ

ρ

)
Rp,u =

η0

3
(2b · ∇v‖ −

R

F 2
0

(B · ∇B) · (uE + u∗i ))
2

� The new term associated (Rp,u) to the heating can be neglected.
� The term R1

p,j is essential to have energy conservation at the end

� The term R2
p,j is not essential to have energy conservation at the end.
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Momentum equations and future works

Short time Future work
� Write the equations on the perpendicular and parallel momentum equations in the

Reduced context.

Open questions
� Classical projection or perp-parallel projection ?

� Simplification of the stress tensor ?

� Keep the new terms which are not necessary for energy dissipation ?

� Keep the Ohmic heating ?

Two reports
� Hierarchy of fluids models for magnetized and collisional plasmas. Part I: Bi-fluid and

Full-MHD models (finished but need to be verify)

� Hierarchy of fluids models for magnetized and collisional plasmas. Part II: Reduced
MHD models (not finish)

Long time Future work
� Energy conservation or dissipation for neoclassical terms and neutral terms.
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