Preconditioning and Reduced MHD solvers in DJANGO

<u>E. Franck</u>¹, M. Hölzl², J. Lakhlili ⁴, A. Ratnani³, E. Sonnendrücker²

Jorek Meeting, INRIA Sophia, April 14th

¹Inria Nancy Grand Est and IRMA Strasbourg, France
²Max-Planck-Institut für Plasmaphysik, Garching, Germany

E. Franck

PC for reduced MHD

Outline

Preconditioning and Physic-Based PC

Application: Linearized Euler equation

Application: Current Hole

Application: Reduced MHD without parallel velocity

Lattice Boltzmann scheme for MHD

Preconditioning and Physic-Based PC

Linear Solvers and preconditioning

We solve a nonlinear problem $G(U^{n+1}) = b(U^n, U^{n-1})$. First order linearization

$$\left(\frac{\partial G(\boldsymbol{U}^n)}{\partial \boldsymbol{U}^n}\right)\delta\boldsymbol{U}^n = -G(\boldsymbol{U}^n) + b(\boldsymbol{U}^n, \boldsymbol{U}^{n-1}) = R(\boldsymbol{U}^n)$$

with $\delta U^n = U^{n+1} - U^n$, and $J_n = \frac{\partial G(U^n)}{\partial U^n}$ the Jacobian matrix of $G(U^n)$.

- Principle of the preconditioning step:
 - □ Replace the problem $J_k \delta U_k = R(U^n)$ by $P_k(P_k^{-1}J_k)\delta U_k = R(U^n)$.
 - □ Solve the new system with two steps $P_k \delta U_k^* = R(U^n)$ and $(P_k^{-1}J_k) \delta U_k = \delta U_k^*$
- If P_k is easier to invert than J_k and $P_k \approx J_k$ the solving step is more robust and efficient.

Physic-based Preconditioning

- In the GMRES context if we have a algorithm to solve $P_k \mathbf{U} = \mathbf{b}$ we have a Preconditioning.
- Principle: construct an algorithm to solve $P_k U = b$ approximating and splitting the equations and approximating the discretizations.

Application: Linearized Euler equation

Implicit scheme for wave equation

Linearized Euler equation:

$$\partial_t p + \mathbf{a} \cdot \nabla p + c \nabla \cdot \boldsymbol{u} = 0$$

$$\partial_t \boldsymbol{u} + \mathbf{a} \cdot \nabla \boldsymbol{u} + c \nabla p = \mathbf{0}$$

The hyperbolic part of the system admits the following eigenvalues and eigenvectors

$$\lambda_{-} = (\mathbf{a}, \mathbf{n}) - c$$
 $\lambda_{0} = (\mathbf{a}, \mathbf{n})$ $\lambda_{+} = (\mathbf{a}, \mathbf{n}) + c$

with \mathbf{n} the direction of the wave.

The implicit system is given by

$$\left(\begin{array}{c}p^{n+1}\\\mathbf{u^{n+1}}\end{array}\right) = \left(\begin{array}{cc}AD_p & Div\\Grad & AD_u\end{array}\right)^{-1} \left(\begin{array}{c}R_p\\R_u\end{array}\right)$$

The solution of the system is given by

$$\begin{pmatrix} p^{n+1} \\ \mathbf{u}^{n+1} \end{pmatrix} = \begin{pmatrix} I & AD_p^{-1}Div \\ 0 & I \end{pmatrix} \begin{pmatrix} AD_p^{-1} & 0 \\ 0 & P_{schur}^{-1} \end{pmatrix} \begin{pmatrix} I & 0 \\ -GradAD_p^{-1} & I \end{pmatrix} \begin{pmatrix} R_p \\ R_u \end{pmatrix}$$

with $P_{schur} = AD_u - Grad(AD_p^{-1})Div$.

Using the previous Schur decomposition, we can solve the implicit wave equation with the following algorithm:

$$\left\{ \begin{array}{ll} {\rm Predictor}: & AD_p p^* = R_p \\ {\rm Velocity\ evolution}: & P {\bf u}^{n+1} = (-{\it Grad} p^* + R_{\bf u}) \\ {\rm Corrector}: & AD_p p^{n+1} = AD_p p^* - Div {\bf u}_{n+1} \end{array} \right.$$

PC for linearized Euler equations

• The preconditioning is given by the previous algorithm [3]-[4].

Low Mach approximation:

 \Box We assume that a << c therefore we use the approximation

```
AD_p^{-1} = (I_d + \Delta t \mathbf{a} \cdot \nabla)^{-1} \approx I_d
```

in the second and third step.

We obtain

$$\begin{cases} \mathsf{Predictor}: & AD_p p^* = R_p \\ \mathsf{Velocity evolution}: & P \mathbf{u}^{n+1} = (-Grad p^* + R_\mathbf{u}) \\ \mathsf{Corrector}: & p^{n+1} = p^* - Div \mathbf{u}_{n+1} \end{cases}$$

with

$$AD_{p} = I_{d} + \Delta t \mathbf{a} \cdot \nabla$$
, and $P_{schur} = I_{d} + \Delta t \mathbf{a} \cdot \nabla - c^{2} \Delta t^{2} \nabla (\nabla \cdot)$

Remarks :

 \Box AD_p for $| \mathbf{a} | \Delta t >> 1$ is not easy to invert. Solution: specific PC or stabilization.

 $\label{eq:schur} \begin{array}{l} & \square \ P_{schur} \ \text{for} \ | \ \mathbf{a} \ | \ \Delta t >> 1 \ \text{or} \ c\Delta t >> 1 \ \text{is not easy to invert. Indeed} \\ & \quad \text{Ker}(\nabla(\nabla \cdot \mathbf{u})) = \text{Span} \ \{\mathbf{u}, \nabla \times \mathbf{u} = 0\}. \end{array}$

Solution: specific preconditioning and/or specific finite element methods.

Results I

To validate the PC we compare the number of iterations to converge when we change the time step and the mesh.

$h / \Delta t$	$\Delta t = 0.01$	$\Delta t = 0.1$	$\Delta t = 1$	$\Delta t = 5$	$\Delta t = 50$
16*16	1	1	1.2	5	9
32*32	1	1	1	1.2	6
64*64	1	1	1	1	1

Steady test case for wave (with c = 1 and a = 0).

• Unsteady test case for wave (with c = 1 and a = 0).

$h / \Delta t$	$\Delta t = 0.01$	$\Delta t = 0.1$	$\Delta t = 1$	$\Delta t = 5$	$\Delta t = 50$
16*16	1	1.2	2	2	2
32*32	1	1	1	1	1
64*64	1	1	1	1	1

- Comparison of different PC.
- Number of iterations for different PC with Mesh 32×32 .

$\Delta t/PC$	Jacobi	ILU(0)	ILU(4)	Pb-PC
$\Delta t = 0.1$	х	70	20	1
$\Delta t = 1$	х	х	х	1

Result II

Now we propose to compare the efficiency of the Physic based preconditioning for different value of the Mach number

$$M = \frac{|\mathbf{a}|}{c}$$

• Test: Propagation of a perturbation of the pressure ($\varepsilon = 10^{-9}$ for GMRES).

h / M=	0	10^{-4}	10^{-2}	0.1	1	10	100
16*16	16	16	22	65	> 100	> 100	19
32*32	8	9	17	53	> 100	> 100	16

• **Test**: Sinuosidal velocity and pressure ($\varepsilon = 10^{-9}$ for GMRES).

h / M=	0	10 ⁻⁴	10^{-2}	0.1	1	10	100
16*16	2	3.5	5	7	7	10	7
32*32	1	2	3	3	5	4	4

Conclusion on PC for linearized Euler equations

Remark on global convergence :

- □ The global convergence is lower as Δt increases. Indeed the PB-PC can be partially interpreted as a splitting method (error depend of Δt).
- □ The global convergence is faster as *h* decreases. When *h* is smaller the error comes only from the splitting. We kill the error like

$$|(\nabla \operatorname{Div})_h - \nabla_h \operatorname{Div}_h| = O(h^p)$$

□ Generally the GMRES residue decreases a lot at the beginning and less after.

Remark on sub-systems :

- $\hfill\square$ We solve the sub-systems with an accuracy a little bit smaller that for the full systems.
- □ Finding a good solver for each sub-system is essential [5]-[6].

Remark on physical approximation:

- □ As expected the method is less efficient when the Mach number increase. Have a high accuracy for high mach number is an open question.
- The method is perhaps more efficient using an inexact Newton method and with diffusion or stabilization.

Application: Current Hole

Current Hole and preconditioning associated

- Current Hole : reduced problem in cartesian coordinates.
- The model

$$\begin{cases} \partial_t \psi = [\psi, u] + \eta (\Delta \psi - j_e) \\\\ \partial_t \Delta u = [\Delta u, u] + [\psi, \Delta \psi] + \nu \Delta^2 u \end{cases}$$

with $w = \Delta u$ and $j = \Delta \psi$.

- In this formulation we split evolution and elliptic equations.
- For the time discretization we use a Cranck-Nicholson scheme and linearized the nonlinear system to obtain

$$\left(\begin{array}{cc} M & U \\ L & D \end{array}\right) \left(\begin{array}{c} \Delta \psi^n \\ \Delta u^n \end{array}\right) = \left(\begin{array}{c} R_{\psi} \\ R_{u} \end{array}\right)$$

or

$$\begin{pmatrix} I_d - \Delta t \theta[\cdot, u^n] - \Delta t \theta \Delta & -\Delta \theta[\psi^n, \cdot] \\ -\Delta t \theta[\psi^n, \Delta \cdot] - \Delta t \theta[\cdot, \Delta \psi^n] & \Delta - \Delta t \theta([\Delta \cdot, u^n] + [\cdot, \Delta u^n] + \Delta^2) \end{pmatrix} \begin{pmatrix} \delta \psi^n \\ \delta u^n \end{pmatrix} = \begin{pmatrix} R_{\psi} \\ R_{u} \end{pmatrix}$$

Low Mach PB-PC for Current Hole

 $\begin{array}{ll} \left(\begin{array}{c} {\rm Predictor}: & M\delta\psi_p^n = R_\psi \\ {\rm potential \ update}: & P_{schur}\delta u^n = \left(-L\delta\psi_p^n + R_u\right) \right) \\ {\rm Corrector}: & \delta\psi^n = \delta\psi_p^n - U\delta u^n \\ {\rm Elliptic \ update}: & \delta z_j^n = \Delta\delta\psi^n, \quad \delta w^n = \Delta\delta u^n \end{array} \right) \end{array}$

E. Franck

PC for reduced MHD

Approximation of the Schur complement

Computation of Schur complement (slow flow approximation $M^{-1} \approx \Delta t$)

$$P_{schur} = \frac{\Delta \delta u}{\Delta t} + \boldsymbol{u}^{n} \cdot \nabla (\Delta \delta u) + \delta \boldsymbol{u} \cdot \nabla (\Delta u^{n}) - \theta v \Delta^{2} \delta u - \theta^{2} \Delta t L U$$

• Operator $LU = \mathbf{B}^n \cdot \nabla (\Delta^* (\mathbf{B}^n \cdot \nabla \delta u)) + \frac{\partial j^n}{\partial \psi^n} \mathbf{B}^n_{pol} \cdot \nabla (\mathbf{B}^n \cdot \nabla \delta u).$

$$B^n \cdot \nabla \delta u = -[\psi^n, \delta u] \text{ and } u^n \cdot \nabla \delta u = -[\delta u, u^n] \text{ et } \delta u \cdot \nabla u^n = -[u^n, \delta u].$$

Remark: the LU operator is the parabolization of coupling hyperbolic terms which contains only the Alfvén waves.

Properties of LU operator

 $\hfill\square$ We consider the L^2 space. The operator LU is not self adjoint and not positive for all δu

$$< LU\delta u, \delta u >_{L^{2}} = \int |\nabla_{pol}(\boldsymbol{B}^{n} \cdot \nabla \delta u)|^{2} - \int \frac{\partial j^{n}}{\partial \psi^{n}} (\boldsymbol{B}^{n}_{pol} \cdot \nabla \delta u) (\boldsymbol{B}^{n} \cdot \nabla \delta u)$$

- □ We propose the following approximation $LU^{approx} = \mathbf{B}^n \cdot \nabla(\Delta^*(\mathbf{B}^n \cdot \nabla \delta u)).$
- □ The operator *LU^{approx}* is positive and self-adjoint.

There are different methods to solve the Schur complement using splitting to solve smaller and more simple operators.

Results Current Hole

- We give some results on the Physic-Based PC for the resistive kink instability.
- We use a small tolerance for the GMRES to avoid numerical instability linked to the mesh.
- We give results for different tolerances of the GMRES. Total run (linear and nonlinear phase).

$\Delta t / \varepsilon_{gmres}$	$\varepsilon = 10^{-8}$	$\varepsilon = 10^{-9}$	$\varepsilon = 10^{-10}$	$\varepsilon = 10^{-11}$
$\Delta t = 1$ Mesh=32*32	1	1-3	3-5	4-10
$\Delta t = 10 \text{ Mesh} = 32*32$	2-8	4-25	10-45	15-60
$\Delta t = 10$ Mesh=64*64	1-10	1-20	10-55	20-70

- Worst phase for convergence: the beginning.
- In general the GMRES begin with a very good error and this error decreases slowly.
- Good behavior for the coupling with inexact Newton method.
- **Remark**: solve the mesh problem to get fully pertinent results.

Application: Reduced MHD without parallel velocity

Current work: model 199

- Algorithm:
 - **Step 1**: Solve Grad-Shafranov on circular mesh using Picard method.
 - □ **Step 2**: Construction of initial data using ψ_{eq} for the model 199.
 - □ Step 3: Loop in time (same model as JOREK).
- Remark: Currently no aligned grid (external grid).
- New matrix for the Preconditioning:

$$M = \begin{pmatrix} I_d - \Delta([\cdot, u^n] + \eta \Delta^*) & 0 & 0 \\ 0 & I_d - \Delta t([\cdot, u^n] + \nabla \cdot (D\nabla \cdot)) & 0 \\ 0 & 0 & I_d - \Delta t([\cdot, u^n] + \nabla \cdot (K\nabla \cdot)) \end{pmatrix}$$

and

$$P_{schur} \approx \frac{\nabla_{pol} \cdot (R^2 \rho \nabla \delta u)}{\Delta t} + \frac{1}{R^2} u^n \cdot \nabla (R^2 \rho \Delta \delta u) + \frac{1}{R^2} \delta u \cdot \nabla (R^2 \rho \Delta u^n) - \theta v \Delta_{pol}^2 \delta u - \theta^2 \Delta t L U$$

Operator

$$LU \approx \boldsymbol{B}^{n} \cdot \nabla (\Delta^{*} (\boldsymbol{B}^{n} \cdot \nabla \delta \boldsymbol{u})) + \frac{1}{R} \left([R^{2}, \delta \boldsymbol{u} \cdot \nabla \boldsymbol{p}^{n} + \gamma \boldsymbol{p}^{n} \nabla \cdot \delta \boldsymbol{u}] \right)$$

with $\mathbf{B}^n \cdot \nabla = -\frac{1}{R}[\psi^n, \cdot] + \frac{F_0}{R^2} \partial_{\phi}, \, \delta \mathbf{u} \cdot \nabla p^n = -R[p^n, \delta u] \text{ and } p^n \nabla \cdot \delta \mathbf{u} = -2p^n \partial_Z \delta u$

Current situation

Stability of equilibrium started working two days ago. Next: Internal Kink instability

Lattice Boltzmann schemes for MHD

New work with: P. Helluy, M. Mehrenberger, D. Coulette

Lattice Boltzmann schemes

Lattice Boltzmann schemes: use a kinetic interpretation of the Fluid mechanics model.

Lattice Scheme

- For N velocities \rightarrow compute equilibrium: $f_i = w_i \rho \left(1 + 3(\mathbf{v}_i \cdot \mathbf{u}) + \frac{9}{2} (\mathbf{v}_i \mathbf{v}_i - \frac{1}{2} I_d) : \mathbf{u} \mathbf{u} \right)$
- For N velocities \rightarrow relaxation to the equilibrium: $\partial_t f_i = \frac{1}{\tau} (f_i^{eq} f_i)$
- For N velocities \rightarrow transport : $\partial_t f_i + \mathbf{v}_i \cdot \nabla f_i = 0$

• We compute the moments
$$\rho = \sum_i f_i$$
,
 $\rho \mathbf{u} = \sum_i \mathbf{v}_i f_i$ etc

- Advantage: local computation relaxation and computation of moments. The matrices computed are linear and sparse.
- Problem: physical limitation like small Mach number.

D3Q19

Lattice Boltzmann schemes for MHD

Idea

• Lattice Boltzmann schemes could be used as a solver or as a preconditioning in the Tokamak context.

Application to the MHD

- Additional moment: the energy.
- one kinetic equation for the fluid, three kinetic equations for magnetic field.
- More complex or different Lattice to increase the maximum Mach or Reynolds Number.

Braginskii closure

- The choice of the relaxation coefficient allows to choose the viscosity and resistivity coefficients.
- Multiple relaxation method: allows to obtain anisotropic viscosity.

Future extension

To simulate instabilities like ELM's with Lattice it is important to extend the scheme for [6] for more general tensor (with gyro-viscous effect) and generalized Ohm law.

Conclusion and future work

Future work for physics

- **Short time**: validate the model 199 with kink instability, tearing and ballooning modes.
- More long time: Model 303 and x-point geometry.

Future work for informatics

Short time:

- Parallelization Open MP-MPI and cleaning
- New construction of matrices (faster method),
- □ Construction of the matrices in the same time.

Future work for numerics

- Short time:
 - Jacobian-free matrices
 - Specific preconditioning using GLT [5]-[6] for advection, diffusion and high-order operators

Other work

Improve the Lattice Boltzmann approach (project EXAMAG and INRIA Nancy).

References

- 1 O. Czarny and G. Huysmans, *Bézier surface and finite element for MHD simulations*, JCP 2008.
- 2 L. Chacon An optimal, parallel, fully implicit Newton Krylov solver for three-dimensional viscoresistive magnetohydrodynamics, Physic of Plasma (2007).
- 3 L. Chacon, D. A. Knoll A 2D high- β Hall MHD implicit nonlinear solver, JCP 2003.
- 4 S. Serra-Capizzano, *The GLT class as a generalized Fourier analysis and applications*, Linear Algebra Appl. 419 (2006).
- 5 M. Donatelli, C. Garoni, C. Manni, S. Serra-Capizzano, H. Speleers, *Robust and optimal multi-iterative techniques for IgA Galerkin linear systems*, Comput. Methods Appl. Mech. Engrg. (2015).
- 6 J. P Dellar, Lattice Boltzmann formulation for Braginskii magnetohydrodynamics, Computers and Fluids 46 201-205

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under grant agreement number 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

