Numerical method for multi-scale PDE: applications to weakly compressible fluids

F. Bouchut ${ }^{5}$, E. Franck ${ }^{12}$, L. Navoret ${ }^{2}$

Workshop Multi-scale problem, INRIA Nancy

[^0]
Outline

Physical and mathematical context

Relaxation method

Other multi-scale problems for plasma physics

Physical and mathematical context

Gas dynamic: Euler equations

TONUS Team work's

Multi-scale in time/space models for plasmas: MHD, Vlasov equations. Plasma: gas dynamic + electromagnetic.

- We propose to understand the problem on a "simpler" problem: gas dynamic.
- Euler equation:

$$
\left\{\begin{array}{l}
\partial_{t} \rho+\nabla \cdot(\rho \boldsymbol{u})=0 \\
\partial_{t}(\rho \boldsymbol{u})+\nabla \cdot\left(\rho \boldsymbol{u} \otimes \boldsymbol{u}+p l_{d}\right)=0 \\
\partial_{t} E+\nabla \cdot(E \boldsymbol{u}+p \boldsymbol{u})=0
\end{array}\right.
$$

■ with $\rho(t, \mathbf{x})>0$ the density, $\boldsymbol{u}(t, \mathbf{x})$ the velocity and $E(t, \mathbf{x})>0$ the total energy.

- The pressure $p(t, \mathbf{x})$ is defined by $p=\rho T$ (perfect gas law) with $T(t, \mathbf{x})$ the temperature.

Model

The system is an hyperbolic system which model nonlinear transport/waves. Physically it correspond to conservation laws.

Properties

No dissipation (no smoothing) processus. These systems can generated discontinuities.

Wave propagation and scales

- The model can be write on a general form

$$
\begin{gathered}
\partial_{t} \boldsymbol{U}+\partial_{x} \boldsymbol{F}_{x}(\boldsymbol{U})+\partial_{y} \boldsymbol{F}_{y}(\boldsymbol{U})=\boldsymbol{G}(\boldsymbol{U}) \\
\longrightarrow \partial_{t} \boldsymbol{U}+A_{x}(\boldsymbol{U}) \partial_{x} \boldsymbol{U}+A_{y}(\boldsymbol{U}) \partial_{y} \boldsymbol{U}=\boldsymbol{G}(\boldsymbol{U})
\end{gathered}
$$

for smooth solutions.

- These models propagate some complex waves with the velocities given by the eigenvalues of

$$
A(\boldsymbol{U})=A_{x}(\boldsymbol{U}) n_{x}+A_{y}(\boldsymbol{U}) n_{y}
$$

with \mathbf{n} a normal vector.

- At the end three eigenvalues: $(\boldsymbol{u}, \mathbf{n})$ and $(\boldsymbol{u}, \mathbf{n}) \pm c$ with the sound speed $c^{2}=\gamma \frac{p}{\rho}$.

Physic interpretation:

- the acoustic waves due to the pressure and normal velocity perturbations,
- the density, momentum and energy transport at the velocity \boldsymbol{u}.
- Two important scales: u and c

Physical problem I: large acoustic waves.

- We introduce the Mach number $M=\frac{|u|}{c}$ the ratio between the two velocities/scales.
- We consider the initial state:

$$
\rho=2.0+0.05 G(x), \quad u=0.2, \quad p=0.5+\underbrace{\delta p}_{|\delta p| \approx 0.5}
$$

- The large perturbation of p generate a large acoustic wave with $\delta u \approx 0.2$.
- This velocity gradient created by the waves generates an important compression density.

- Left: $\rho(t, \mathbf{x})$, Middle: $p(t, \mathbf{x})$, Right: Mach number

Conclusion:

- We must correctly capture this large wave to capture the good behavior of the density.
- This phenomena is a one-scale phenomena since $M \approx 0.3$.

Physical problem II: small acoustic waves.

- We introduce the Mach number $M=\frac{|u|}{c}$ the ratio between the two velocities/scales.
- We consider the initial state:

$$
\rho=2.0+0.05 G(x), \quad u=0.2, \quad p=30+\underbrace{\delta p}_{|\delta p| \approx 0.5}
$$

- The small perturbation of p generates a small gravity wave with $\delta u \approx 0.03$.
- This velocity gradient created by the waves is very small and and there is no compression of density (just advection).

■ Left: $\rho(t, \mathbf{x})$, Middle: $p(t, \mathbf{x})$, Right: Mach number

Conclusion:

- Since $\partial_{x} u \approx \partial_{x} p \approx 0$, the main dynamic is given by: $\partial_{t} \rho+u \partial_{x} \rho=0$
- No necessary to capture these small waves to capture the behavior of the density.
- This phenomena is a two-scale phenomena since $M \approx 0.05$.

Low mach limit

- We propose an asymptotic interpretation of the small acoustic waves case.
- We want obtain dimensionless equation. We rewrite the equation

$$
\left\{\begin{array}{l}
\partial_{t} \rho+\nabla \cdot(\rho \boldsymbol{u})=0 \\
\rho \partial_{t} \boldsymbol{u}+\rho \boldsymbol{u} \cdot \nabla \boldsymbol{u}+\nabla p=0 \\
\partial_{t} p+\nabla \cdot(p \boldsymbol{u})+(\gamma-1) p \nabla \cdot \boldsymbol{u}=0
\end{array}\right.
$$

- Normalization:
\square we introduce characteristic time t_{0}, velocity V, length L.
\square the characteristic velocity μ_{0} and pressure γp_{0}. The sound velocity is $c^{2}=\frac{\gamma p_{0}}{\rho_{0}}$.

Low mach limit

- We propose an asymptotic interpretation of the small acoustic waves case.
- We want obtain dimensionless equation. We rewrite the equation

$$
\left\{\begin{array}{l}
\partial_{t} \rho+\nabla \cdot(\rho \boldsymbol{u})=0 \\
\rho \partial_{t} \boldsymbol{u}+\rho \boldsymbol{u} \cdot \nabla \boldsymbol{u}+\nabla p=0 \\
\partial_{t} p+\nabla \cdot(p \boldsymbol{u})+(\gamma-1) p \nabla \cdot \boldsymbol{u}=0
\end{array}\right.
$$

- Normalization:
\square we introduce characteristic time t_{0}, velocity V, length L.
\square the characteristic velocity u_{0} and pressure γp_{0}. The sound velocity is $c^{2}=\frac{\gamma p_{0}}{\rho_{0}}$.

$$
\left\{\begin{array}{l}
\partial_{t} \rho+\left[\frac{t_{0} u_{0}}{L}\right] \nabla \cdot(\rho \boldsymbol{u})=0 \\
\rho \partial_{t} \boldsymbol{u}+\left[\frac{t_{0} u_{0}}{L}\right] \rho \boldsymbol{u} \cdot \nabla \boldsymbol{u}+\left[\frac{t_{0} p_{0}}{\rho_{0} u_{0} L}\right] \nabla p=0 \\
\partial_{t} p+\left[\frac{t_{0} u_{0}}{L}\right] \boldsymbol{u} \cdot \nabla p+\left[\frac{\gamma t_{0} u_{0}}{L}\right] p \nabla \cdot \boldsymbol{u}=0
\end{array}\right.
$$

Low mach limit

- We propose an asymptotic interpretation of the small acoustic waves case.
- We want obtain dimensionless equation. We rewrite the equation

$$
\left\{\begin{array}{l}
\partial_{t} \rho+\nabla \cdot(\rho \boldsymbol{u})=0 \\
\rho \partial_{t} \boldsymbol{u}+\rho \boldsymbol{u} \cdot \nabla \boldsymbol{u}+\nabla p=0 \\
\partial_{t} p+\nabla \cdot(p \boldsymbol{u})+(\gamma-1) p \nabla \cdot \boldsymbol{u}=0
\end{array}\right.
$$

- Normalization:
\square we introduce characteristic time t_{0}, velocity V, length L.
\square the characteristic velocity u_{0} and pressure γp_{0}. The sound velocity is $c^{2}=\frac{\gamma p_{0}}{\rho_{0}}$.

$$
\left\{\begin{array}{l}
\partial_{t} \rho+\left[\frac{u_{0}}{V}\right] \nabla \cdot(\rho \boldsymbol{u})=0 \\
\rho \partial_{t} \boldsymbol{u}+\left[\frac{u_{0}}{V}\right] \rho \boldsymbol{u} \cdot \nabla \boldsymbol{u}+\left[\frac{c_{0}^{2}}{u_{0} V}\right] \nabla p=0 \\
\partial_{t} p+\left[\frac{u_{0}}{V}\right] \boldsymbol{u} \cdot \nabla p+\left[\frac{\gamma u_{0}}{V}\right] p \nabla \cdot \boldsymbol{u}=0
\end{array}\right.
$$

Low mach limit

- We propose an asymptotic interpretation of the small acoustic waves case.
- We want obtain dimensionless equation. We rewrite the equation

$$
\left\{\begin{array}{l}
\partial_{t} \rho+\nabla \cdot(\rho \boldsymbol{u})=0 \\
\rho \partial_{t} \boldsymbol{u}+\rho \boldsymbol{u} \cdot \nabla \boldsymbol{u}+\nabla p=0 \\
\partial_{t} p+\nabla \cdot(p \boldsymbol{u})+(\gamma-1) p \nabla \cdot \boldsymbol{u}=0
\end{array}\right.
$$

- Normalization:
\square we introduce characteristic time t_{0}, velocity V, length L.
\square the characteristic velocity u_{0} and pressure γp_{0}. The sound velocity is $c^{2}=\frac{\gamma p_{0}}{\rho_{0}}$.
- We want to focus on the fluid motion consequently we choose $V=u_{0}$.
- We define the mach number: $M=\frac{\nu_{0}}{c_{0}}$. Using this we obtain

$$
\left\{\begin{array} { l }
{ \partial _ { t } \rho + \nabla \cdot (\rho \boldsymbol { u }) = 0 } \\
{ \rho \partial _ { t } \boldsymbol { u } + \rho \boldsymbol { u } \cdot \nabla \boldsymbol { u } + [\frac { 1 } { M ^ { 2 } }] \nabla p = 0 } \\
{ \partial _ { t } p + \boldsymbol { u } \cdot \nabla p + \gamma p \nabla \cdot \boldsymbol { u } = 0 }
\end{array} \quad \longrightarrow \left\{\begin{array}{l}
\partial_{t} \rho+\nabla \cdot(\rho \boldsymbol{u})=0 \\
\partial_{t}(\rho \boldsymbol{u})+\nabla \cdot(\rho \boldsymbol{u} \otimes \boldsymbol{u})+\frac{1}{M^{2}} \nabla p=0 \\
\partial_{t} E+\nabla \cdot(E \boldsymbol{u}+p \boldsymbol{u})=0
\end{array}\right.\right.
$$

Low mach limit

- We propose an asymptotic interpretation of the small acoustic waves case.
- We want obtain dimensionless equation. We rewrite the equation

$$
\left\{\begin{array}{l}
\partial_{t} \rho+\nabla \cdot(\rho \boldsymbol{u})=0 \\
\rho \partial_{t} \boldsymbol{u}+\rho \boldsymbol{u} \cdot \nabla \boldsymbol{u}+\nabla p=0 \\
\partial_{t} p+\nabla \cdot(p \boldsymbol{u})+(\gamma-1) p \nabla \cdot \boldsymbol{u}=0
\end{array}\right.
$$

- Normalization:
\square we introduce characteristic time t_{0}, velocity V, length L.
\square the characteristic velocity u_{0} and pressure γp_{0}. The sound velocity is $c^{2}=\frac{\gamma p_{0}}{\rho_{0}}$.
- We want to focus on the fluid motion consequently we choose $V=u_{0}$.
- We define the mach number: $M=\frac{u_{0}}{c_{0}}$. Using this we obtain

$$
\left\{\begin{array} { l }
{ \partial _ { t } \rho + \nabla \cdot (\rho \boldsymbol { u }) = 0 } \\
{ \rho \partial _ { t } \boldsymbol { u } + \rho \boldsymbol { u } \cdot \nabla \boldsymbol { u } + [\frac { 1 } { M ^ { 2 } }] \nabla p = 0 } \\
{ \partial _ { t } p + \boldsymbol { u } \cdot \nabla p + \gamma p \nabla \cdot \boldsymbol { u } = 0 }
\end{array} \quad \longrightarrow \left\{\begin{array}{l}
\partial_{t} \rho+\nabla \cdot(\rho \boldsymbol{u})=0 \\
\partial_{t}(\rho \boldsymbol{u})+\nabla \cdot(\rho \boldsymbol{u} \otimes \boldsymbol{u})+\frac{1}{M^{2}} \nabla p=0 \\
\partial_{t} E+\nabla \cdot(E \boldsymbol{u}+p \boldsymbol{u})=0
\end{array}\right.\right.
$$

Low Mach limit

When M tends to zero, we obtain incompressible Euler equation:

$$
\left\{\begin{array}{l}
\partial_{t} \rho+\boldsymbol{u} \cdot \nabla \rho=0 \\
\rho \partial_{t} \boldsymbol{u}+\rho \boldsymbol{u} \cdot \nabla \boldsymbol{u}+\nabla \Pi=0 \\
\nabla \cdot \boldsymbol{u}=0
\end{array}\right.
$$

In 1D we have just advection of ρ.

Numerical problem I: time discretization.

- When we discretize in space a PDE we obtain an ODE:

$$
\partial_{t} \boldsymbol{U}=A(\boldsymbol{U})
$$

- Classical time discretization : explicit time scheme.

$$
\frac{\boldsymbol{U}^{n+1}-\boldsymbol{U}^{n}}{\Delta t}=A\left(\boldsymbol{U}^{n}\right)
$$

- Default of Explicit scheme: the CFL condition $\Delta t<\frac{\Delta x}{\lambda}$ with lambda the maximal speed of the system.
- For low mach flow (small acoustic waves):
\square The fast phenomena: acoustic wave at velocity c
\square The important phenomena: transport at velocity u
\square Expected CFL: $\Delta t<\frac{\Delta x}{|u|}$, CFL in practice $\Delta t<\frac{\Delta x}{|c|}$
\square At the end we use a Δt divised by M compare to the expected Δt
- Solution: Implicit time scheme. No CFL condition

$$
\frac{\boldsymbol{U}^{n+1}-\boldsymbol{U}^{n}}{\Delta t}=A\left(\boldsymbol{U}^{n+1}\right)
$$

Idea

Taking a larger time step, the implicit scheme allows to filter the fast acoustic waves which are not useful in the low-Mach regime.

Implicit scheme and conditioning I

- Implicit time scheme:

$$
M_{i} \boldsymbol{U}^{n+1}=\left(I_{d}+\Delta t A\left(I_{d}\right)\right) \boldsymbol{U}^{n+1}=\boldsymbol{U}^{n}
$$

- We must solve a nonlinear system and after linearization redsolve some linear systems.
- How solve a linear system:
\square Exact solver. Too costly for large problem (system, 3D, high order discretization).
\square iterative solver. Used in practice. Default: slow convergence for ill-conditioning matrix.
- Conditioning of a matrix M :

$$
k(M)=\frac{\left|M^{-1}\right|}{|M|} \approx \frac{\lambda_{\max }}{\lambda_{\min }}
$$

- Approximative conditioning

$$
k\left(M_{i}\right) \approx 1+O\left(\frac{\Delta t}{\Delta x^{p} M}\right)
$$

Remark

- We recover the two scales in the conditioning number. The full implicit schemes are difficult to use for this reason.

Semi implicit scheme

First idea

- We explicit the slow scale (transport) and implicit the fast scales (acoustic)
- Euler equation in 1D:

$$
\left\{\begin{array}{l}
\partial_{t} \rho+\partial_{x}(\rho u)=0 \\
\partial_{t}(\rho u)+\partial_{x}\left(\rho u^{2}\right)+\partial_{x} p=0 \\
\partial_{t} E+\partial_{x}(E u)+\partial_{x}(p u)=0
\end{array}\right.
$$

- We use an explicit scheme for convection (or we split the convection). Implicit acoustic step:

$$
\left\{\begin{array}{l}
\rho^{n+1}=\rho^{n} \\
(\rho u)^{n+1}=\rho^{n} u^{n}-\Delta t \partial_{\times} p^{n+1}+R h s_{u} \\
E^{n+1}=E^{n}-\Delta t \partial_{\times}\left(p^{n+1} u^{n+1}\right)=R h s_{E}
\end{array}\right.
$$

Plugging this in the second equation, we obtain

$$
E^{n+1}-\Delta t^{2} \partial_{x}\left(\frac{p^{n+1}}{\rho^{n}} \partial_{x} p^{n+1}\right)=\operatorname{Rhs}\left(E^{n}, u^{n}, \rho\right)
$$

- Matrix-vector product to compute u^{n+1}.

Semi implicit scheme

First idea

- We explicit the slow scale (transport) and implicit the fast scales (acoustic)
- Euler equation in 1D:

$$
\left\{\begin{array}{l}
\partial_{t} \rho+\partial_{x}(\rho u)=0 \\
\partial_{t}(\rho u)+\partial_{x}\left(\rho u^{2}\right)+\partial_{x} p=0 \\
\partial_{t} E+\partial_{x}(E u)+\partial_{x}(p u)=0
\end{array}\right.
$$

- We use an explicit scheme for convection (or we split the convection). Implicit acoustic step:

$$
\left\{\begin{array}{l}
\rho^{n+1}=\rho^{n} \\
(\rho u)^{n+1}=\rho^{n} u^{n}-\Delta t \partial_{x} p^{n+1}+R h s_{u} \\
\frac{\rho^{n+1}}{\gamma-1}+\frac{1}{2} \rho^{n} u^{n}=E^{n}-\Delta t \partial_{x}\left(p^{n+1} u^{n+1}\right)=R h s_{E}
\end{array}\right.
$$

Plugging this in the second equation, we obtain

$$
\frac{p^{n+1}}{\gamma-1}-\Delta t^{2} \partial_{\times}\left(\frac{p^{n+1}}{\rho^{n}} \partial_{\times} p^{n+1}\right)=\operatorname{Rhs}\left(E^{n}, u^{n}, \rho^{n}\right)
$$

- Matrix-vector product to compute u^{n+1}.

Semi implicit scheme

First idea

- We explicit the slow scale (transport) and implicit the fast scales (acoustic)
- Euler equation in 1D:

$$
\left\{\begin{array}{l}
\partial_{t} \rho+\partial_{x}(\rho u)=0 \\
\partial_{t}(\rho u)+\partial_{x}\left(\rho u^{2}\right)+\partial_{x} p=0 \\
\partial_{t} E+\partial_{x}(E u)+\partial_{x}(p u)=0
\end{array}\right.
$$

- We use an explicit scheme for convection (or we split the convection). Implicit acoustic step:

$$
\left\{\begin{array}{l}
\rho^{n+1}=\rho^{n} \\
(\rho u)^{n+1}=\rho^{n} u^{n}-\Delta t \partial_{x} p^{n+1}+R h s_{u} \\
\frac{\rho^{n+1}}{\gamma-1}+\frac{1}{2} \rho^{n} u^{n}=E^{n}-\Delta t \partial_{x}\left(p^{n+1} u^{n+1}\right)=R h s_{E}
\end{array}\right.
$$

Plugging this in the second equation, we obtain

$$
\frac{p^{n+1}}{\gamma-1}-\Delta t^{2} \partial_{\times}\left(\frac{p^{n+1}}{\rho^{n}} \partial_{\times} p^{n+1}\right)=\operatorname{Rhs}\left(E^{n}, u^{n}, \rho^{n}\right)
$$

- Matrix-vector product to compute u^{n+1}.

Conclusion

- Semi implicit: only one scale in the implicit symmetric positive operator.
- Strong gradient of ρ generates ill-conditioning. Assembly at each time (costly).
- Nonlinear solver which bad convergence for if $\Delta t \gg 1$ and $\partial_{x} p$ not so small.

Spatial discretization in space

Spatial discretization

- Finite Volume method (I don't explain how its work). Based on conservative form.
- First order method: error in space homogeneous to $O(\Delta x)$.
- Two scale problem: the naive VF method admit an error homogeneous to the fast scales for the two scales.
- Example: isolated contact:
\square varying density (gaussian)
\square constant pressure ($p=1$) and velocity ($u \ll 1$)
- Exact. solution:

$$
\partial_{t} \rho+u_{0} \partial_{x} \rho=0
$$

which is equivalent to a translation of $u_{0} t$.

- Ratio between transport and acoustic:

$$
\frac{1}{M} \approx 20
$$

■ Naive scheme $T_{f}=2 u_{0}=0.05$ and 1000 cells

Spatial discretization in space

Spatial discretization

- Finite Volume method (I don't explain how its work). Based on conservative form.
- First order method: error in space homogeneous to $O(\Delta x)$.
- Two scale problem: the naive VF method admit an error homogeneous to the fast scales for the two scales.
- Example: isolated contact:
\square varying density (gaussian)
\square constant pressure ($p=1$) and velocity ($u \ll 1$)
■ Exact. solution:

$$
\partial_{t} \rho+u_{0} \partial_{x} \rho=0
$$

which is equivalent to a translation of $u_{0} t$.

- Ratio between transport and acoustic:

$$
\frac{1}{M} \approx 50
$$

- Naive scheme $T_{f}=5 u_{0}=0.02$ and 1000 cells

Spatial discretization in space

Spatial discretization

- Finite Volume method (I don't explain how its work). Based on conservative form.
- First order method: error in space homogeneous to $O(\Delta x)$.
- Two scale problem: the naive VF method admit an error homogeneous to the fast scales for the two scales.
- Example: isolated contact:
\square varying density (gaussian)
\square constant pressure ($p=1$) and velocity ($u \ll 1$)
■ Exact. solution:

$$
\partial_{t} \rho+u_{0} \partial_{x} \rho=0
$$

which is equivalent to a translation of $u_{0} t$.

- Ratio between transport and acoustic:

$$
\frac{1}{M} \approx 20
$$

■ Good scheme $T_{f}=2 u_{0}=0.05$ and 1000 cells

Spatial discretization in space

Spatial discretization

- Finite Volume method (I don't explain how its work). Based on conservative form.
- First order method: error in space homogeneous to $O(\Delta x)$.
- Two scale problem: the naive VF method admit an error homogeneous to the fast scales for the two scales.
- Example: isolated contact:
\square varying density (gaussian)
\square constant pressure ($p=1$) and velocity ($u \ll 1$)
■ Exact. solution:

$$
\partial_{t} \rho+u_{0} \partial_{x} \rho=0
$$

which is equivalent to a translation of $u_{0} t$.

- Ratio between transport and acoustic:

$$
\frac{1}{M} \approx 50
$$

- Good scheme scheme $T_{f}=5 u_{0}=0.02$ and 1000 cells

Relaxation method

Relaxation method

- Problem: the nonlinearity of the implicit acoustic step generate difficulties.
- Non conservative form and acoustic term:

$$
\left\{\begin{array}{l}
\partial_{t} \rho+\partial_{x}(\rho u)=0 \\
\partial_{t} u+u \partial_{x} u+\frac{1}{\rho} \partial_{x} p=0 \\
\partial_{t} p+u \partial_{x} p+\rho c^{2} \partial_{x} u=0
\end{array}\right.
$$

- Idea: Relax only the acoustic part to linearized the implicit part.

$$
\left\{\begin{array}{l}
\partial_{t} \rho+\partial_{x}(\rho v)=0 \\
\partial_{t}(\rho u)+\partial_{x}(\rho u v+\Pi)=0 \\
\partial_{t} E+\partial_{x}(E v+\Pi v)=0 \\
\partial_{t} \Pi+v \partial_{x} \Pi+\phi \lambda^{2} \partial_{x} v=\frac{1}{\varepsilon}(p-\Pi) \\
\partial_{t} v+v \partial_{x} v+\frac{1}{\phi} \partial_{x} \Pi=\frac{1}{\varepsilon}(u-v)
\end{array}\right.
$$

- Limit:

$$
\left\{\begin{array}{l}
\partial_{t} \rho+\partial_{x}(\rho u)=\varepsilon \partial_{x}\left[A \partial_{x} p\right] \\
\partial_{t}(\rho u)+\partial_{x}\left(\rho u^{2}+p\right)=\varepsilon \partial_{x}\left[\left(A u \partial_{x} p\right)+B \partial_{x} u\right] \\
\partial_{t} E+\partial_{x}(E u+p u)=\varepsilon \partial_{x}\left[A E \partial_{x} p+A \partial_{x} \frac{p^{2}}{2}+B \partial_{x} \frac{u^{2}}{2}\right]
\end{array}\right.
$$

■ with $A=\frac{1}{\rho}\left(\frac{\rho}{\phi}-1\right)$ and $B=\left(\rho \phi \lambda^{2}-\rho^{2} c^{2}\right)$.
■ Stability: $\phi \lambda>\rho c^{2}$ and $\rho>\phi$.

Avdantage

- We keep the conservative form for the original variables and obtain a fully linear acoustic.

Splitting

Splitting

- If you want solve $\partial_{t} \boldsymbol{U}=\boldsymbol{A} \boldsymbol{U}$ the solution is given by

$$
\boldsymbol{U}(t)=e^{-A t} \boldsymbol{U}(t=0)=e^{-\left(A_{1}+A_{2}\right) t} \boldsymbol{U}(t=0) \approx e^{-A_{1} t} e^{-A_{2} t} \boldsymbol{U}(t=0)
$$

- A splitting scheme consists to solve two/or more parts of the system separately.

Aim

- For large acoustic waves (Mach number not small) we want capture all the phenomena. Consequently use an explicit scheme.
- For small/fast acoustic waves (low Mach number) we want filter acoustic. Consequently use an implicit scheme for acoustic.

Splitting: Explicit convective part/Implicit acoustic part.

$$
\left\{\begin{array}{l}
\partial_{t} \rho+\partial_{x}(\rho v)=0 \\
\partial_{t}(\rho u)+\partial_{x}\left(\rho u v+\mathcal{M}^{2}(t) \Pi\right)=0 \\
\partial_{t} E+\partial_{x}\left(E v+\mathcal{M}^{2}(t) \Pi v\right)=0 \\
\partial_{t} \Pi+v \partial_{x} \Pi+\phi \lambda^{2} \partial_{x} v=0 \\
\partial_{t} v+v \partial_{x} v+\frac{\mathcal{M}^{2}(t)}{\phi} \partial_{x} \Pi=0
\end{array}, \quad\left\{\begin{array}{l}
\partial_{t} \rho=0 \\
\partial_{t}(\rho u)+\left(1-\mathcal{M}^{2}(t)\right) \partial_{x} \Pi=0 \\
\partial_{t} E+\left(1-\mathcal{M}^{2}(t)\right) \partial_{x}(\Pi v)=0 \\
\partial_{t} \Pi+\phi\left(1-\mathcal{M}^{2}(t)\right) \lambda_{a}^{2} \partial_{x} v=0 \\
\partial_{t} v+\left(1-\mathcal{M}^{2}(t)\right) \frac{1}{\phi} \partial_{x} \Pi=0
\end{array}\right.\right.
$$

with $\mathcal{M}(t) \approx \max _{x} \frac{|u|}{c}$

- After each time step: we project $\Pi=p$ and $v=u$ (can be view as a discretization of the stiff source term)

Implicit time scheme

- We introduce the implicit scheme for the "acoustic part":

$$
\left\{\begin{array}{l}
\rho^{n+1}=\rho^{n} \\
(\rho u)^{n+1}+\Delta t\left(1-\mathcal{M}^{2}\left(t_{n}\right)\right) \partial_{x} \Pi^{n+1}=(\rho u)^{n} \\
E^{n+1}+\Delta t\left(1-\mathcal{M}^{2}\left(t_{n}\right)\right) \partial_{x}(\Pi v)^{n+1}=E^{n} \\
\Pi^{n+1}+\Delta t \phi\left(1-\mathcal{M}^{2}\left(t_{n}\right)\right) \lambda_{a}^{2} \partial_{x} v^{n+1}=\Pi^{n} \\
v^{n+1}+\Delta t\left(1-\mathcal{M}^{2}\left(t_{n}\right)\right) \frac{1}{\phi} \partial_{x} \Pi^{n+1}=v^{n}
\end{array}\right.
$$

- We plug the equation on v in the equation on Π. We obtain the following algorithm:
\square Step 1: we solve

$$
\left(I_{d}-\left(1-\mathcal{M}^{2}\left(t_{n}\right)\right)^{2} \Delta t^{2} \lambda_{c}^{2} \partial_{x x}\right) \Pi^{n+1}=\Pi^{n}-\Delta t\left(1-\mathcal{M}^{2}\left(t_{n}\right)\right) \phi \lambda_{c}^{2} \partial_{x} v^{n}
$$

\square Step 2: we compute

$$
v^{n+1}=v^{n}-\Delta t\left(1-\mathcal{M}^{2}\left(t_{n}\right)\right) \frac{1}{\phi} \partial_{x} \Pi^{n+1}
$$Step 3: we compute

$$
(\rho u)^{n+1}=(\rho u)^{n}-\Delta t\left(1-\mathcal{M}^{2}\left(t_{n}\right)\right) \partial_{x} \Pi^{n+1}
$$

\square Step 4: we compute

$$
E^{n+1}=E^{n}-\Delta t\left(1-\mathcal{M}^{2}\left(t_{n}\right)\right) \partial_{\times}\left(\Pi^{n+1} v^{n+1}\right)
$$

Advantage

- We solve only a constant Laplacian. We can assembly matrix one time.
- No problem of conditioning, which comes from to the strong gradient of ρ

Results I

- Smooth contact :

$$
\left\{\begin{array}{l}
\rho(t, x)=\chi_{x<x_{0}}+0.1 \chi_{x>x_{0}} \\
u(t, x)=0.01 \\
p(t, x)=1
\end{array}\right.
$$

- Error

cells	Ex Rusanov	Ex LR	SI Rusanov	New SI Rus	New SI LR
250	0.042	$3.6 E^{-4}$	$1.4 E^{-3}$	$7.8 E^{-4}$	$4.1 E^{-4}$
500	0.024	$1.8 E^{-4}$	$6.9 E^{-4}$	$3.9 E^{-4}$	$2.0 E^{-4}$
1000	0.013	$9.0 E^{-5}$	$3.4 E^{-4}$	$2.0 E^{-4}$	$1.0 E^{-5}$
2000	0.007	$4.5 E^{-5}$	$1.7 E^{-4}$	$9.8 E^{-5}$	$4.9 E^{-5}$

- Suliciu: relaxation scheme different. The implicit Laplacian is not constant and depend of ρ^{n}.
- Comparison time scheme:

Scheme	λ	Δt
Explicit	$\max (\|u-c\|,\|u+c\|)$	$2.2 E^{-4}$
SI Suliciu	$\left.\left.\max \left(\mid u-\mathcal{M}\left(t_{n}\right)\right) \frac{\lambda}{\rho}\|\| u+,\mathcal{M}\left(t_{n}\right)\right) \left.\frac{\lambda}{\rho} \right\rvert\,\right)$	0.0075
SI new relaxation	$\left.\left.\max \left(\mid v-\mathcal{M}\left(t_{n}\right)\right) \lambda\|\| v+,\mathcal{M}\left(t_{n}\right)\right) \lambda \mid\right)$	0.04

- Conditioning:

Schemes	Δt	conditioning
Si suliciu	0.00757	3000
Si new relax	0.041	9800
Si new relax	0.0208	2400
si new relax	0.0075	320

First 2D result I

- We take $100^{*} 100$ cells $T_{f}=1$ and

$$
\left\{\begin{array}{l}
\rho(t, \mathbf{x})=G\left(\mathbf{x}-\boldsymbol{u}_{0} t\right) \\
\boldsymbol{u}(t, \mathbf{x})=\boldsymbol{u}_{0}, \quad \text { such that } \nabla \cdot \boldsymbol{u}_{0}=0 \text { and }\left|\boldsymbol{u}_{0}\right| \approx 10^{-3} \\
p(t, \mathbf{x})=1
\end{array}\right.
$$

- Results:

Vars	Ex Rusanov	Ex LR	SI Rusanov	New SI LR
ρ	0.39	$1.9 E^{-4}$	$8.4 E^{-4}$	$7.5 E^{-5}$
u	0.87	0.51	$5.3 E^{-3}$	$2.7 E^{-3}$
p	$9.6 E^{-8}$	$5.5 E^{-7}$	$1.8 E^{-6}$	$7.2 E^{-7}$
Δt	$4.2 E^{-4}$	$4.4 E^{-4}$	0.8	$1(\max 9)$

density, $\mathrm{t}=1.0$

norm $2 u, t=1.0$

Figure: Explicit Rusanov scheme, Ex LR-Like, Semi Implicit relax

First 2D results II

- Gresho vortex: stationary vortex with varying Mach number and $\nabla \cdot \boldsymbol{u}=0$.
- We plot the norm of \boldsymbol{u}

$\mathrm{M}, \mathrm{t}=1.0$

$M, t=1.0$

■ Ex scheme: $M=0.5\left(\Delta t=1.4 E^{-3}\right), M=0.1\left(\Delta t=3.5 E^{-4}\right), M=0.01$ $\left(\Delta t=3.5 E^{-5}\right), M=0.001\left(\Delta t=3.5 E^{-6}\right)$

■ New scheme: $M=0.5\left(\Delta t=2.5 E^{-3}\right), M=0.1\left(\Delta t=2.5 E^{-3}\right), M=0.01$ $\left(\Delta t=2.5 E^{-3}\right), M=0.001\left(\Delta t=2.5 E^{-3}\right)$

First 2D results II

■ Gresho vortex: stationary vortex with varying Mach number and $\nabla \cdot \boldsymbol{u}=0$.

- Convergence for \boldsymbol{u} and p

density, $\mathrm{t}=1.0$

$M, t=1.0$

density, $t=1.0$

$M, t=1.0$

- Results with New-relax. Left: 120*120 cells, Right: $240 * 240$ cells

Other multi-scale problems for plasma physics

Tokamak simulation and magnetized plasma

- Fusion DT: At sufficiently high energies deuterium and tritium (plasmas) can fuse to Helium. Free energy is released.
- Plasma: For very high temperature, the gas is ionized and give a plasma which can be controlled by magnetic and electric fields.
- Tokamak: toroïdal chamber where the plasma (10^{8} Kelvin), is confined using
 magnetic fields. Larger Tokamak: Iter

Specificity for the Tokamak

- To stabilize the plasma we need very large magnetic field B.
- This very large magnetic field generates time/space two scale problem between parallel and perpendicular (to \boldsymbol{B}) dynamic.

Ap schemes for Vlasov-Maxwell and MHD

- Plasma description:
\square Microscopic: Newton laws for each particle. Coupled by external forces.
\square Mesoscopic: description by probability density. Probability to have a particle at the time t the position \mathbf{x} and the velocity \mathbf{v}.
\square Macroscopic: description by macro quantities: density, velocity, pressure etc. Euler, Navier-Stokes, MHD equations.
- Dimensionless Vlasov- Maxwell equation:

$$
\left\{\begin{array}{l}
\partial_{t} f_{i}+\boldsymbol{v} \cdot \nabla_{\mathbf{x}} f_{i}+e(\boldsymbol{E}+\boldsymbol{v} \times \boldsymbol{B}) \cdot \nabla_{\boldsymbol{v}} f_{i}=\frac{1}{\tau} Q\left(f_{i}, f_{i}\right) \\
\delta\left(\partial_{t} f_{e}+\boldsymbol{v} \cdot \nabla_{\mathrm{x}} f_{e}\right)-e(\boldsymbol{E}+\boldsymbol{v} \times \boldsymbol{B}) \cdot \nabla_{\boldsymbol{v}} f_{e}=\frac{1}{\tau} Q\left(f_{e}, f_{e}\right) \\
\varepsilon^{2} \partial_{t} \boldsymbol{E}-\nabla \times \boldsymbol{B}=-\mu_{0} \boldsymbol{J} \\
\partial_{t} \boldsymbol{B}+\nabla \times \boldsymbol{E}=0 \\
\nabla \cdot \boldsymbol{B}=0 \\
\varepsilon^{2} \nabla \cdot \boldsymbol{E}=n_{i}-n_{e}
\end{array}\right.
$$

with $\varepsilon \approx \frac{V_{0}}{c}, \tau=\frac{\lambda}{L}$ with λ the mean free path, $\delta=\frac{m_{e}}{m_{i}}$ the mass ratio.

- Limit : $\tau \rightarrow 0==>$ Euler-Maxwell bi-fluid.
- Limit : $\tau \rightarrow 0, \varepsilon \rightarrow 0, \delta \rightarrow 0==>$ Extended MHD.

Aim

- Aim $\tau \rightarrow 0$: filter collision and capture the equilibrium.
- Aim $\varepsilon \rightarrow 0$: filter fast electromagnetic waves (weak coupling with the rest).
- Aim $\delta \rightarrow 0$: filter inertial effect of electron. Main dynamic given by ions.

Gyro-kinetic limit and Anisotropic diffusion

- Gyrokinetic model: We consider the Vlasov Maxwell equations.
- For large magnetic field: two space/time scales:
\square fast rotation of ion around the magnetic field lines (radius, velocity depends of \boldsymbol{B}) \square average transport of ion in the parallel direction.
- Gyrokinetic model filter the fast rotation. We can design aslo numerical scheme for Vlasov to filter this rotation if necessary.
- Thermal anisotropic diffusion:

$$
\partial_{t} T-\nabla \cdot\left(\kappa_{\|} \boldsymbol{B} \otimes \boldsymbol{B} \nabla T\right)-\kappa_{i s o} \Delta T=0
$$

- To avoid a strong CFL condition: implicit scheme.
- Conditioning of the matrix:

$$
C \approx \frac{\kappa_{\|}}{\kappa_{\text {iso }} \Delta^{2}} \approx 10^{2}-10^{10}
$$

Conclusion

Problem

- We consider problem with two space/time scales.
- Sometimes we want solve the two scales. Sometimes we want filter (neglect) the fast one and capture the slow one.
- Naive method: we must capture the fast one to capture the slow one. Very important cost.

Euler equation

- Introducing Dynamic splitting scheme we separate the scales.
- Introducing implicit scheme for the acoustic wave we can filter these waves.
- Introducing relaxation we simplify at the maximum the implicit scheme.
- An adapted spatial scheme is also very important.

Announcement

- With some colleges we organize the summer school "Cemracs 2020".
- Theme: "Models and simulation of many passive/active particles". Physics particles, cells, population dynamic, crowd movement, smart city.

[^0]: ${ }^{1}$ Inria Nancy Grand Est, France ${ }^{2}$ IRMA, Strasbourg university, France ${ }^{3}$ Marne la Vallée, university, France

