Towards a two-fluid model without gyroviscous cancellation

E. Franck ${ }^{12}$

Jorek Meeting 2019, Munich, Germany

[^0]
Outline

Kinetic models

- We begin by introduce the mesoscopic model to describe two species (ion, electron) plasma.
- $f_{s}(t, \boldsymbol{x}, \boldsymbol{v})$ is the density of particles (ion, electon) at time t , space \boldsymbol{x} and velocity \boldsymbol{v}.

Vlasov-Maxwell 2 species

$$
\left\{\begin{array}{l}
\partial_{t} f_{s}+\boldsymbol{v} \cdot \nabla_{x}\left(f_{s}\right)+\frac{q_{s}}{m_{s}}(\boldsymbol{E}+\boldsymbol{v} \times \boldsymbol{B}) \cdot \nabla_{\boldsymbol{v}} f_{s}=\frac{1}{\varepsilon} C_{s}+C_{s, s^{\prime}} \\
\frac{1}{c^{2}} \partial_{t} \boldsymbol{E}-\nabla \times \boldsymbol{B}=-\mu_{0} \boldsymbol{J} \\
\partial_{t} \boldsymbol{B}=-\nabla \times \boldsymbol{E} \\
\nabla \cdot \boldsymbol{B}=0 \\
\nabla \cdot \boldsymbol{E}=\frac{\sigma}{\varepsilon_{0}}
\end{array}\right.
$$

with $\sigma=q_{i} \int f_{i}+q_{e} \int f_{e}$ and $\boldsymbol{J}=q_{i} \int \mathbf{v} f_{i}+q_{e} \int \boldsymbol{v} f_{e}$

- ε is homogeneous to the collisional frequency.
- Collisional limit: we take $f_{s}=f_{s}^{0}+\varepsilon f_{s}^{1}+O\left(\varepsilon^{2}\right)$.
- Keeping only zero order terms we obtain two fluid Euler-Maxwell equations.
- Keeping only zero and first order terms we obtain two fluid Viscous Euler-Maxwell equations.

Two fluid Euler-Maxwell equations

Euler-Maxwell 2 species

- Final equations:

$$
\left\{\begin{array}{l}
\partial_{t} \rho_{i}+\nabla \cdot\left(\rho_{i} \boldsymbol{u}_{i}\right)=0 \\
\partial_{t} \rho_{e}+\nabla \cdot\left(\rho_{e} \boldsymbol{u}_{e}\right)=0 \\
\partial_{t}\left(\rho_{i} \boldsymbol{u}_{i}\right)+\nabla \cdot\left(\rho_{i} \boldsymbol{u}_{i} \otimes \boldsymbol{u}_{i}\right)+\nabla p_{i}=\sigma_{i} \mathbf{E}+\boldsymbol{J}_{i} \times \boldsymbol{B}-\nabla \cdot \overline{\bar{\Pi}}_{i}+\mathbf{R}_{i} \\
\partial_{t}\left(\rho_{e} \boldsymbol{u}_{e}\right)+\nabla \cdot\left(\rho_{e} \boldsymbol{u}_{e} \otimes \boldsymbol{u}_{e}\right)+\nabla p_{e}=\sigma_{e} \mathbf{E}+\boldsymbol{J}_{e} \times \boldsymbol{B}-\nabla \cdot \overline{\overline{\boldsymbol{\Pi}}}_{e}+\mathbf{R}_{e} \\
\partial_{t} \rho_{i} \epsilon_{i}+\nabla \cdot\left(\rho_{i} \epsilon_{i} \boldsymbol{u}_{i}+p_{i} \boldsymbol{u}_{i}\right)+\nabla \cdot\left(\mathbf{q}_{i}+\overline{\bar{\Pi}}_{i} \cdot \boldsymbol{u}_{i}\right)=\sigma_{i} \boldsymbol{u}_{i} \cdot \boldsymbol{E}+\mathbf{R}_{i} \cdot \boldsymbol{u}_{i}+Q_{\Delta_{i}} \\
\partial_{t} \rho_{e} \epsilon_{e}+\nabla \cdot\left(\rho_{e} \epsilon_{e} \boldsymbol{u}_{e}+p_{e} \boldsymbol{u}_{e}\right)+\nabla \cdot\left(\mathbf{q}_{e}+\overline{\bar{\Pi}}_{e} \cdot \boldsymbol{u}_{e}\right)=\sigma_{e} \boldsymbol{u}_{e} \cdot \boldsymbol{E}+\mathbf{R}_{e} \cdot \boldsymbol{u}_{e}+Q_{\Delta_{e}} \\
\varepsilon^{2} \partial_{t} \boldsymbol{E}-\nabla \times \boldsymbol{B}=-\boldsymbol{J} \\
\partial_{t} \boldsymbol{B}+\nabla \times \boldsymbol{E}=0 \\
\nabla \cdot \boldsymbol{B}=0 \\
\varepsilon^{2} \nabla \cdot \boldsymbol{E}=n_{i}-n_{e}
\end{array}\right.
$$

- with $\varepsilon \approx \frac{V_{0}}{c} \ll 1$.

■ Quasi neutral limit: $\varepsilon \rightarrow 0$

- The generalized Ohm law is obtain using electron momentum equation:

$$
\boldsymbol{E}+\boldsymbol{u} \times \boldsymbol{B}=\eta \boldsymbol{J}-\frac{m_{i}}{\rho e} \nabla \cdot \overline{\overline{\boldsymbol{\Pi}}}_{e}+\frac{m_{i}}{\rho e} \boldsymbol{J} \times \boldsymbol{B}-\frac{m_{i}}{\rho e} \nabla p_{e}+O\left(\frac{m_{e}}{m_{i}}\right) .
$$

■ Taking $\frac{m_{e}}{m_{i}} \rightarrow 0$ and quai neutral limit we will obtain Extended MHD.

Extended MHD equations

- We take the two limits introduced previously.
- We define global quantities:

$$
\rho=m_{i} n_{i}+m_{e} n_{e}, \quad \boldsymbol{u}=\frac{m_{i} n_{i} \boldsymbol{u}_{i}+m_{e} n_{e} \boldsymbol{U}_{e}}{m_{i} n_{i}+m_{e} n_{e}}, \quad p=p_{i}+p_{e}
$$

Extended MHD

$$
\left\{\begin{array}{l}
\partial_{t} \rho+\nabla \cdot(\rho \boldsymbol{u})=0 \\
\rho \partial_{t} \boldsymbol{u}+\rho \boldsymbol{u} \cdot \boldsymbol{u}+\nabla p=\boldsymbol{J} \times \boldsymbol{B}+-\nabla \cdot \overline{\overline{\boldsymbol{\Pi}}}_{g v}-\nabla \cdot \overline{\overline{\boldsymbol{\Pi}}}_{\|} \\
\partial_{t} \boldsymbol{p}_{i}+\boldsymbol{u} \cdot \nabla p_{i}+\gamma p_{i} \nabla \cdot \boldsymbol{u}+\kappa_{i} \nabla \cdot \mathbf{q}_{i}+\overline{\overline{\boldsymbol{\Pi}}}_{\|}: \nabla \boldsymbol{u}+\overline{\overline{\boldsymbol{\Pi}}}_{g v}: \nabla \boldsymbol{u} \\
=3(\gamma-1) \frac{\rho_{e}}{\tau_{e} m_{i}}\left(T_{i}-T_{e}\right) \\
\partial_{t} p_{e}+\boldsymbol{u} \cdot \nabla p_{e}+\gamma p_{e} \nabla \cdot \boldsymbol{u}+\kappa_{e} \nabla \cdot \mathbf{q}_{e} \\
=\frac{m_{i}}{\rho e} \boldsymbol{J} \cdot\left(\nabla p_{e}-\gamma p_{e} \frac{\nabla \rho}{\rho}\right)-3(\gamma-1) \frac{\rho_{e}}{\tau_{e} m_{i}}\left(T_{i}-T_{e}\right)+\eta|\boldsymbol{J}|^{2} \\
\partial_{t} \boldsymbol{B}=-\nabla \times\left(-\boldsymbol{u} \times \boldsymbol{B}+\eta \boldsymbol{J}-\frac{m_{i}}{\rho e} \nabla p_{e}+\frac{m_{i}}{\rho e}(\boldsymbol{J} \times \boldsymbol{B})\right) \\
\mu_{0} \nabla \times \boldsymbol{B}=\boldsymbol{J}, \quad \nabla \cdot \boldsymbol{B}=0
\end{array}\right.
$$

- Additionally we can assume that $T_{i}<T_{e}$ such that $p_{i} \approx p_{e}$.

Velocity approximation (D. Schnack)

- We introduce the Spatial ratio: $\delta=\frac{\rho_{i}^{*}}{L}$ with ρ_{i}^{*} the ion Larmor radius.
- Time ratio assumption: $\varepsilon=\frac{w_{0}}{w_{c i}} \approx \delta^{2}$ (idem for collisional frequency).
- Velocity small parameter: $\xi=\frac{V_{0}}{V_{T_{i}}} \approx \delta$

Firstly we take the ion velocity equation to obtain:

$$
m_{i} n_{i} \partial_{t} \boldsymbol{u}_{i}+m_{i} n_{i} \boldsymbol{u}_{i} \cdot \nabla \boldsymbol{u}_{i}+\nabla p_{i}=e n_{i}\left(\mathbf{E}+\boldsymbol{u}_{i} \times \boldsymbol{B}\right)-\nabla \cdot \overline{\bar{\Pi}}_{i}+\boldsymbol{R}_{i}
$$

After small computations we obtain which gives

$$
\boldsymbol{u}_{i}=\left(\boldsymbol{u}_{i} \cdot \boldsymbol{B}\right) \frac{\boldsymbol{B}}{|\boldsymbol{B}|^{2}}+\frac{\boldsymbol{E} \times \boldsymbol{B}}{|\boldsymbol{B}|^{2}}+\frac{m_{i}}{e|\boldsymbol{B}|^{2}} \boldsymbol{B} \times\left(\partial_{t} \boldsymbol{u}_{i}+\boldsymbol{u}_{i} \cdot \nabla \boldsymbol{u}_{i}\right)+\frac{\boldsymbol{B}}{n_{i} e|\boldsymbol{B}|^{2}} \times\left(\nabla p_{i}+\nabla \cdot \overline{\bar{\Pi}}_{i}-\boldsymbol{R}_{i}\right)
$$

After the Ordering we obtain

$$
\delta \boldsymbol{u}=\delta \frac{\left(\boldsymbol{u}_{i} \cdot \boldsymbol{B}\right) \boldsymbol{B}}{|\boldsymbol{B}|^{2}}+\delta \frac{\boldsymbol{E} \times \boldsymbol{B}}{|\boldsymbol{B}|^{2}}+\delta^{3}\left(\partial_{t} \boldsymbol{u}_{i}+\boldsymbol{u}_{i} \cdot \nabla \boldsymbol{u}_{i}\right)+\frac{\boldsymbol{B}}{n|\boldsymbol{B}|^{2}} \times(\delta \nabla p_{i}+\underbrace{\delta^{2} \nabla \cdot \overline{\bar{\Pi}}_{i}}_{?}-\underbrace{\frac{\delta}{R_{m}} \boldsymbol{R}_{i}}_{\approx \delta^{2}})
$$

Final velocity

$$
\boldsymbol{u} \approx\left(\boldsymbol{u}_{i} \cdot \boldsymbol{B}\right) \frac{\boldsymbol{B}}{|\boldsymbol{B}|^{2}}+\frac{\boldsymbol{E} \times \boldsymbol{B}}{|\boldsymbol{B}|^{2}}+\frac{\boldsymbol{B}}{n|\boldsymbol{B}|^{2}} \times \nabla p_{i}
$$

Viscous tensor approximation I

Final velocity

$$
u \approx \frac{\boldsymbol{B}}{|\boldsymbol{B}|^{2}} v_{\|}+\frac{\boldsymbol{E} \times \boldsymbol{B}}{|\boldsymbol{B}|^{2}}+\frac{\boldsymbol{B}}{n|\boldsymbol{B}|^{2}} \times \nabla p_{i}
$$

- Classical decomposition of viscous tensor:

$$
\overline{\overline{\boldsymbol{\pi}}}=\overline{\overline{\boldsymbol{\Pi}}}_{\|}+\overline{\overline{\boldsymbol{\Pi}}}_{c}+\overline{\overline{\boldsymbol{\Pi}}}_{\perp} \approx \overline{\overline{\boldsymbol{\Pi}}}_{\|}+\overline{\overline{\boldsymbol{n}}}_{g y r o}
$$

- Proposition of simplification by A. Zeiler (IPP report):
\square Viscosity:

$$
\nabla \cdot \overline{\overline{\boldsymbol{\Pi}}}_{\|}=G \boldsymbol{b} \cdot \nabla \boldsymbol{b}-\frac{1}{3} \nabla G+\nabla_{\|} G
$$

\square Viscous heating:

$$
\overline{\bar{\Pi}}_{\|}: \nabla \boldsymbol{u}=-\frac{1}{3 \eta_{0}} G^{2}
$$

with $G=-\eta_{0}\left(2 \boldsymbol{b} \cdot \nabla v_{\|}-\left((\boldsymbol{b} \cdot \nabla \boldsymbol{b}) \cdot \boldsymbol{u}_{\perp}\right)\right.$ and $\boldsymbol{b}=\frac{\boldsymbol{B}}{|\boldsymbol{B}|}$.
■ We can neglect the viscous heating and in this we obtain a dissipation linked to G^{2}.

Viscous tensor approximation II

Final velocity

$$
u \approx \frac{\boldsymbol{B}}{|\boldsymbol{B}|^{2}} v_{\|}+\frac{\boldsymbol{E} \times \boldsymbol{B}}{|\boldsymbol{B}|^{2}}+\frac{\boldsymbol{B}}{n|\boldsymbol{B}|^{2}} \times \nabla p_{i}
$$

- Proposition of simplification by A. Zeiler (IPP report):
\square Viscosity

$$
\begin{gathered}
\nabla \cdot \overline{\bar{\Pi}}_{g v}=-\rho \boldsymbol{u}_{i}^{*} \cdot \nabla \boldsymbol{u}+p_{i}\left(\nabla \times \frac{m_{i} \boldsymbol{b}}{e\|\boldsymbol{B}\|}\right) \cdot \nabla \boldsymbol{u} \\
+\nabla_{\perp}\left(\frac{m_{i} p_{i}}{2 e\|\boldsymbol{B}\|} \nabla \cdot \boldsymbol{b} \times \boldsymbol{u}\right)+\boldsymbol{b} \times \nabla\left(\frac{m_{i} p_{i}}{2 e\|\boldsymbol{B}\|} \nabla_{\perp} \cdot \boldsymbol{u}\right)
\end{gathered}
$$

\square Principle of the Gyro-viscous cancelation: neglect the three last terms and kill the first one with a part of the advection part.
\square No Gyro viscous heating.
\square Proposition simple: no simplification or energy conserving simplification.

- We can prove that

$$
\int \nabla \cdot \overline{\bar{\Pi}}_{g v} \boldsymbol{u}=0
$$

- It is also true for the two first terms. We can keep only the two first terms.

Final model

$$
\left\{\begin{array}{l}
\partial_{t} \rho+\nabla \cdot(\rho \boldsymbol{u})=0 \\
\rho \partial_{t} \boldsymbol{u}+\rho \boldsymbol{u} \cdot \nabla \boldsymbol{u}+\nabla p=\boldsymbol{J} \times \boldsymbol{B}-\nabla \cdot \overline{\bar{\Pi}}_{\|}-\nabla \cdot \overline{\bar{\Pi}}_{g v} \\
\partial_{t} \frac{1}{\gamma-1} p_{i}+\frac{1}{\gamma-1} \boldsymbol{u} \cdot \nabla p_{i}+\frac{\gamma}{\gamma-1} p_{i} \nabla \cdot \boldsymbol{u}+\nabla \cdot \mathbf{q}_{i}+\overline{\bar{\Pi}}_{\|}: \nabla \boldsymbol{u}+\overline{\bar{\Pi}}_{g v}: \nabla \boldsymbol{u} \\
=3 \frac{\rho_{e}}{\tau_{e} m_{i}}\left(T_{i}-T_{e}\right) \\
\partial_{t} \frac{1}{\gamma-1} p_{e}+\frac{1}{\gamma-1} \boldsymbol{u} \cdot \nabla p_{e}+\frac{\gamma}{\gamma-1} p_{e} \nabla \cdot \boldsymbol{u}+\nabla \cdot \mathbf{q}_{e} \\
=\frac{1}{\gamma-1} \frac{m_{i}}{\rho e} \boldsymbol{J} \cdot\left(\nabla p_{e}-\gamma p_{e} \frac{\nabla \rho}{\rho}\right)-3 \frac{\rho_{e}}{\tau_{e} m_{i}}\left(T_{i}-T_{e}\right)+\eta|\boldsymbol{J}|^{2} \\
\partial_{t} \boldsymbol{B}=-\nabla \times \boldsymbol{E} \\
\boldsymbol{E}=\left(-\boldsymbol{u} \times \boldsymbol{B}+\eta \boldsymbol{J}-\frac{m_{i}}{\rho e} \nabla p_{e}+\frac{m_{i}}{\rho e}(\boldsymbol{J} \times \boldsymbol{B})\right) \\
\mu_{0} \nabla \times \boldsymbol{B}=\boldsymbol{J}, \quad \nabla \cdot \boldsymbol{B}=0
\end{array}\right.
$$

with

$$
\left\{\boldsymbol{u}=\boldsymbol{u}_{\perp}+\boldsymbol{u}_{\|}, \quad \boldsymbol{u}_{\perp}=\boldsymbol{u}_{E}+\boldsymbol{u}_{i}^{*}, \quad \boldsymbol{u}_{i}^{*}=\frac{m_{i}}{e \rho} \frac{\boldsymbol{B} \times \nabla p_{i}}{|\boldsymbol{B}|^{2}}, \quad \boldsymbol{u}_{E}=\frac{\boldsymbol{E} \times \boldsymbol{B}}{|\boldsymbol{B}|^{2}}, \quad \boldsymbol{u}_{\|}=v_{\|} \frac{\boldsymbol{B}}{|\boldsymbol{B}|}\right.
$$

Reduction assumption

- To obtain a reduced model we write the equation as a potential decomposition and we write the equation on the potential.

Jorek Reduction

- For B

$$
\boldsymbol{B}=\frac{F_{0}}{R^{2}} \boldsymbol{e}_{\phi}+\frac{1}{R} \nabla \psi \times \boldsymbol{e}_{\phi}
$$

- For \boldsymbol{u}

$$
\boldsymbol{u}=-R \nabla u \times \boldsymbol{e}_{\phi}+v_{\|} \boldsymbol{B}+\frac{m_{i} R}{\rho e F_{0}} \boldsymbol{e}_{\phi} \times \nabla p
$$

M3DC1 Reduction

- For B

$$
\boldsymbol{B}=\frac{F}{R} \boldsymbol{e}_{\phi}+\nabla \psi \times \boldsymbol{e}_{\phi}
$$

- For \boldsymbol{u}

$$
\boldsymbol{u}=R^{2} \nabla u \times \boldsymbol{e}_{\phi}+R \omega \boldsymbol{e}_{\phi}+\frac{1}{R^{2}} \nabla_{\perp} \chi
$$

- The first term to \boldsymbol{u} seems equivalent to say that $\boldsymbol{E}=F_{0} \nabla u$.
- The diamagnetic term are not explicitly put in the M3DC1 velocity. The velocity in M3DC1 is linear compare to the scalar variables not the case in JOREK.

Projection assumption

- As say before we need projection to conclude the reduction

Jorek Projection

for ψ : we take the equation on $\mathbf{A}=\phi \boldsymbol{e}_{\phi}$ and multiply by \boldsymbol{e}_{ϕ} ?

- for \boldsymbol{u} to obtain poloidal velocity we apply

$$
\boldsymbol{e}_{\phi} \nabla \times\left(R^{2} . .\right)
$$

and to obtain parallel velocity we apply $\boldsymbol{B} \cdot()$

Compute the reduce model

Principle

- We put the reduction \boldsymbol{u} and \boldsymbol{B} in the full equation, put the projections and neglect some small terms.
- Problem: make that keeping the momentum and the energy conservation.
- Simplify some terms and keep the energy is difficult (for me).

Possible ways (for me)

- Write all the terms in pressure/velocity/B/ ρ equations and hope that the projection does not broke the energy conservation.
- Take the conservation energy momentum and energy and after apply the reduction. After that compute the equations on pressure and potential.
- New model proposed by Nikulsin talk's correspond of these possibilities ?
- Work in the full variables and project with the weak form (B. Nkonga proposition) + no simplification.

Third way I

- B. Nkonga way to derivate the equation.
- We consider

$$
\rho \partial_{t} \boldsymbol{u}+\nabla p=0
$$

- on the weak form

$$
\int \rho \partial_{t}(\boldsymbol{u}, \mathbf{v}) d W+\int(\boldsymbol{u}, \nabla p) d W=0
$$

with \mathbf{v} a test function and $d W=R d V$

- We choose the test function as

$$
\mathbf{v}=-R \nabla v_{i} \times \boldsymbol{e}_{\phi}
$$

with v_{i} a scalar basis function. We obtain
and

$$
\int \rho \partial_{t}(\boldsymbol{u}, \mathbf{v}) d W=\int R^{2}\left(\rho \nabla u, \nabla v_{i}\right) d W
$$

$$
\int(\boldsymbol{u}, \nabla p)=\int\left(-R \nabla v_{i} \times \boldsymbol{e}_{\phi}, \nabla p\right) R d V=\int \frac{1}{R} \boldsymbol{e}_{\phi} \cdot \nabla \times\left(R^{2} p\right) v_{i} R d V=\int \frac{1}{R}\left[R^{2}, p\right] v d W
$$

- We obtain the weak form of JOREK.
- The choice of \mathbf{v} can be view as the choice of projection.
- This way allow to derive the the model with the same way (only choice of velocity and projection can change)
- Without simplification we should be obtain a energy conserving weak for the previous full model.

Remarks for all models

- To finish: property that i understand for the other models.
- Model 303 (no diamagnetic terms)
\square No conservation in energy for the model: missign some small cross between the velocities.
\square Conservation in energy for time scheme if it is the case for the model.
\square No conservation in the linearization: we need to converge Newton/picard process for that.
- Model 199
\square Conservation in energy for the model.
\square Conservation in energy for time scheme.
\square No conservation in the linearization: we need to converge Newton/picard process for that.

Conclusion

- The full model introduced before seems a good candidate to begin all the reduction
- Construction of reduced using Boniface method seems good to obtain the different reduced models with energy conservation (it is depend of the simplification)
- With simplification we will obtain model in JOREK. Without we will obtain additional terms.
- Other possible advantage: To derivate all the models we begin with the full MHD. A interesting point will be to write the time scheme for full MHD (Crank-Nicolson, Semi implicit closed M3DC1, splitting scheme etc) which is more simple and reduced after.
- I can help Boniface, Guido, Javier, Matthias etc for the derivation of these models

[^0]: ${ }^{1}$ Inria Nancy Grand Est, France
 ${ }^{2}$ IRMA, Strasbourg university, France

