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Kinetic models
� We begin by introduce the mesoscopic model to describe two species ( ion, electron)

plasma.

� fs(t, x , v) is the density of particles (ion, electon) at time t, space x and velocity v .

Vlasov-Maxwell 2 species

∂t fs + v · ∇x (fs) +
qs

ms
(E + v × B) · ∇v fs =

1

ε
Cs + C

s,s
′

1

c2
∂tE −∇× B = −µ0J

∂tB = −∇× E

∇ · B = 0

∇ · E =
σ

ε0

with σ = qi
∫
fi + qe

∫
fe and J = qi

∫
v fi + qe

∫
v fe

� ε is homogeneous to the collisional frequency.
� Collisional limit: we take fs = f 0

s + εf 1
s + O(ε2).

� Keeping only zero order terms we obtain two fluid Euler-Maxwell equations.
� Keeping only zero and first order terms we obtain two fluid Viscous Euler-Maxwell

equations.
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Two fluid Euler-Maxwell equations

Euler-Maxwell 2 species
� Final equations:

∂tρi +∇ · (ρiu i ) = 0
∂tρe +∇ · (ρeue) = 0

∂t(ρiu i ) +∇ · (ρiu i ⊗ u i ) +∇pi = σiE + J i × B−∇ ·Πi + Ri

∂t(ρeue) +∇ · (ρeue ⊗ ue) +∇pe = σeE + Je × B−∇ ·Πe + Re

∂tρi εi +∇ · (ρi εiu i + piu i ) +∇ ·
(

qi + Πi · u i

)
= σiu i · E + Ri · u i + Q∆i

∂tρeεe +∇ · (ρeεeue + peue) +∇ ·
(

qe + Πe · ue

)
= σeue · E + Re · ue + Q∆e

ε2∂tE −∇× B = −J
∂tB +∇× E = 0
∇ · B = 0

ε2∇ · E = ni − ne

� with ε ≈ V0
c
<< 1.

� Quasi neutral limit: ε→ 0
� The generalized Ohm law is obtain using electron momentum equation:

E + u × B = ηJ −
mi

ρe
∇ ·Πe +

mi

ρe
J × B −

mi

ρe
∇pe + O

(
me

mi

)
.

� Taking me
mi
→ 0 and quai neutral limit we will obtain Extended MHD.
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Extended MHD equations
� We take the two limits introduced previously.
� We define global quantities:

ρ = mini + mene , u =
miniu i + meneue

mini + mene
, p = pi + pe

Extended MHD

∂tρ+∇ · (ρu) = 0

ρ∂tu + ρu · u +∇p = J × B +−∇ ·Πgv −∇ ·Π‖

∂tpi + u · ∇pi + γpi∇ · u + κi∇ · qi + Π‖ : ∇u + Πgv : ∇u
= 3(γ − 1)

ρe

τemi
(Ti − Te)

∂tpe + u · ∇pe + γpe∇ · u + κe∇ · qe

=
mi

ρe
J ·
(
∇pe − γpe

∇ρ
ρ

)
− 3(γ − 1)

ρe

τemi
(Ti − Te) + η|J|2

∂tB = −∇×
(
−u × B + ηJ−

mi

ρe
∇pe +

mi

ρe
(J × B)

)
µ0∇× B = J, ∇ · B = 0

� Additionally we can assume that Ti < Te such that pi ≈ pe .
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Velocity approximation (D. Schnack)
� We introduce the Spatial ratio: δ =

ρ∗i
L

with ρ∗i the ion Larmor radius.

� Time ratio assumption: ε = w0
wci
≈ δ2 (idem for collisional frequency).

� Velocity small parameter: ξ = V0
VTi
≈ δ

Firstly we take the ion velocity equation to obtain:

mini∂tu i + miniu i · ∇u i +∇pi = eni (E + u i × B)−∇ ·Πi + R i

After small computations we obtain which gives

u i = (u i ·B)
B

|B|2
+
E × B

|B|2
+

mi

e|B|2
B× (∂tu i +u i ·∇u i ) +

B

nie|B|2
× (∇pi +∇·Πi −R i )

After the Ordering we obtain

δu = δ
(u i · B)B

| B |2
+ δ

E × B

|B|2
+ δ3 (∂tu i + u i · ∇u i ) +

B

n | B |2
×

δ∇pi + δ2∇ ·Πi︸ ︷︷ ︸
?

−
δ

Rm
R i︸ ︷︷ ︸

≈δ2


Final velocity

u ≈ (u i · B)
B

| B |2
+

E × B

|B|2
+

B

n | B |2
×∇pi
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Viscous tensor approximation I

Final velocity

u ≈
B

| B |2
v‖ +

E × B

|B|2
+

B

n | B |2
×∇pi

� Classical decomposition of viscous tensor:

Π = Π‖ + Πc + Π⊥ ≈ Π‖ + Πgyro

� Proposition of simplification by A. Zeiler (IPP report):

� Viscosity:

∇ ·Π‖ = Gb · ∇b −
1

3
∇G +∇‖G

� Viscous heating:

Π‖ : ∇u = −
1

3η0
G2

with G = −η0(2b · ∇v‖ − ((b · ∇b) · u⊥) and b = B

|B| .

� We can neglect the viscous heating and in this we obtain a dissipation linked to G2.
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Viscous tensor approximation II

Final velocity

u ≈
B

| B |2
v‖ +

E × B

|B|2
+

B

n | B |2
×∇pi

� Proposition of simplification by A. Zeiler (IPP report):

� Viscosity

∇ ·Πgv = −ρu∗i · ∇u + pi

(
∇×

mib

e ‖ B ‖

)
· ∇u

+∇⊥
(

mipi

2e ‖ B ‖
∇ · b × u

)
+ b ×∇

(
mipi

2e ‖ B ‖
∇⊥ · u

)
� Principle of the Gyro-viscous cancelation: neglect the three last terms and kill the

first one with a part of the advection part.
� No Gyro viscous heating.
� Proposition simple: no simplification or energy conserving simplification.

� We can prove that ∫
∇ ·Πgvu = 0

� It is also true for the two first terms. We can keep only the two first terms.
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Final model



∂tρ+∇ · (ρu) = 0

ρ∂tu + ρu · ∇u +∇p = J × B−∇ ·Π‖ −∇ ·Πgv

∂t
1

γ − 1
pi +

1

γ − 1
u · ∇pi +

γ

γ − 1
pi∇ · u +∇ · qi + Π‖ : ∇u + Πgv : ∇u

= 3
ρe

τemi
(Ti − Te)

∂t
1

γ − 1
pe +

1

γ − 1
u · ∇pe +

γ

γ − 1
pe∇ · u +∇ · qe

= 1
γ−1

mi
ρe
J ·
(
∇pe − γpe ∇ρρ

)
− 3 ρe

τemi
(Ti − Te) + η|J|2

∂tB = −∇× E

E =

(
−u × B + ηJ−

mi

ρe
∇pe +

mi

ρe
(J × B)

)
µ0∇× B = J, ∇ · B = 0

with{
u = u⊥ + u‖, u⊥ = uE + u

∗
i , u

∗
i =

mi

eρ

B ×∇pi
| B |2

, uE =
E × B

| B |2
, u‖ = v‖

B

| B |
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Reduction assumption
� To obtain a reduced model we write the equation as a potential decomposition and we

write the equation on the potential.

Jorek Reduction
� For B

B =
F0

R2
eφ +

1

R
∇ψ × eφ

� For u

u = −R∇u × eφ + v‖B +
miR

ρeF0
eφ ×∇p

M3DC1 Reduction
� For B

B =
F

R
eφ +∇ψ × eφ

� For u

u = R2∇u × eφ + Rωeφ +
1

R2
∇⊥χ

� The first term to u seems equivalent to say that E = F0∇u.
� The diamagnetic term are not explicitly put in the M3DC1 velocity. The velocity in

M3DC1 is linear compare to the scalar variables not the case in JOREK.
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Projection assumption

� As say before we need projection to conclude the reduction

Jorek Projection
� for ψ: we take the equation on A = φeφ and multiply by eφ ?

� for u to obtain poloidal velocity we apply

eφ∇× (R2..)

and to obtain parallel velocity we apply B · ()
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Compute the reduce model

Principle
� We put the reduction u and B in the full equation, put the projections and neglect

some small terms.

� Problem: make that keeping the momentum and the energy conservation.

� Simplify some terms and keep the energy is difficult (for me).

Possible ways (for me)
� Write all the terms in pressure/velocity/B/ρ equations and hope that the projection

does not broke the energy conservation.

� Take the conservation energy momentum and energy and after apply the reduction.
After that compute the equations on pressure and potential.

� New model proposed by Nikulsin talk’s correspond of these possibilities ?

� Work in the full variables and project with the weak form ( B. Nkonga proposition) +
no simplification.
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Third way I
� B. Nkonga way to derivate the equation.
� We consider

ρ∂tu +∇p = 0

� on the weak form ∫
ρ∂t(u, v)dW +

∫
(u,∇p)dW = 0

with v a test function and dW = RdV
� We choose the test function as

v = −R∇vi × eφ

with vi a scalar basis function. We obtain∫
ρ∂t(u, v)dW =

∫
R2(ρ∇u,∇vi )dW

and∫
(u,∇p) =

∫
(−R∇vi×eφ,∇p)RdV =

∫
1

R
eφ·∇×(R2p)viRdV =

∫
1

R
[R2, p]vdW

� We obtain the weak form of JOREK.
� The choice of v can be view as the choice of projection.
� This way allow to derive the the model with the same way (only choice of velocity and

projection can change)
� Without simplification we should be obtain a energy conserving weak for the previous

full model.
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Remarks for all models

� To finish: property that i understand for the other models.

� Model 303 (no diamagnetic terms)

� No conservation in energy for the model: missign some small cross between the
velocities.

� Conservation in energy for time scheme if it is the case for the model.
� No conservation in the linearization: we need to converge Newton/picard process

for that.

� Model 199

� Conservation in energy for the model.
� Conservation in energy for time scheme.
� No conservation in the linearization: we need to converge Newton/picard process

for that.
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Conclusion

� The full model introduced before seems a good candidate to begin all the reduction

� Construction of reduced using Boniface method seems good to obtain the different
reduced models with energy conservation (it is depend of the simplification)

� With simplification we will obtain model in JOREK. Without we will obtain additional
terms.

� Other possible advantage: To derivate all the models we begin with the full MHD. A
interesting point will be to write the time scheme for full MHD (Crank-Nicolson, Semi
implicit closed M3DC1, splitting scheme etc) which is more simple and reduced after.

� I can help Boniface, Guido, Javier, Matthias etc for the derivation of these models
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