Relaxation method: a tool to degin time integrators

E. Franck¹²

Wurzburg seminar

¹Inria Nancy Grand Est, France ²IRMA, Strasbourg university, France ³Marne la Vallée, university, France

E. Franck

Hyperbolic systems et time integration

• We consider a general hyperbolic system with source term:

 $\partial_t \mathbf{U} + \partial_x \mathbf{F}(\mathbf{U}) = \mathbf{R}(\mathbf{U})$

Speeds propagation: are given by the eigenvalues $\lambda_{1,..,n}$ of $\partial_{U} F(U)$.

Hyperbolic system and time integration

Classic scheme: explicit scheme with a CFL $\Delta < \frac{\Delta x}{\lambda_{max}}$.

- Problem: it's very penalizing when
 - □ somes cells are very small,
 - \Box the velocity is locally very high,
 - $\hfill\square$ there is multi-scale problems with slow/fast scales.
- Solution: implicit/semi-implicit scheme.
- Implicit time scheme:

$$M_i \boldsymbol{U}^{n+1} = (I_d + \Delta t \boldsymbol{A}(I_d)) \boldsymbol{U}^{n+1} = \boldsymbol{U}^n$$

- We must solve a nonlinear system and after linearization solve some linear systems.
- Conditioning:

$$k(M_i) \approx 1 + O\left(\frac{\lambda_{max}\Delta t}{\Delta x^p \lambda_{min}}\right)$$

The implicit schemes for hyperbolic system as Euler/MHD are ill-conditioned.

Relaxation method

- Relaxation [XJ95]-[CGS12]-[BCG18]: a way to linearize and decouple the equations. Used to design new schemes.
- Idea: Approximate the model

$$\partial_t \boldsymbol{U} + \partial_x \mathbf{F}(\boldsymbol{U}) = 0$$
, by $\partial_t \mathbf{f} + \mathbf{A}(\mathbf{f}) = \frac{1}{\varepsilon} (Q(\mathbf{f}) - \mathbf{f})$

- where the structure of the flux A(f) is more simple.
- At the limit and taking $P\mathbf{f} = \mathbf{U}$, $P\mathbf{A}(\mathbf{f}) = \mathbf{F}(\mathbf{U})$, we obtain

$$\partial_t \boldsymbol{U} + \partial_x \boldsymbol{\mathsf{F}}(\boldsymbol{U}) = \varepsilon \partial_x (D(\boldsymbol{U}) \partial_x \boldsymbol{U}) + O(\varepsilon^2)$$

Time scheme:

we solve

$$\frac{\mathbf{f}^* - \mathbf{f}^n}{\Delta t} + \mathbf{A}(\mathbf{f}^{*,n}) = \mathbf{0}$$

□ and after we approximate the stiff source term by

$$\mathbf{f}^{n+1} = \mathbf{f}^* + \omega(Q(\mathbf{f}^*) - \mathbf{f}^*)$$

with $\omega \in]0, 2]$. The case $\omega = 1$ corresponds to the projection.

Relaxation method II

Application I: Godunov scheme

The relaxation system is chosen such that it will be easy/possible to write a Godunov scheme for the PDE:

 $\partial_t \mathbf{f} + \partial_x \mathbf{A}(\mathbf{f}) = 0$

- Applying directly after, the projection $\omega = 1$ we obtain a scheme for the original system.
- Ref: many papers of F. Coquel, F. Bouchut, C. Klingenberg, C. Berthon, C. Chalons, S. Jin etc...

Application II: Implicit/semi-implicit integrator

- The relaxation system allows to decouple/linearize the waves. It is also interesting to design simpler implicit schemes.
- Principle: write a semi-implicit/implicit time scheme for

$$\frac{\mathbf{f}^* - \mathbf{f}^n}{\Delta t} + \partial_x \mathbf{A}(\mathbf{f}^*) = 0$$

is simpler that for the original system.

Ref: few papers: 2 paper of C. Kligenberg and al, 2 paper of G. Puppo and al and 3 papers of our groups.

Xin-Jin relaxation and implicit

1D hyperbolic system:

$$\partial_t \mathbf{U} + \partial_x \mathbf{F}(\mathbf{U}) = 0$$

Approximation:

$$\partial_t \mathbf{U} + \partial_x \mathbf{V} = 0 \tag{1}$$

$$=\mathbf{F}(\boldsymbol{U})-\mathbf{V} \tag{2}$$

$$\partial_t \mathbf{U} + \partial_x \mathbf{V} = 0 \tag{3}$$

$$\partial_t \mathbf{V} + \alpha^2 \partial_x \mathbf{U} = \frac{1}{\epsilon} (\mathbf{F}(\mathbf{U}) - \mathbf{V})$$
 (4)

The Xin-Jin relaxation system is stable only if α > λ_{max}.
 After splitting, we have, as hyperbolic part:

$$\partial_t \mathbf{U} + \partial_x \mathbf{V} = \mathbf{0}$$
$$\partial_t \mathbf{V} + \alpha^2 \partial_x \mathbf{U} = \mathbf{0}$$

- We obtain N linear and independant systems of two variables.
- Implicit scheme: we must invert N linear systems of the form

$$\left(\begin{array}{cc}I_d & \Delta t\partial_x\\ \Delta t\alpha^2\partial_x & I_d\end{array}\right)$$

Invert the discreitzation of this matrix is easy using a Schur complement method.

Kinetic relaxation and implicit I

Kinetic relaxation system

Considered model:

$$\partial_t \boldsymbol{U} + \partial_x \boldsymbol{F}(\boldsymbol{U}) = 0$$

- Lattice: $W = \{\lambda_1, ..., \lambda_{n_v}\}$ a set of velocities.
- **Mapping matrix**: P a matrix $n_c \times n_v$ $(n_c < n_v)$ such that U = Pf, with $U \in \mathbb{R}^{n_c}$.
- Kinetic relaxation system:

$$\partial_t \boldsymbol{f} + \Lambda \partial_x \boldsymbol{f} = \frac{1}{\varepsilon} (\boldsymbol{f}^{eq}(\boldsymbol{U}) - \boldsymbol{f})$$

Consistence condition:

$$\mathcal{C} \left\{ \begin{array}{l} \mathsf{P}\boldsymbol{f}^{eq}(\boldsymbol{U}) = \boldsymbol{U} \\ \mathsf{P}\boldsymbol{\Lambda}\boldsymbol{f}^{eq}(\boldsymbol{U}) = \boldsymbol{F}(\boldsymbol{U}) \end{array} \right.$$

- In 1D : same property of stability that the classical relaxation method.
- Limit of the system:

 $\partial_t \boldsymbol{U} + \partial_x \boldsymbol{F}(\boldsymbol{U}) = \varepsilon \partial_x \left(\left(P \Lambda^2 \partial_{\boldsymbol{U}} \boldsymbol{f}^{eq}(\boldsymbol{U}) - | \partial \boldsymbol{F}(\boldsymbol{U}) |^2 \right) \partial_x \boldsymbol{U} \right) + O(\varepsilon^2)$

- Natural extension in 2D/3D.
- General scheme: $[D1Q2]^n$, one D1Q2 by macroscopic equation.

Kinetic relaxation and implicit II

Property of Kinetic relaxation: we have n_v independent transport equations to solve the implicit step.

Advantages:

- □ the implicit step can be easily parallelized. One MPI process by transport equation for example.
- □ We can use method without CFL and matrix invertion: the Semi Lagrangien method.
- **SL Principle**: We use the characteristic method and where the foot is not a mesh point we use an interpolation:

$$f(t^n + \Delta t, x_j) = \prod_h (f(t^n, x_j - \lambda \Delta t))$$

SEE NOTEBOOK

Avdantage

Very simple methof to obtain a CFLless scheme. Possibility to extend to High-Order.

Default

- All the waves are linearized with the same constant velocity : the maximal one. So the coefficient error for all the waves is λ_{max}.
- Not good for multi-scale problem.

Gas dynamic: Euler equations

- **Context**: Plasma simulation with Euler/MHD equations.
- Euler equation:

$$\begin{cases} \partial_t \rho + \nabla \cdot (\rho \mathbf{u}) = 0\\ \partial_t (\rho \mathbf{u}) + \nabla \cdot (\rho \mathbf{u} \otimes \mathbf{u} + \rho l_d) = 0\\ \partial_t E + \nabla \cdot (E \mathbf{u} + \rho \mathbf{u}) = 0 \end{cases}$$

- with $\rho(t, \mathbf{x}) > 0$ the density, $u(t, \mathbf{x})$ the velocity and $E(t, \mathbf{x}) > 0$ the total energy.
- The pressure p is defined by $p = \rho T$ (perfect gas law) with T the temperature.
- **Hyperbolic system** with nonlinear waves. Waves speed: three eigenvalues: (u, n) and $(u, n) \pm c$ with the sound speed $c^2 = \gamma \frac{p}{a}$.

Gas dynamic: Euler equations

- **Context**: Plasma simulation with Euler/MHD equations.
- Euler equation:

$$\begin{array}{l} \partial_t \rho + \nabla \cdot (\rho \mathbf{u}) = 0 \\ \partial_t (\rho \mathbf{u}) + \nabla \cdot (\rho \mathbf{u} \otimes \mathbf{u} + \rho l_d) = 0 \\ \partial_t E + \nabla \cdot (E\mathbf{u} + \rho \mathbf{u}) = 0 \end{array} \longrightarrow \begin{cases} \partial_t \rho + \nabla \cdot (\rho \mathbf{u}) = 0 \\ \partial_t (\rho \mathbf{u}) + \nabla \cdot (\rho \mathbf{u} \otimes \mathbf{u}) + \frac{1}{M^2} \nabla \rho = 0 \\ \partial_t E + \nabla \cdot (E\mathbf{u} + \rho \mathbf{u}) = 0 \end{cases}$$

with $\rho(t, \mathbf{x}) > 0$ the density, $u(t, \mathbf{x})$ the velocity and $E(t, \mathbf{x}) > 0$ the total energy.

- The pressure p is defined by $p = \rho T$ (perfect gas law) with T the temperature.
- **Hyperbolic system** with nonlinear waves. Waves speed: three eigenvalues: (u, n) and $(u, n) \pm c$ with the sound speed $c^2 = \gamma \frac{p}{\rho}$.

Physic interpretation:

Two important velocity scales: u and c and the ratio (Mach number) M = |u|/c.
 When M tends to zero, we obtain incompressible Euler equation:

$$\begin{cases} \partial_t \rho + \boldsymbol{u} \cdot \nabla \rho = 0\\ \rho \partial_t \boldsymbol{u} + \rho \boldsymbol{u} \cdot \nabla \boldsymbol{u} + \nabla \boldsymbol{p}_2 = 0\\ \nabla \cdot \boldsymbol{u} = 0 \end{cases}$$

In 1D we have just advection of ρ .

Aim: contruct an Scheme (Ap) valid at the limit with a uniform cost.

Numerical difficulties in space: Finite volume

VF method + Rusanov flux. Equivalent equation:

$$\begin{aligned}
\int & \partial_t \rho + \nabla \cdot (\rho \boldsymbol{u}) = \frac{S\Delta x}{2} \Delta \rho \\
\rho \partial_t \boldsymbol{u} + \rho \boldsymbol{u} \cdot \nabla \boldsymbol{u} + \frac{1}{M^2} \nabla \rho = \frac{S\Delta x}{2} \Delta \boldsymbol{u} \\
\int & \partial_t \rho + \boldsymbol{u} \cdot \nabla \rho + \gamma \rho \nabla \cdot \boldsymbol{u} = \frac{S\Delta x}{2} \Delta \rho
\end{aligned}$$

- **Problem**: S must be larger that $\frac{1}{M}$ for stability. Huge diffusion.
- Example: isolated contact p = 1, $\nabla \cdot \boldsymbol{u}_0 = 0$ and \boldsymbol{u}_0 constant in time.
- Rusanov scheme $T_f = 2 \mid \boldsymbol{u}_0 \mid \approx 0.001$ and 100*100 cells.

Red: exact solution, Blue: numerical solution.

Innía

Relaxation method

- Problem: the nonlinearity of the implicit acoustic step generates difficulties.
 Non conservative form and acoustic term:

$$\begin{cases} \partial_t \rho + \partial_x (\rho u) = 0\\ \partial_t p + u \partial_x p + \rho c^2 \partial_x u = 0\\ \partial_t u + u \partial_x u + \frac{1}{\rho} \partial_x \rho = 0 \end{cases}$$

Idea: Relax only the acoustic part ([BCG18]) to linearize the implicit part.

$$\begin{aligned} &\partial_t \rho + \partial_x (\rho v) = 0 \\ &\partial_t (\rho u) + \partial_x (\rho u v + \Pi) = 0 \\ &\partial_t E + \partial_x (E v + \Pi v) = 0 \\ &\partial_t \Pi + v \partial_x \Pi + \phi \lambda^2 \partial_x v = \frac{1}{\varepsilon} (p - \Pi) \\ &\partial_t v + v \partial_x v + \frac{1}{\phi} \partial_x \Pi = \frac{1}{\varepsilon} (u - v) \end{aligned}$$

Limit[.]

$$\begin{cases} \partial_{t}\rho + \partial_{x}(\rho u) = \varepsilon \partial_{x} [A\partial_{x}p] \\ \partial_{t}(\rho u) + \partial_{x}(\rho u^{2} + p) = \varepsilon \partial_{x} [(Au\partial_{x}p) + B\partial_{x}u] \\ \partial_{t}E + \partial_{x}(Eu + pu) = \varepsilon \partial_{x} \left[AE\partial_{x}p + A\partial_{x}\frac{p^{2}}{2} + B\partial_{x}\frac{u^{2}}{2}\right] \end{cases}$$

with $A = \frac{1}{\rho} \left(\frac{\rho}{\phi} - 1\right)$ and $B = (\rho\phi\lambda^{2} - \rho^{2}c^{2})$.
Stability: $\phi\lambda > \rho c^{2}$ and $\rho > \phi$.

Avdantage

We keep the conservative form for the original variables and obtain a fully linear acoustic.

Splitting

Dynamical splitting

- Splitting: we solve sub-part of the system one by one. Dynamic case: Splitting time depending for low-mach [IDGH2018]
- For large acoustic waves (Mach number not small) we want capture all the phenomena. Consequently use an explicit scheme.
- For small/fast acoustic waves (low Mach number) we want filter acoustic. Consequently use an implicit scheme for acoustic.

Splitting: Explicit convective part/Implicit acoustic part.

$$\begin{cases} \partial_t \rho + \partial_x (\rho v) = 0 \\ \partial_t (\rho u) + \partial_x (\rho u v + \mathcal{M}^2(t) \Pi) = 0 \\ \partial_t E + \partial_x (E v + \mathcal{M}^2(t) \Pi v) = 0 \\ \partial_t \Pi + v \partial_x \Pi + \phi \lambda_c^2 \partial_x v = 0 \\ \partial_t v + v \partial_x v + \frac{\mathcal{M}^2(t)}{\phi} \partial_x \Pi = 0 \end{cases}, \begin{cases} \partial_t \rho = 0 \\ \partial_t (\rho u) + (1 - \mathcal{M}^2(t)) \partial_x \Pi = 0 \\ \partial_t E + (1 - \mathcal{M}^2(t)) \partial_x (\Pi v) = 0 \\ \partial_t \Pi + \phi (1 - \mathcal{M}^2(t)) \lambda_a^2 \partial_x v = 0 \\ \partial_t v + (1 - \mathcal{M}^2(t)) \frac{1}{\phi} \partial_x \Pi = 0 \end{cases}$$

with $\mathcal{M}(t) pprox max\left(\mathcal{M}_{\textit{min}}, \textit{min}\left(max_{x}rac{|u|}{c}, 1
ight)
ight)$

- Eigenvalues of Explicit part: $v, v \pm \mathcal{M}(t) \underbrace{\lambda_c}_{\approx c}$. Implicit part 0, $\pm (1 \mathcal{M}^2(t)) \underbrace{\lambda_a}_{\approx c}$
- At the end: we make the projection $\Pi = p$ and v = u (can be viewed as a discretization of the stiff source term).

Implicit time scheme

We introduce the implicit scheme for the "acoustic part":

$$\begin{cases} \rho^{n+1} = \rho^{n} \\ (\rho u)^{n+1} + \Delta t (1 - \mathcal{M}^{2}(t_{n})) \partial_{x} \Pi^{n+1} = (\rho u)^{n} \\ E^{n+1} + \Delta t (1 - \mathcal{M}^{2}(t_{n})) \partial_{x} (\Pi v)^{n+1} = E^{n} \\ \Pi^{n+1} + \Delta t (1 - \mathcal{M}^{2}(t_{n})) \phi \lambda_{a}^{2} \partial_{x} v^{n+1} = \Pi^{n} \\ v^{n+1} + \Delta t (1 - \mathcal{M}^{2}(t_{n})) \frac{1}{\phi} \partial_{x} \Pi^{n+1} = v^{n} \end{cases}$$

■ We plug the equation on *v* in the equation on Π. We obtain the following algorithm: □ Step 1: we solve

$$(I_d - (1 - \mathcal{M}^2(t_n))^2 \Delta t^2 \lambda_a^2 \partial_{xx}) \Pi^{n+1} = \Pi^n - \Delta t (1 - \mathcal{M}^2(t_n)) \phi \lambda_a^2 \partial_x v^n$$

 \Box Step 2: we compute

$$v^{n+1} = v^n - \Delta t (1 - \mathcal{M}^2(t_n)) \frac{1}{\phi} \partial_x \Pi^{n+1}$$

□ Step 3: we compute

$$(\rho u)^{n+1} = (\rho u)^n - \Delta t (1 - \mathcal{M}^2(t_n)) \partial_x \Pi^{n+1}$$

Step 4: we compute

$$E^{n+1} = E^n - \Delta t (1 - \mathcal{M}^2(t_n)) \partial_x(\Pi^{n+1} v^{n+1})$$

Advantage

- We solve only a constant Laplacian. We can assembly matrix one time.
- No problem of conditioning, which comes from to the strong gradient of ho

Results 1D I: contact

Smooth contact :

$$\begin{aligned} \rho(t,x) &= \chi_{x < x_0} + 0.1 \chi_{x > x_0} \\ u(t,x) &= 0.01 \\ \rho(t,x) &= 1 \end{aligned}$$

Error

cells	Ex Rusanov	Ex LR	Old relax Rusanov	Relax Rus	Relax PC-FVS
250	0.042	$3.6E^{-4}$	$1.4E^{-3}$	$7.8E^{-4}$	$4.1E^{-4}$
500	0.024	$1.8E^{-4}$	$6.9E^{-4}$	$3.9E^{-4}$	$2.0E^{-4}$
1000	0.013	$9.0E^{-5}$	$3.4E^{-4}$	$2.0E^{-4}$	$1.0E^{-5}$
2000	0.007	$4.5E^{-5}$	$1.7E^{-4}$	$9.8E^{-5}$	$4.9E^{-5}$

- **Old relax**: other relaxation scheme where the implicit Laplacian is not constant and depend of ρ^n .
- Comparison time scheme:

Scheme	λ	Δt
Explicit	$\max(\mid u-c\mid,\mid u+c\mid)$	$2.2E^{-4}$
SI Old relax	$\max(\mid u - \mathcal{M}(t_n)) rac{\lambda}{ ho} \mid, \mid u + \mathcal{M}(t_n)) rac{\lambda}{ ho} \mid)$	0.0075
SI new relaxation	$\max(\mid v - \mathcal{M}(t_n))\lambda \mid, \mid v + \mathcal{M}(t_n))\lambda \mid)$	0.04

Conditioning:

Schemes	Δt	conditioning	
Si old relax	0.00757	3000	
Si new relax	0.041	9800	
Si new relax	0.0208	2400	
si new relax	0.0075	320	

16

Results in 2D: Gresho vortex

Gresho vortex:
$$\nabla \cdot \boldsymbol{u} = 0$$
 and $\boldsymbol{p} = \frac{1}{M^2} + p_2(\mathbf{x})$

Explicit Lagrange+remap scheme Norm of the velocity (2D plot). 1D initial (red) and final (blue) time .From left to right: $M_0 = 0.5$ ($\Delta t = 1.4E^{-3}$), $M_0 = 0.1$ ($\Delta t = 3.5E^{-4}$), $M_0 = 0.01$ ($\Delta t = 3.5E^{-5}$), $M_0 = 0.001$ ($\Delta t = 3.5E^{-6}$).

16

Results in 2D: Gresho vortex

Gresho vortex:
$$\nabla \cdot \boldsymbol{u} = 0$$
 and $\boldsymbol{p} = \frac{1}{M^2} + p_2(\mathbf{x})$

Relaxation scheme. Norm of the velocity (2D plot). 1D initial (red) and final (blue) times. From left to right: M = 0.5, $\Delta t = 2.5E^{-3}$, M = 0.1, $\Delta t = 2.5E^{-3}$, M = 0.01, $\Delta t = 2.5E^{-3}$.

16

Results in 2D: Kelvin helmholtz

kelvin-Helmholtz instability. Density:

Density at time $T_f = 3$, k = 1, $M_0 = 0.1$. Explicit Lagrange-Remap scheme with 120×120 (left) and 360×360 cells (middle left), SI two-speed relaxation scheme ($\lambda_c = 18$, $\lambda_a = 15$, $\phi = 0.98$) with 42 × 42 (middle right) and 120 × 120 cells (right).

Results in 2D: Kelvin helmholtz

kelvin-Helmholtz instability. Density:

Density at time $T_f = 3$, k = 2, $M_0 = 0.01$ with SI two-speed relaxation scheme ($\lambda_c = 180$, $\lambda_a = 150$, $\phi = 0.98$). Left: 120×120 cells. Right: 240×240 cells.

Inia

Conclusion

Resume

- Using the Xin-Jin relaxation we obtain a implicit scheme with only N linear elliptic problems to solve and N matrix vector products.
- Using the kinetic relaxation we obtain a implicit scheme with $n_v > 2N$ transport equations solved without matrix using a SL scheme.
- Using the modified Suliciu relaxation we obtain a semi-implicit scheme with a linear/constant epllitpic problem to invert and 3 matrix-vector products. The scheme is AP in the low-Mach limit.

Conclusion

- The relaxation is a good tools to construct simpler implicit solvers: smaller, with good conditoning, without nonlinear iterator and sometimes with matrix invertion.
- Other application: Ripa model and WB semi-implicit scheme.

