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Gas dynamic: Euler equations

B Context: Plasma simulation with Euler/MHD equations.
B Euler equation:
Otp+ V- (pu)=0
Or(pu) +V - (pu®@u+ply) =0
OHE+ V- (Eu+ pu)=0
B with p(t, x) > 0 the density, u(t, x) the velocity and E(t,x) > 0 the total energy.
B The pressure p is defined by p = pT (perfect gas law) with T the temperature.

B Hyperbolic system with nonlinear waves. Waves speed: three eigenvalues: (u,n) and
(u, n) £ ¢ with the sound speed ¢ = 7%.
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Gas dynamic: Euler equations

B Context: Plasma simulation with Euler/MHD equations.
B Euler equation:

Or(pu) +V - (pu@u+ply) =0  —  B(pu)+V - (pu @ u) +
OE+V - -(Eu+pu)=0

wE VP =0

{ Otp+V-(pu)=0 Otp+V-(pu)=0
HE+V - -(Eu+pu)=0

B with p(t,x) > 0 the density, u(t, x) the velocity and E(t,x) > 0 the total energy.
B The pressure p is defined by p = pT (perfect gas law) with T the temperature.

B Hyperbolic system with nonlinear waves. Waves speed: three eigenvalues: (u, n) and
(u, n) £ ¢ with the sound speed ¢ = 'y%.

Physic interpretation:

B Two important velocity scales: u and c and the ratio (Mach number) M = %
B When M tends to zero, we obtain incompressible Euler equation:
Otp+u-Vp=0
potu+pu-Vu+Vp =0
V.-u=0

In 1D we have just advection of p.

B Aim: contruct an Scheme (AP) valid at the limit with a uniform cost. ,-\
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Numerical difficulties in space: Finite volume

Finite Volumes

Finite Volumes is the natural method to solve hyperbolic systems.

B Default of FV scheme. Consistency :
U 4 0,F(U) = Ax(8xD(U)dxU) + O(Ax?)

B We consider Uy, the solution at the low mach limit.
The scheme can be considered as not adapted/adapted for this regime if

IimM_,O | D(UM) |’F¥ Mip, IimM_>0 | D(UM) |< C

Example: isolated contact p =1, V - up = 0 and ug constant in time.
Rusanov scheme Ty = 2 | ug |~ 0.001 and 100*100 cells.

density, t = 2.0 norm2u, t=2.0
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B Red: exact solution, Blue: numerical solution. (5 \
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Numerical problem I: time discretization.

B Explicit scheme: the CFL condition for low mach flow:
U The fast phenomena: acoustic waves at velocity ¢

The important phenomena: transport at velocity u
Expected CFL: At < 2%

Tl CFL in practice At < Ax

lel
At the end, we use a At divised by M compare to the expected At

0o oo

Implicit time scheme. No CFL condition. Taking a larger time step, it allows to " filter”
the fast acoustic waves which are not useful in the low-Mach regime.

B |mplicit time scheme:

M; U™ = (Iy + AtA(ly)) U™ = U”

B We must solve a nonlinear system and after linearization solve some linear systems.

Problem

B Direct solver too costly. Approximative conditioning for iterative solver:

k(M,-)z1+o( At )

AxPM

B \We recover the two scales in the conditioning number. The full implicit schemes are
difficult to use for this reason.
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Numerical problem Il: time discretization.

First idea: Semi implicit scheme

B We explicit the slow scale (transport) and implicit the fast scale (acoustic)
[CDK12]-[DLVD19]

d:(pu) + 0x(pu?) + Oxp = 0

Orp + Ox(pu) =0
OtE + Ox(Eu) + 0x(pu) = 0

Implicit acoustic step: el

(pu)™ = p"u" — Atdyp"t! + Rhs,
EMtl = E" — Aty (p"ttu"tl) = Rhsg

Plugging this in the second equation, we obtain

pn+1
E™ — At?0, (—naxp"“) = Rhs(E", u", p)
P

B Matrix-vector product to compute u™t1.
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Numerical problem Il: time discretization.

First idea: Semi implicit scheme

B We explicit the slow scale (transport) and implicit the fast scale (acoustic)
[CDK12]-[DLVD19]

e(pu) + 0x(pu?) + Oxp = 0

Oep+ Ox(pu) =0
O:E + Ox(Eu) + Ox(pu) =0

Implicit acoustic stepJ:r

pn 1 _ pn
(pgl)n+1 — pnun _ Ataxpn-H + Rhs,
,'Jy—l + %pnun — FEn _ Atax(pn+1un+1) = Rhsg

Plugging this in the second equation, we obtain

n+1 n+

P pt!
T At?0, (—naxp"“) = Rhs(E", u", p")
p

b=
B Matrix-vector product to compute u"*+1.
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Numerical problem Il: time discretization.

First idea: Semi implicit scheme

B We explicit the slow scale (transport) and implicit the fast scale (acoustic)
[CDK12]-[DLVD19]

Op + Ox(pu) =0
de(pu) + 0x(pu?) + Oxp = 0
O:E + Ox(Eu) + Ox(pu) =0

Implicit acoustic step:

pn+1 — pn
(pu1)n+1 — pnun _ Ataxpn-H + Rhs,
n+
P +3p"u" = E" — Atdy(p"Tu™) = Rhsg

Plugging this in the second equation, we obtain

n+1 n+

P pt!
T A0y (—naxp"“) = Rhs(E", u", p")
p

b=
B Matrix-vector product to compute u"*+1.

B Semi implicit: only one scale in the implicit symmetric positive operator.
B Strong gradient of p generates ill-conditioning. Assembly at each time (costly).
B Nonlinear solver can have bad convergence for if At >> 1 and dxp not so small.
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Relaxation method |
B Relaxation [XJ95]-[CGS12]-[BCG18]: a way to linearize and decouple the equations.

Used to design new schemes.
B |dea: Approximate the model

0eU + OxF(U) = 0,by  9¢f + A() = %(Q(f) —f)

B At the limit and taking Pf = U we obtain
U 4 0xF(U) = €8x (D(U)dx U) + O(£?)

B Time scheme:

0 we solve ———

At
U and after we approximate the stiff source term by

f"+1 — f* +W(Q(f*) _ f*)

FAFT) =0

with w €]0, 2].

B |n general, we construct A with a simpler structure than F to design numerical flux in
FV.

B Here, we construct A with a simpler structure to design simple implicit scheme.
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Relaxation method Il

Problem: the nonlinearity of the implicit acoustic step generates difficulties.
Non conservative form and acoustic term:

{ Orp + Ox(pu) =0

Otp + udxp + pc?xu =0
Oru + udxu + %Dxp =0

Idea: Relax only the acoustic part ([BCG18]) to linearize the implicit part.
D1p+ Ox(pv) = 0
Ot(pu) + Ox(puv +M) =0
OtE + Ox(Ev+Tv)=0
DM+ vOxN + ¢pA%0,v = L(p — M)
Orv + vOxv + %OXI_I = é(u —v)
Limit:

Oep + Ox(pu) = 0« [Adxp]
Ot(pu) + Ox(pu? + p) = €0« [(Audxp) + B?Xu]
O¢E + Ox(Eu + pu) = €0y [AEBXp +ALE + BBX“;}

® with A=1 (g - 1) and B = (ppA? — p2c?).
B Stability: ¢\ > pc? and p > ¢.

Avdantage
|

We keep the conservative form for the original variables and obtain a fully linear
acoustic.
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Splitting

Dynamical splitting

Splitting: we solve sub-part of the system one by one. Dynamic case: Splitting time
depending for low-mach [IDGH2018]

B For large acoustic waves (Mach number not small) we want capture all the
phenomena. Consequently use an explicit scheme.

B For small/fast acoustic waves (low Mach number) we want filter acoustic.
Consequently use an implicit scheme for acoustic.

Splitting: Explicit convective part/Implicit acoustic part.

Otp+ Ox(pv) =0 Op=0

de(pu) + Bx(puv + M?(t)N) = 0 dt(pu) + (1 — M?(1))0N =0
OE + O (Ev+ M2 (D)) =0 BeE + (1 — M2(£))8x(Nv) =0
8tn+v8xn+¢A2§8Xv:0 OeM + (1 — M2(1))A280,v = 0
Bev +voev + 2o n=0 Bev + (1 - M3() 38N =0

with M(t) ~ max (Mm,,,, min (maxx lul 4 )

B FEigenvalues of Explicit part: v, v & M(t) Ac . Implicit part 0, (1 — M?(t)) A,
~~ ~~
~c ~c

B At the end: we make the projection 1 = p and v = u (can be viewed as a

discretization of the stiff source term). m
\ /17
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Implicit time scheme
B \We introduce the implicit scheme for the "acoustic part”:
pn+1 — pn
(pu)™1 + At(1— M(t,))0N™ = (pu)”
Entl 4+ At(1 — M3(t,))0x(Mv)"+t = E"
Nl 4+ At(1 — M2(ty))pA20xv™Ht ="
VI £ A1 — M3 (tn)) $ 0N = v

B We plug the equation on v in the equation on 1. We obtain the following algorithm:
O Step 1: we solve

(lg = (1 = M%(£0))? A2 A20,6)N™L = N7 — At(1 — M?(tn))pA20xv"
O Step 2: we compute
vl = v A1 — M2(tn))éaxﬂ"+1

O Step 3: we compute

(o)™ = (pu)" — At(1 — M(£,))0xN"+
L) Step 4: we compute

En+1 — EN — At(l _ M2(tn))ax(nn+1vn+l)

Advantage

B \We solve only a constant Laplacian. We can assembly matrix one time.
B No problem of conditioning, which comes from to the strong gradient of p

¥y12
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Spatial scheme in 1D

B |dea: FV Godunov fluxes for the explicit part + Central fluxes for the implicit part.
B Main problem of the explicit part: design numerical flux.

B First possibility: since the maximal eigenvalue is O(Mach) a Rusanov scheme.

| |

Other solution: construct a Godunov scheme for the relaxation system. Principle:
O eigenvalues: v — E(t)Ac, v(x3), v + E(t)Ac
O Strong invariants of external waves:

Ae(v £ dpAcr) + (v £ E(D)A)x(v £ pAcm) =0

L Strong invariants of central wave:
1 ™ 1 s
0 (54555 ) +va (54555 ) =0
p o ppXN? “\p o poN?

Ot (u—?v)—&-vax (u—?v) =0
P p

72 (v —u)? w2 (v —u)?
Bt(pe+2p¢)\%+2(gl) + vOx pe+2p¢)\g+72(gil) =0

O Important: strong invariant are weak invariant (conserved) on other wave.
Exemple: (7, v) preserved on central wave.
U We obtain all the intermdiary states using these previous result. r-\
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Results 1D |: contact

B Smooth contact :
p(t,x) = Xx<xo 1 0-1xx>x

u(t, x) =0.01
B Error p(t.x) =1
cells Ex Rusanov Ex LR Old relax Rusanov Relax Rus Relax PC-FVS
250 0.042 3.6E~ 4 1.4E3 7.8E~ 4 41E-*
500 0.024 1.8E— % 6.9E—* 39E—* 2.0E 1%
1000 0.013 9.0E—® 34E° 2.0E* 1.0E—°
2000 0.007 45E° 1.7E—* 9.8E° 49E°

B Old relax: other relaxation scheme where the implicit Laplacian is not constant and
depend of p".
B Comparison time scheme:
Scheme A At
Explicit max(|u—c|,|u+c]) 22E—*
SI Old relax max(| u — M(tn))% N u+/\/l(tn))% ) | 0.0075
Sl new relaxation | max(| v — M(tn))A |, | v+ M(tn))X]) 0.04

B Conditioning:

Schemes At conditioning
Si old relax | 0.00757 3000
Si new relax 0.041 9800
Si new relax 0.0208 2400

si new relax 0.0075 320 h
14/17
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Results in 2D: Gresho vortex

B Gresho vortex: V- u
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B Explicit Lagrange+remap scheme Norm of the velocity (2D plot). 1D initial (red) and
final (blue) time .From left to right: My = 0.5 (At = 1.4E—3), My = 0.1
(At =35E~*%), Mo = 0.01 (At = 3.5E-5), Mo = 0.001 (At = 3.5EF).
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Results in 2D: Gresho vortex

B Gresho vortex: V-u=0and p= ﬁ + p2(x)

B Relaxation scheme. Norm of the velocity (2D plot). 1D initial (red) and final (blue)
times. From left to right: M = 0.5, At =25E73, M =0.1, At = 2.5E3,
M =0.01, At =25E73, M =0.001, At =25E73.
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Results in 2D: Kelvin helmholtz

B kelvin-Helmholtz instability. Density:

[Py E S B S B
o b— 00
00 02 04 06 08 10 00 02 04 08 08 10 00 0z 04 05 08 10 o0 0z 04 05 08 10

B Density at time Tr =3, k =1, My = 0.1. Explicit Lagrange-Remap scheme with
120 x 120 (left) and 360 x 360 cells (middle left), SI two-speed relaxation scheme
(Ac =18, A\; = 15, ¢ = 0.98) with 42 x 42 (middle right) and 120 x 120 cells (right).
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Results in 2D: Kelvin helmholtz

B kelvin-Helmholtz instability. Density:

zZw

178

125

B Density at time T = 3, k =2, My = 0.01 with S| two-speed relaxation scheme
(Ac =180, A\; =150, ¢ = 0.98). Left: 120 x 120 cells. Right: 240 x 240 cells.
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Conclusion

REINE

B |ntroducing Dynamic splitting scheme we separate the scales.

Introducing implicit scheme for the acoustic wave we can filter these waves.
Introducing relaxation we simplify at the maximum the implicit scheme.

A well-adapted spatial scheme is also very important.

At the end: we capture the incompressible limit.

| A

Perspectives:

B To avoid some spurious mods: Use compatible discretization for the linear wave part
(mimetic/staggered DF, compatible finite element).
B Extension to High Order, MUSCL firstly and after DG and HDG schemes.

B Extension to Shallow-Water/Ripa models and MHD (main goal). For MHD the
relaxation it is ok but the splitting is less clear.
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