Semi Implicit Relaxation Scheme for Multi-Scale Fluid Problems

F. Bouchut3, E. Franck12, L. Navoret12

WCCM 2020, Paris

1Inria Nancy Grand Est, France
2IRMA, Strasbourg university, France
3Marne la Vallée, university, France
Physical and mathematical context

Relaxation method
Physical and mathematical context
Gas dynamic: Euler equations

- **Context:** Plasma simulation with Euler/MHD equations.

- **Euler equation:**

\[
\begin{align*}
\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) &= 0 \\
\frac{\partial (\rho \mathbf{u})}{\partial t} + \nabla \cdot (\rho \mathbf{u} \otimes \mathbf{u} + p \mathbf{l}_d) &= 0 \\
\frac{\partial E}{\partial t} + \nabla \cdot (E \mathbf{u} + p \mathbf{u}) &= 0
\end{align*}
\]

- with \(\rho(t, x) > 0 \) the density, \(\mathbf{u}(t, x) \) the velocity and \(E(t, x) > 0 \) the total energy.

- The pressure \(p \) is defined by \(p = \rho T \) (perfect gas law) with \(T \) the temperature.

- **Hyperbolic system** with nonlinear waves. **Waves speed:** three eigenvalues: \((\mathbf{u}, \mathbf{n}) \) and \((\mathbf{u}, \mathbf{n}) \pm c \) with the sound speed \(c^2 = \gamma \frac{p}{\rho} \).
Gas dynamic: Euler equations

- **Context:** Plasma simulation with Euler/MHD equations.

- **Euler equation:**
 \[
 \begin{align*}
 \partial_t \rho + \nabla \cdot (\rho u) &= 0 \\
 \partial_t (\rho u) + \nabla \cdot (\rho u \otimes u + pl_d) &= 0 \\
 \partial_t E + \nabla \cdot (E u + pu) &= 0
 \end{align*}
 \]

- with \(\rho(t, x) > 0 \) the density, \(u(t, x) \) the velocity and \(E(t, x) > 0 \) the total energy.

- The pressure \(p \) is defined by \(p = \rho T \) (perfect gas law) with \(T \) the temperature.

- **Hyperbolic system** with nonlinear waves. **Waves speed:** three eigenvalues: \((u, n) \) and \((u, n) \pm c \) with the sound speed \(c^2 = \gamma \frac{p}{\rho} \).

Physic interpretation:

- **Two important velocity scales:** \(u \) and \(c \) and the ratio (Mach number) \(M = \frac{|u|}{c} \).

- When \(M \) tends to zero, we obtain incompressible Euler equation:
 \[
 \begin{align*}
 \partial_t \rho + u \cdot \nabla \rho &= 0 \\
 \rho \partial_t u + \rho u \cdot \nabla u + \nabla p &= 0 \\
 \nabla \cdot u &= 0
 \end{align*}
 \]

 In 1D we have just advection of \(\rho \).

- **Aim:** construct an Scheme (AP) valid at the limit with a uniform cost.
Finite Volumes is the natural method to solve hyperbolic systems.

- Default of FV scheme. Consistency:
 \[\partial_t U + \partial_x F(U) = \Delta x (\partial_x D(U) \partial_x U) + O(\Delta x^2) \]

- We consider \(U_M \) the solution at the low mach limit.
- The scheme can be considered as not adapted/adapted for this regime if
 \[\lim_{M \to 0} |D(U_M)| \approx M^{-p}, \quad \lim_{M \to 0} |D(U_M)| < C \]

- Example: isolated contact \(p = 1, \nabla \cdot u_0 = 0 \) and \(u_0 \) constant in time.
- Rusanov scheme \(T_f = 2 |u_0| \approx 0.001 \) and 100*100 cells.

Red: exact solution, Blue: numerical solution.
Numerical problem I: time discretization.

- **Explicit scheme**: the CFL condition for low mach flow:
 - The fast phenomena: acoustic waves at velocity c
 - The important phenomena: transport at velocity u
 - Expected CFL: $\Delta t < \frac{\Delta x}{|u|}$, CFL in practice $\Delta t < \frac{\Delta x}{|c|}$
 - At the end, we use a Δt divided by M compared to the expected Δt

First solution

Implicit time scheme. No CFL condition. Taking a larger time step, it allows to "filter" the fast acoustic waves which are not useful in the low-Mach regime.

- Implicit time scheme:

 $M_i U^{n+1} = (I_d + \Delta t A(I_d)) U^{n+1} = U^n$

 - We must solve a nonlinear system and after linearization solve some linear systems.

Problem

- Direct solver too costly. Approximative conditioning for iterative solver:

 $k(M_i) \approx 1 + O \left(\frac{\Delta t}{\Delta x^p M} \right)$

 - We recover the two scales in the conditioning number. The full implicit schemes are difficult to use for this reason.
Numerical problem II: time discretization.

First idea: Semi implicit scheme

- We explicit the slow scale (transport) and implicit the fast scale (acoustic) [CDK12]-[DLVD19]

\[
\begin{align*}
\partial_t \rho + \partial_x (\rho u) &= 0 \\
\partial_t (\rho u) + \partial_x (\rho u^2) + \partial_x p &= 0 \\
\partial_t E + \partial_x (Eu) + \partial_x (pu) &= 0
\end{align*}
\]

Implicit acoustic step:

\[
\begin{align*}
\rho^{n+1} &= \rho^n \\
(\rho u)^{n+1} &= \rho^n u^n - \Delta t \partial_x p^{n+1} + \text{Rhs}_u \\
E^{n+1} &= E^n - \Delta t \partial_x (p^{n+1} u^{n+1}) = \text{Rhs}_E
\end{align*}
\]

Plugging this in the second equation, we obtain

\[
E^{n+1} - \Delta t^2 \partial_x \left(\frac{p^{n+1}}{\rho^n} \partial_x p^{n+1} \right) = \text{Rhs}(E^n, u^n, \rho)
\]

- Matrix-vector product to compute \(u^{n+1}\).
Numerical problem II: time discretization.

First idea: Semi implicit scheme

- We explicit the slow scale (transport) and implicit the fast scale (acoustic) [CDK12]-[DLVD19]

\[
\begin{align*}
\partial_t \rho + \partial_x (\rho u) &= 0 \\
\partial_t (\rho u) + \partial_x (\rho u^2) + \partial_x p &= 0 \\
\partial_t E + \partial_x (Eu) + \partial_x (pu) &= 0
\end{align*}
\]

Implicit acoustic step:

\[
\begin{align*}
\rho^{n+1} &= \rho^n \\
(\rho u)^{n+1} &= \rho^n u^n - \Delta t \partial_x p^{n+1} + Rhs_u \\
p^{n+1}_{\gamma-1} + \frac{1}{2} \rho^n u^n &= E^n - \Delta t \partial_x (p^{n+1} u^{n+1}) = Rhs_E
\end{align*}
\]

Plugging this in the second equation, we obtain

\[
\frac{p^{n+1}}{\gamma - 1} - \Delta t^2 \partial_x \left(\frac{p^{n+1}}{\rho^n} \partial_x p^{n+1} \right) = Rhs(E^n, u^n, \rho^n)
\]

- Matrix-vector product to compute \(u^{n+1}\).
Numerical problem II: time discretization.

First idea: Semi implicit scheme

- We explicit the slow scale (transport) and implicit the fast scale (acoustic) [CDK12]-[DLVD19]

\[
\begin{align*}
\partial_t \rho + \partial_x (\rho u) &= 0 \\
\partial_t (\rho u) + \partial_x (\rho u^2) + \partial_x p &= 0 \\
\partial_t E + \partial_x (Eu) + \partial_x (pu) &= 0
\end{align*}
\]

Implicit acoustic step:

\[
\begin{align*}
\rho^{n+1} &= \rho^n \\
(\rho u)^{n+1} &= \rho^n u^n - \Delta t \partial_x p^{n+1} + \text{Rhs}_u \\
p^{n+1}_{\gamma-1} + \frac{1}{2} \rho^n u^n &= E^n - \Delta t \partial_x (p^{n+1} u^{n+1}) = \text{Rhs}_E
\end{align*}
\]

Plugging this in the second equation, we obtain

\[
\frac{p^{n+1}}{\gamma - 1} - \Delta t^2 \partial_x \left(\frac{p^{n+1}}{\rho^n} \partial_x p^{n+1} \right) = \text{Rhs}(E^n, u^n, \rho^n)
\]

- Matrix-vector product to compute \(u^{n+1} \).

Conclusion

- **Semi implicit**: only one scale in the implicit symmetric positive operator.
- Strong gradient of \(\rho \) generates ill-conditioning. Assembly at each time (costly).
- Nonlinear solver can have bad convergence for if \(\Delta t \gg 1 \) and \(\partial_x p \) not so small.
Relaxation method
Relaxation method I

- **Relaxation** [XJ95]-[CGS12]-[BCG18]: a way to linearize and decouple the equations. Used to design new schemes.

- **Idea:** Approximate the model

 \[\partial_t U + \partial_x F(U) = 0, \text{ by } \partial_t f + A(f) = \frac{1}{\varepsilon} (Q(f) - f) \]

 At the limit and taking \(Pf = U \) we obtain

 \[\partial_t U + \partial_x F(U) = \varepsilon \partial_x (D(U) \partial_x U) + O(\varepsilon^2) \]

- **Time scheme:**
 - we solve

 \[\frac{f^* - f^n}{\Delta t} + A(f^{*,n}) = 0 \]

 - and after we approximate the stiff source term by

 \[f^{n+1} = f^* + \omega (Q(f^*) - f^*) \]

 with \(\omega \in]0, 2] \).

Why ?

- In general, we construct \(A \) with a simpler structure than \(F \) to design numerical flux in FV.

- Here, we construct \(A \) with a simpler structure to design simple implicit scheme.
Relaxation method II

- **Problem:** the nonlinearity of the implicit acoustic step generates difficulties.
- Non conservative form and acoustic term:

\[
\begin{align*}
\frac{\partial}{\partial t} \rho + \frac{\partial}{\partial x} (\rho u) &= 0 \\
\frac{\partial}{\partial t} p + u \frac{\partial}{\partial x} p + \rho c^2 \frac{\partial}{\partial x} u &= 0 \\
\frac{\partial}{\partial t} u + u \frac{\partial}{\partial x} u + \frac{1}{\rho} \frac{\partial}{\partial x} p &= 0
\end{align*}
\]

- **Idea:** Relax only the acoustic part ([BCG18]) to linearize the implicit part.

\[
\begin{align*}
\frac{\partial}{\partial t} \rho + \frac{\partial}{\partial x} (\rho v) &= 0 \\
\frac{\partial}{\partial t} (\rho u) + \frac{\partial}{\partial x} (\rho u v + \Pi) &= 0 \\
\frac{\partial}{\partial t} E + \frac{\partial}{\partial x} (E v + \Pi v) &= 0 \\
\frac{\partial}{\partial t} \Pi + v \frac{\partial}{\partial x} \Pi + \phi \lambda^2 \frac{\partial}{\partial x} v &= \frac{1}{\varepsilon} (p - \Pi) \\
\frac{\partial}{\partial t} v + v \frac{\partial}{\partial x} v + \frac{1}{\phi} \frac{\partial}{\partial x} \Pi &= \frac{1}{\varepsilon} (u - v)
\end{align*}
\]

- **Limit:**

\[
\begin{align*}
\frac{\partial}{\partial t} \rho + \frac{\partial}{\partial x} (\rho u) &= \varepsilon \frac{\partial}{\partial x} [A \frac{\partial}{\partial x} p] \\
\frac{\partial}{\partial t} (\rho u) + \frac{\partial}{\partial x} (\rho u^2 + p) &= \varepsilon \frac{\partial}{\partial x} [(A u \frac{\partial}{\partial x} p) + B \frac{\partial}{\partial x} u] \\
\frac{\partial}{\partial t} E + \frac{\partial}{\partial x} (E u + p u) &= \varepsilon \frac{\partial}{\partial x} [AE \frac{\partial}{\partial x} p + A \frac{\partial}{\partial x} \frac{p^2}{2} + B \frac{\partial}{\partial x} \frac{u^2}{2}]
\end{align*}
\]

with \(A = \frac{1}{\rho} \left(\frac{\rho}{\phi} - 1 \right) \) and \(B = (\rho \phi \lambda^2 - \rho^2 c^2) \).

- **Stability:** \(\phi \lambda > \rho c^2 \) and \(\rho > \phi \).

Advantage

- We keep the conservative form for the original variables and obtain a **fully linear acoustic**.
Splitting

Dynamical splitting

- **Splitting**: we solve sub-part of the system one by one. **Dynamic case**: Splitting time depending for low-mach [IDGH2018]

- For large acoustic waves (Mach number not small) we want capture all the phenomena. Consequently use an explicit scheme.

- For small/fast acoustic waves (low Mach number) we want filter acoustic. Consequently use an implicit scheme for acoustic.

Splitting: Explicit convective part/Implicit acoustic part.

\[
\begin{align*}
\partial_t \rho + \partial_x (\rho v) &= 0 \\
\partial_t (\rho u) + \partial_x (\rho uv + M^2(t) \Pi) &= 0 \\
\partial_t E + \partial_x (E v + M^2(t) \Pi v) &= 0 \\
\partial_t \Pi + v \partial_x \Pi + \phi \lambda_c^2 \partial_x v &= 0 \\
\partial_t v + v \partial_x v + \frac{M^2(t)}{\phi} \partial_x \Pi &= 0
\end{align*}
\]

\[
\begin{align*}
\partial_t \rho &= 0 \\
\partial_t (\rho u) + (1 - M^2(t)) \partial_x \Pi &= 0 \\
\partial_t E + (1 - M^2(t)) \partial_x (\Pi v) &= 0 \\
\partial_t \Pi + \phi (1 - M^2(t)) \lambda_a^2 \partial_x v &= 0 \\
\partial_t v + (1 - M^2(t)) \frac{1}{\phi} \partial_x \Pi &= 0
\end{align*}
\]

with \(M(t) \approx \max \left(M_{\text{min}}, \min \left(\max_x \frac{|u|}{c}, 1 \right) \right) \)

- Eigenvalues of Explicit part: \(v, v \pm M(t) \lambda_c \). Implicit part 0, \(\pm (1 - M^2(t)) \lambda_a \approx c \)

- **At the end**: we make the projection \(\Pi = p \) and \(v = u \) (can be viewed as a discretization of the stiff source term).
Implicit time scheme

- We introduce the implicit scheme for the "acoustic part":

\[
\begin{align*}
\rho^{n+1} &= \rho^n \\
(\rho u)^{n+1} + \Delta t(1 - M^2(t_n)) \partial_x \Pi^{n+1} &= (\rho u)^n \\
E^{n+1} + \Delta t(1 - M^2(t_n)) \partial_x (\Pi v)^{n+1} &= E^n \\
\Pi^{n+1} + \Delta t(1 - M^2(t_n)) \phi \lambda^2 \phi \partial_x v^{n+1} &= \Pi^n \\
v^{n+1} + \Delta t(1 - M^2(t_n)) \frac{1}{\phi} \partial_x \Pi^{n+1} &= v^n
\end{align*}
\]

- We plug the equation on \(v \) in the equation on \(\Pi \). We obtain the following algorithm:
 - Step 1: we solve
 \[
 (l_d - (1 - M^2(t_n))^2 \Delta t^2 \lambda^2 \partial_{xx}) \Pi^{n+1} = \Pi^n - \Delta t(1 - M^2(t_n)) \phi \lambda^2 \partial_x v^n
 \]
 - Step 2: we compute
 \[
 v^{n+1} = v^n - \Delta t(1 - M^2(t_n)) \frac{1}{\phi} \partial_x \Pi^{n+1}
 \]
 - Step 3: we compute
 \[
 (\rho u)^{n+1} = (\rho u)^n - \Delta t(1 - M^2(t_n)) \partial_x \Pi^{n+1}
 \]
 - Step 4: we compute
 \[
 E^{n+1} = E^n - \Delta t(1 - M^2(t_n)) \partial_x (\Pi^{n+1} v^{n+1})
 \]

Advantage

- We solve only a constant Laplacian. We can assembly matrix one time.
- No problem of conditioning, which comes from to the strong gradient of \(\rho \)
Spatial scheme in 1D

- **Idea**: FV Godunov fluxes for the explicit part + Central fluxes for the implicit part.
- Main problem of the explicit part: design numerical flux.
- **First possibility**: since the maximal eigenvalue is $O(Mach)$ a Rusanov scheme.
- Other solution: construct a Godunov scheme for the relaxation system. Principle:
 - eigenvalues: $\nu - \mathcal{E}(t)\lambda_c$, $\nu(x3)$, $\nu + \mathcal{E}(t)\lambda_c$
 - Strong invariants of external waves:
 \[
 \partial_t(\nu \pm \phi\lambda_c\pi) + (\nu \pm \mathcal{E}(t)\lambda_c)\partial_x(\nu \pm \phi\lambda_c\pi) = 0
 \]
 - Strong invariants of central wave:
 \[
 \partial_t\left(\frac{1}{\rho} + \frac{\pi}{\rho\phi\lambda^2}\right) + \nu\partial_x\left(\frac{1}{\rho} + \frac{\pi}{\rho\phi\lambda^2}\right) = 0
 \]
 \[
 \partial_t\left(u - \frac{\phi}{\rho}\nu\right) + \nu\partial_x\left(u - \frac{\phi}{\rho}\nu\right) = 0
 \]
 \[
 \partial_t\left(\rho e + \frac{\pi^2}{2\rho\phi\lambda^2} + \frac{(v - u)^2}{2(\frac{\rho}{\phi} - 1)}\right) + \nu\partial_x\left(\rho e + \frac{\pi^2}{2\rho\phi\lambda^2} + \frac{(v - u)^2}{2(\frac{\rho}{\phi} - 1)}\right) = 0
 \]
- **Important**: strong invariant are weak invariant (conserved) on other wave.
 - **Exemple**: (π, ν) preserved on central wave.
- We obtain all the intermediary states using these previous result.
Results 1D I: contact

- **Smooth contact:**
 \[
 \begin{align*}
 \rho(t, x) &= \chi_{x<x_0} + 0.1\chi_{x>x_0} \\
 u(t, x) &= 0.01 \\
 p(t, x) &= 1
 \end{align*}
 \]

- **Error**

<table>
<thead>
<tr>
<th>cells</th>
<th>Ex Rusanov</th>
<th>Ex LR</th>
<th>Old relax Rusanov</th>
<th>Relax Rus</th>
<th>Relax PC-FVS</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>0.042</td>
<td>3.6E^{-4}</td>
<td>1.4E^{-3}</td>
<td>7.8E^{-4}</td>
<td>4.1E^{-4}</td>
</tr>
<tr>
<td>500</td>
<td>0.024</td>
<td>1.8E^{-4}</td>
<td>6.9E^{-4}</td>
<td>3.9E^{-4}</td>
<td>2.0E^{-4}</td>
</tr>
<tr>
<td>1000</td>
<td>0.013</td>
<td>9.0E^{-5}</td>
<td>3.4E^{-4}</td>
<td>2.0E^{-4}</td>
<td>1.0E^{-5}</td>
</tr>
<tr>
<td>2000</td>
<td>0.007</td>
<td>4.5E^{-5}</td>
<td>1.7E^{-4}</td>
<td>9.8E^{-5}</td>
<td>4.9E^{-5}</td>
</tr>
</tbody>
</table>

- **Old relax:** other relaxation scheme where the implicit Laplacian is not constant and depend of \(\rho^n \).

- **Comparison time scheme:**

<table>
<thead>
<tr>
<th>Scheme</th>
<th>(\lambda)</th>
<th>(\Delta t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Explicit</td>
<td>(\max(</td>
<td>u-c</td>
</tr>
<tr>
<td>SI Old relax</td>
<td>(\max(</td>
<td>u - \mathcal{M}(t_n)) \frac{\lambda}{\rho}</td>
</tr>
<tr>
<td>SI new relaxation</td>
<td>(\max(</td>
<td>v - \mathcal{M}(t_n)) \lambda</td>
</tr>
</tbody>
</table>

- **Conditioning:**

<table>
<thead>
<tr>
<th>Schemes</th>
<th>(\Delta t)</th>
<th>conditioning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si old relax</td>
<td>0.00757</td>
<td>3000</td>
</tr>
<tr>
<td>Si new relax</td>
<td>0.041</td>
<td>9800</td>
</tr>
<tr>
<td>Si new relax</td>
<td>0.0208</td>
<td>2400</td>
</tr>
<tr>
<td>si new relax</td>
<td>0.0075</td>
<td>320</td>
</tr>
</tbody>
</table>
Results in 2D: Gresho vortex

- Gresho vortex: $\nabla \cdot \mathbf{u} = 0$ and $p = \frac{1}{M^2} + p_2(x)$

- Explicit Lagrange+remap scheme
 Norm of the velocity (2D plot). 1D initial (red) and final (blue) time.
 - From left to right: $M_0 = 0.5$ ($\Delta t = 1.4E^{-3}$), $M_0 = 0.1$ ($\Delta t = 3.5E^{-4}$), $M_0 = 0.01$ ($\Delta t = 3.5E^{-5}$), $M_0 = 0.001$ ($\Delta t = 3.5E^{-6}$).
Results in 2D: Gresho vortex

- Gresho vortex: \(\nabla \cdot \mathbf{u} = 0 \) and \(p = \frac{1}{M^2} + p_2(x) \)

- Relaxation scheme. Norm of the velocity (2D plot). 1D initial (red) and final (blue) times. From left to right: \(M = 0.5, \Delta t = 2.5 \times 10^{-3} \), \(M = 0.1, \Delta t = 2.5 \times 10^{-3} \), \(M = 0.01, \Delta t = 2.5 \times 10^{-3} \), \(M = 0.001, \Delta t = 2.5 \times 10^{-3} \).
Results in 2D: Kelvin helmholtz

- kelvin-Helmholtz instability. Density:

- Density at time $T_f = 3$, $k = 1$, $M_0 = 0.1$. Explicit Lagrange-Remap scheme with 120×120 (left) and 360×360 cells (middle left), SI two-speed relaxation scheme ($\lambda_c = 18$, $\lambda_a = 15$, $\phi = 0.98$) with 42×42 (middle right) and 120×120 cells (right).
Results in 2D: Kelvin helmholtz

- kelvin-Helmholtz instability. Density:

- Density at time $T_f = 3$, $k = 2$, $M_0 = 0.01$ with SI two-speed relaxation scheme ($\lambda_c = 180$, $\lambda_a = 150$, $\phi = 0.98$). Left: 120×120 cells. Right: 240×240 cells.
Conclusion

Resume

- Introducing **Dynamic splitting scheme** we separate the scales.
- Introducing **implicit scheme** for the acoustic wave we can filter these waves.
- Introducing **relaxation** we simplify at the maximum the implicit scheme.
- A well-adapted spatial scheme is also very important.
- **At the end**: we capture the incompressible limit.

Perspectives:

- **To avoid some spurious mods**: Use compatible discretization for the linear wave part (mimetic/staggered DF, compatible finite element).
- Extension to **High Order**, MUSCL firstly and after DG and HDG schemes.
- Extension to Shallow-Water/Ripa models and **MHD (main goal)**. For MHD the relaxation it is ok but the splitting is less clear.